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Abstract

This paper proposed a positioning and mapping algorithm of sliding window optimization for substation monitoring robots
o solve the problems of low precision location and poor robustness of the existing laser odometer in power inspection outdoor
cene mapping. A tightly coupled simultaneous localization and mapping (SLAM) algorithm was proposed based on 16-wire
iDAR and inertial measurement unit (IMU). Firstly, the paper estimated the IMU and corrected the motion distortion of

he laser point cloud by linear interpolation. Secondly, scene features were extracted by curvature and classified according
o different feature properties. The local map was constructed in the sliding window using the inter-frame matching module.
inally, the joint optimization function was built using the distance and IMU data obtained by matching the frame with

he local map. The paper used the KITTI and self-recorded datasets to conduct the experiments. The results show that the
mproved method’s accuracy outperforms the lightweight and ground-optimized LiDAR odometry and Mapping (Lego-LOAM)
nd LiDAR inertial odometry and mapping (LIO-Mapping) and draws a broad application prospect in power inspection field.
2023 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/4.0/).

eer-review under responsibility of the scientific committee of the 2022 the 3rd International Conference on Power and Electrical Engineering,
CPEE, 2022.
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1. Introduction

The manual inspection of substation equipment is not only dangerous to people under high voltage, ultra-high
oltage, and bad weather conditions, but also brings certain hidden dangers to the safe operation of the power
rid [1]. Oppositely, automatic inspection robot has the advantages of high efficiency, convenience, precision,
nd safety. Thus, various research has been conducted to adapt inspection robots. Huang et al. designed an
utomatic reading system with a pan–tilt–zoom camera to solve the cost problem of reading instrument data [2].
iu et al. proposed an accurate alignment method for PTZ of a substation inspection robot based on a monocular
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camera [3]. Xiao et al. proposed an adaptive pose adjustment method for a multi-DOF guideway inspection robot
in a substation [4]. Su et al. developed an intelligent inspection robot for substations to support a real-time deep-
learning model and improve detection accuracy and reasoning time [5]. Nevertheless, the system focused more on
fault diagnosis. Accurate pose estimation has been used to ensure the robot can calculate its position and motion
and provide data support for simultaneous localization and mapping (SLAM) and navigation. Sun et al. proposed
an improved particle filter and path-planning algorithm for laser navigation [6]. Nevertheless, the paper did not
compare the proposed method’s performance with other methods. Chen et al. used geometric and visual features of
LiDAR to complete the closed-loop detection, to improve LiDAR SLAM performance [7]. However, while the strict
parameters and rules guarantee the accuracy of loop closure detection, some loop closures still need to be included.
To realize closed-loop detection, Chen et al. used depth learning to exploit different types of information generated
from LiDAR scans [8]. The method outperformed two state-of-the-art methods in two datasets and generalized
well to new environments. Karam et al. applied the inertial measurement unit (IMU) to LiDAR-based SLAM and
proposed an IMU-SLAM switching strategy to increase the robustness [9]. Zhang et al. divided the simultaneous
positioning and mapping problem into two algorithms to reduce the drift of the LiDAR odometer and achieve
good matching and registration of point cloud data at different frequencies [10]. However, for the current LiDAR
odometer, the low positioning accuracy and poor robustness greatly limit the practical application of inspection
robots in the outdoor environment.

In addition, the manual inspection is mainly realized by seeing, touching, listening, smelling, and other
enses. Therefore, the automatic inspection robots should integrate sensor technology, motion control, and wireless
ommunication [11]. An inspection robot’s system framework mainly includes mobile stations and a base station,
hich include a driving system, a control system, and a dedicated sensor [12]. Specifically, as to the mobile

tation, various sensors or detectors are used to realize the inspection of the outdoor high-voltage equipment of
he substation and timely detect equipment abnormalities, such as thermal defects of power equipment and foreign
ody suspension, etc. [13]. However, the basic system framework and core algorithm are different due to the focus
nd target problems of existing research. Zhang et al. realized robust and low-drift laser optical inertial odometer
easurement and mapping by integrating 3D laser scanner, camera, and IMU data [14]. The same goal was achieved

sing the system architecture of a 3D laser scanner alone in another research [15]. Differently, Yin et al. realized
D position recognition through a depth fusion network, which improved the accuracy of position recognition and
ptimized the reasoning time simultaneously [16].

Therefore, based on the above analysis, this paper proposed a positioning and mapping algorithm of sliding
indow optimization by using the tightly coupled data fusion scheme of LiDAR and IMU to estimate the pose

hrough the data between the two sensors and jointly optimize [17]. Our main contributions were as follows: (1) The
tructural framework of the system was given, and the algorithm principle was analyzed. (2) The paper proposed an
mproved ICP point cloud registration scheme. (3) The proposed algorithm was tested on KITTI and Plant datasets.

The remainder of this article is organized as follows. Section 2 describes the system framework and algorithm
heory. In Section 3, LiDAR and IMU are analyzed. Section 4 introduces the improved odometer. Section 5 presents
he experimental results. Finally, Section 6 concludes.

. System framework of improved Lego-LOAM algorithm

The accuracy of the odometer is low, especially in extensive scene mapping. The system cannot recognize a loop
losure when the robot returns to the origin again, so the global pose error cannot be corrected. Meanwhile, the
ego-LOAM algorithm’s overall accuracy is high. Therefore, we use the loop closure detection module to correct

he global pose and propose an improved algorithm based on Lego-LOAM.
The framework of the substation detection robot system in this paper is shown in Fig. 1. The IMU data is pre-

ntegrated before the LiDAR data arrive. When the LiDAR data S j is obtained, the IMU pre-integration transforms,
and T W

L j ′
, T W

L j
are used to linearly interpolate the data to correct the distortion of the point cloud, and the processed

point cloud S̃ j is obtained. The features extracted from S̃ j are recorded as FL j . The characteristic points from the
oth time to the i th time are estimated according to the posture of IMU, Fo,i . The pose estimation is performed by
correlating the characteristics of the LiDAR at time j and time i to calculate the distance between the two frames,
mi, j , and construct the constraint relationship. The cost function is constructed by using IMU pre-integration data,
∆pi j ,∆vi j ,∆qi j and the distance between two frames, where ∆pi j is the position, ∆vi j is the measured speed,

∆qi j is the rotation quaternion. The Lego-LOAM is used to improve the pose estimation accuracy.
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Fig. 1. Improved algorithm odometer framework.

3. Data analysis of LiDAR and IMU

This part describes the models of LiDAR and IMU, the error model, and the calibration method. The
definition and relationship of the coordinate system of mobile robots, LiDAR, and IMU, are described. Finally,
the synchronization method of the time stamp is described, which provides support for the next chapter.

3.1. LiDAR and IMU external parameter calibration

External parameter calibration calculates a conversion parameter of the coordinate system between LiDAR and
IMU. The calibration accuracy directly affects the accuracy of positioning and mapping. Especially in large scenes,
the calibration error increases with the system operation time and will be added to the accumulated error. The
mobile robot in this project is different from the IMU in position, and the IMU is fixed directly above the laser
radar. Theoretically, the external parameters between the sensors can be calibrated, but the positions of the two
sensors should be as close as possible. The sensors can record the same data group in two ways and have different
representations in their respective coordinate systems. To ensure that LiDAR and IMU accurately represent data
group, it is necessary to calculate the transformation matrix between them and put the detected points under the
same coordinate system, that is, joint calibration of sensors. Sensor coordinates are shown in Fig. 2.

Fig. 2. Sensor coordinates.

Let the coordinate of a point in space under (o1x1 y1z1) be (a1, b1, c1). The coordinate under (o2x2 y2z2) is
a2, b2, c2), and the transformation matrix under the two coordinate systems is denoted as T , The relationship
etween the coordinates of two points is shown in formula (1):

(a1, b1, c1)
T

= T T (a2, b2, c2) (1)

The transformation matrix solution is shown in formula (2):

T =

⎡⎢⎢⎢⎢⎢⎣
t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

t41 t42 t43 t44

⎤⎥⎥⎥⎥⎥⎦ =

[
R 0

t 1

]
(2)
here R is the rotation matrix, and t is the translation matrix.
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The specific steps are as follows:
(1) Determine the point cloud data of the marker through the LiDAR.
(2) Calculate the original data of IMU, and obtain the attitude angle, and estimate the transformation matrix

etween the current state and the world coordinate system, and calculate the marker coordinates.
(3) Determine the three-dimensional coordinates of the marker in the LiDAR coordinate system.
(4) Match the data of the markers in the two coordinate systems.
(5) Convert the marker data in IMU coordinates into LiDAR coordinates and compare the two data. The algorithm

s iterated continuously, and the external parameters are obtained after convergence.

.2. Coordinate system definition and transformation

.2.1. LiDAR coordinate system
The paper expresses the point cloud data scanned by LiDAR in its coordinate system. The global coordinate

ystem is the position of the first frame of the LiDAR after system start-up. When the mobile robot moves, the
oint cloud data obtained at different times must be converted to the global coordinate system before the carrier
tate can be estimated. It shows the coordinate transformation in formula (3).

T W
L =

(
t x W

L , t yW
L , t zW

L , φx W
L , θyW

L , ϕzW
L

)
=

(
pW

L , qW
L

)
(3)

here T W
L is the transformation matrix between the LiDAR and the global coordinate system, and t x W

L , t yW
L and

zW
L are the translation amounts on the three axes respectively, and φW

L , θW
L and ϕW

L respectively correspond to Euler
ngles, roll angle, pitch angle and yaw angle.

Assuming that X W and X L are the states of the object to be measured in the global coordinates and the LiDAR
oordinates respectively, thus:

X W
= R X L

+ qW
L (4)

here R needs to be obtained according to Euler-angle, as shown in formula (5):

R =

⎡⎢⎢⎣
cosθcosϕ cosφsinϕ + sinφsinθcosϕ sinφsinϕ − cosφsinθsinϕ

−cosθsinϕ cosφcos − sinφsinθsinϕ sinφcosϕ + cosφsinθsinϕ

sinθ −sinφcosθ cosφcosθ

⎤⎥⎥⎦ (5)

Generally, a rotation matrix is not selected for operation in actual operation. Since it needs to represent the
otation of three axes through nine elements, it will consume additional memory when running the system, so it is
sually expressed by a quaternion, as shown in formula (6):

q = q0 + q1 i⃗ + q2 j⃗ + q3k⃗ (6)

here i , j and k are complex numbers, and the relationship between them is as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
i2

= j2
= k2

= −1
i j = k, j i = −k

jk = i, k j = −1
ki = j, ik = − j

(7)

Assume a unit vector is ε⃗ = [nx , ny, nz], and the object’s rotation angle is θ around the vector. The quaternion
is:

q =

[
cos

θ

2
, nx sin

θ

2
, nysin

θ

2
, nzsin

θ

2

]
(8)

The paper can obtain the conversion relationship between LiDAR and the global coordinate system through this
onversion. In the experiment, a group of plane points is scanned under the LiDAR coordinates. The plane points
nder the radar coordinate system can be converted to the global coordinate system through coordinate conversion.
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3.2.2. Inertial navigation coordinate system
In the inertial navigation coordinate system, the Z axis is along the Earth’s axis of rotation, pointing to due north.

he X axis is the intersection of the ecliptic plane of the earth’s orbit around the sun and the plane of the Earth’s
quator Y axis is determined by the right-hand orthogonal criterion. The inertial navigation coordinate system is
ransformed with the carrier coordinate system. When the system is running, the current state of the carrier can
e obtained by solving the transformation matrix between the inertial navigation coordinate system and the carrier
oordinate system for mapping. Suppose the transformation matrix of the two coordinate systems is denoted as A,

IMU rotates γ , θ and ψ respectively around the X , Z and Y axes at this time, and the two coordinate systems
coincide, then A can be solved by formula (9):

A =

⎡⎢⎢⎣
cosθcosψ sinθ −cosθsinψ

−cosγ cosψsinθ + sinγ sinψ cosγ cosθ cosγ sinψsinθ + sinγ cosψ

sinγ cosψsinθ + cosγ sinψ −sinγ cosθ −sinγ sinψsinθ + cosγ cosψ

⎤⎥⎥⎦ (9)

The matrix A is an orthogonal matrix. Thus the transposition of the matrix can represent the state transition
atrix between the carrier and the IMU. It is shown in formula (10):

C = AT (10)

Finally, three Euler angles are obtained, as shown in formula (11) and formula (12):

ψ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

arctan
−C31

C11
, (C11>0)

arctan
−C31

C11
− π, (C11 < 0,C31 > 0)

arctan
−C31

C11
+ π, (C11 < 0),

(11)

[
γ

θ

]
=

⎡⎣arctan
−C23

C22

arctanC21

⎤⎦ (12)

here Ci j represents the direction cosine matrix, and i j represent the elements of the irow and the j column.

. Theory of mileage calculation method

.1. Point cloud segmentation

The paper will extract some unstable points from features, including occlusion and outlier points. Such feature
oints will disappear during the movement of the robot, resulting in mismatching in the feature-matching stage
nd decreasing the accuracy of pose estimation. Here, it uses the clustering method to mark some of the geometric
eatures of the point cloud that may be the same object and uses the marked feature point cloud for processing in
he subsequent matching process. It is mainly divided into two parts, as shown in Fig. 3.

For obtaining the features on the same horizontal laser line, the adjacent points with the depth difference within
he threshold are firstly selected, and the threshold is determined according to the following formula (13). Where,
O Fi,k

 is the point with a large depth value of the feature point, denoted as d1, and
O Fi,k+1

 is the point with
small depth value of the feature point, denoted as d2, α is the resolution between two adjacent feature points.⎧⎨⎩

∆d =
O Fi,k

 −
O Fi,k+1

 = d1 − d2 × cosα

β = arctan
d2 × sinα

d1 − d2 × cosα
(13)

After rough segmentation, the object’s weak points in the LiDAR scanning process can be effectively removed.
he different features are classified according to the laser line depth. A threshold parameter is set to determine
hether the features of the two adjacent points are divided into two categories or merged into one category.
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Fig. 3. Point cloud clustering.

.2. Improved ICP point cloud registration

In the traditional ICP matching algorithm, the point clouds of the front and back frames need to traverse all
oints to calculate the centroid and match, resulting in a large error in the iterative calculation process, a large
mount of calculation, a long time and poor applicability on the mobile robot platform. The preprocessing of point
louds has been described above. Next, the processed point cloud is voxelized to filter out some redundant point
louds and improve matching efficiency. The specific steps are as follows:

(1) Find the boundary on the X , Y and Z axes for the current point cloud data, and record it as : xmin ,
xmax , ymin, ymax , zmin, zmax .

(2) Make a difference between the maximum and minimum values on each axis to find the side length of the
ube surrounding the point cloud, and record it as: lx , ly, lz .

(3) Assuming that each voxel contains k point cloud data, the total number of point cloud data at the current
ime is known to be n, and the voxelized grid side length cell is calculated as shown in formula (14):

cell =
3

√
k × lx × ly × lz

n
(14)

(4) Given the side length of each voxel lattice, the total number of voxels is obtained as shown in formula (15):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

num = M × N × L⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M =

⌊ lx
cell

⌋
N =

⌊
ly

cell

⌋
L =

⌊
lz

cell

⌋ (15)

here M , N and L respectively correspond to the number of squares in the three axis directions, ⌊■⌋ represents a
ownward rounding symbol, num represents the total number of prime elements.

(5) Mark all the voxel squares one by one and calculate the centroid. If the centroid exists, select the point as
he centroid. Otherwise, select the point closest to the centroid as the centroid, as shown in formula (16):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎨⎪⎩
i =

xi −xmin
cell

j =
yi −ymin

cell

k =
zi −zmin

cell

ci jk =
1
k

k∑
i=1

pi

(16)

here, i, j, k represent the square where each point cloud is located, ci jk represents the center of mass, k is the
otal number of point clouds, and Pi represents the data of each point cloud.

The computational cost can be effectively reduced by rasterizing the point cloud voxels, and the initial value

btained by IMU pre-integration can effectively reduce the number of iterations.
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4.3. Optimization of lidar odometer

The first reference frame is fixed by fusing the relative position and attitude. Estimated states X W
B , T L

B , and
relative radar measurements are used to constrain the radar state. Since a single scanning point is not enough to
calculate the real relationship, a local map is established. Firstly, the feature points from time p to j are included,
where p is the first scan in the local map, and time p to j is the optimization window, as shown in Fig. 4.

Fig. 4. Optimization window.

The correspondence between the feature point FLα at the current time and the local map can be found by
stablishing the local map, where α ∈ {p + 1, K , i} feature points include plane points and edge points of the

previous feature extraction part.
In the optimization window, T Lp

Lα is used to transform the features in the optimization window to obtain F Lp
Lα at

time p. Since it is a radar state estimated by IMU state, T Lp
Lα t is expressed as:

T Lp
Lα = T L

B T W−1

Bp T W
BαT L−1

B =

[
RLp

Lα t Lp
Lα

0 1

]
(17)

For each feature point xLp in the quasi synthetic plane, a linear equation group is constructed for the existing
oints, and the plane coefficient ωT x ′

+d = 0 can be calculated by solving it. In the formula, ω is the plane normal
ector, and d is the intercept in the coordinate system at time p.

Define a distance factor m = [x, ω, d], record the relative measurement value from the feature point to the face
f each x ∈ FLα , and the residual can be expressed as:

rL = (m, T W
Lp, T W

Lα, T L
B ) = ωT (RLp

Lαx + t Lp
Lα ) (18)

In formula (18), T W
Lp and T W

Lα are the transformation matrix from the frame scanned by the radar at time p and
ime α to the world coordinate system respectively.

The sliding window helps to limit the amount of calculation. When the new pose constraint appears, the pose
onstraints at the earliest time in the edge window. There are αn IMU status information. The overall variables to
e estimated are:

X =
[
X W

Bp, . . . , X W
B j , T L

B

]
(19)

Construct the cost function to solve the global pose estimation of the state variable X , as shown in
ormula (20):

min
X

1
2

⎧⎨⎩
mL j∑

∥rL (m, X )∥2
+

j−1∑ rB(zn
n+1, X )

2

⎫⎬⎭ (20)

m=mLp n=p
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where rL (m, X ) is the residual of relative LiDAR constraint. rB(zn
n+1, X ) is the IMU residual, which can be obtained

rom the state and pre integration. It can be expressed as:

rB(zn
n+1, X ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

RT
n (pn+1 − pn − vn∆t −

1
2

gW∆t2) − ∆p

RT
n (vn+1 − vn − gW∆t) − ∆v

2[∆q−1
⊗ q−1

n ⊗ qn+1]xyz

ban+1 − ban

bgn+1 − bgn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(21)

The cost function in the form of nonlinear least squares can be solved by Gauss Newton method in the form of
HδX = −b, which is solved by Google’s nonlinear optimization library Ceres Solver.

5. Experimental results and analysis

The hardware and software configuration of the experimental platform is shown in Table 1.

Table 1. Hardware and software configuration.

Software configuration Hardware configuration

Operation system Ubuntu 18.04 Notebook i7 processor 8G memory
ROS ROS Melodic Mobile platform Mobile robot
Development environment Vs code LiDAR RS-LiDAR-16
Point cloud processing Cloud compare Ins Xsens MTi-G-710

5.1. Analysis of pre-processing results

In this stage, we mainly deal with the point cloud distortion caused by the movement of the mobile robot and
rovide an excellent prior condition for the subsequent point cloud processing.

According to the self-recorded dataset of the parking lot of Shenyang SIASUN phase III company, the paper tests
he algorithm and shows the result of point cloud processing before and after correction in Fig. 5. The comparison
etween Fig. 5(a) and (b) shows that the preprocessing algorithm proposed in this paper can effectively reduce the
istortion of point clouds.

Fig. 5. (a) point cloud preprocessing before correction; (b) point cloud preprocessing after correction.

5.2. Analysis of feature extraction and ground segmentation results

Fig. 6 shows the results of different features after point cloud segmentation. Fig. 6(a) shows the feature extraction
result for the point cloud after pre-processing. Fig. 6(b) shows the effect of ground feature extraction, where different
colors represent the reflectance of the laser-scanning object. Fig. 6(c) is the feature extracted from the ground points.

In each evenly divided area, only the points with excellent smoothness are calculated and classified according
to the ground features. The edge features such as tree trunks, road signs, and wall corners are classified through
905
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Fig. 6. (a) single frame point cloud feature; (b) ground point cloud; (c) ground characteristics; (d) angular characteristics; (e) edge
haracteristics. . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)

he clustering of point clouds, as shown in Fig. 6(d). The green feature points are the extracted edge features. The
lassified surface features are shown in Fig. 6(e).

.3. Accuracy analysis of odometer

.3.1. KITTI data
The KITTI00 dataset is used for testing, and the accuracy of the odometer output trajectory and the actual value

s evaluated for Lego-LOAM [18], LIO-Mapping [19], and the improved algorithm. The absolute position error
APE) and root mean square error (RMSE) is selected as the positioning accuracy evaluation indicators, and the
VO plug-in is used to evaluate the trajectory. Fig. 7 is a map of the KITTI00 built in the improved scheme, wherein

he red triangle is the starting point.

Fig. 7. KITTI00 mapping. . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 2 shows the absolute position and attitude errors of the three schemes under the kitti00 dataset. The
minimum mean absolute error of the improved algorithm is 1.14 m compared with the two comparison algorithms.
It is 60.1% and 34.2% higher than the result of the Lego-LOAM algorithm (2.86 m) and the LIO-Mapping algorithm
(1.53 m), respectively. In comparing root mean square error, the improved algorithm is slightly lower than the
906
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Table 2. Absolute pose error (m).

Algorithm Average value Maximum RMSE

Lego-LOAM 2.86 5.11 3.02
LIO-Mapping 1.53 3.94 1.14
Improved 1.14 2.73 1.25

LIO-Mapping algorithm using the same tight coupling framework, but it is still better than the Lego-LOAM
algorithm.

5.3.2. Plant data
Next, the improved algorithm’s sliding window optimization pose module is tested. The dataset is selected

rom the factory office building with a total length of 943 m in outdoor scenes. By recording and displaying the
ptimized posture output trajectory, the test results of three schemes are shown in Fig. 8. It can be seen that the
umulative error of the Lego-LOAM algorithm increases gradually during slam operation in large scenes, as shown
n Fig. 8(a). Moreover, the original loop detection module fails to perform a closed-loop optimization posture due to
he significant drift, as shown in the circle. Fig. 8(b) and (c) show the LIO-Mapping trace and the improved algorithm
race, respectively. Because these two algorithms adopt a tightly coupled framework, they can still maintain an
xcellent ability to construct the graph and strong robustness when running long distances. By comparing the starting
oint and ending point trajectories of the two images shown in the circle part in Fig. 8(b) and (c), the improved
lgorithm is slightly better than LIO-Mapping in terms of cumulative drift processing.

Fig. 8. (a) Lego-LOAM trajectory; (b) LIO-Mapping trajectory; (c) improved algorithm trajectory.

By calculating the position and pose changes of the odometer at the adjacent time stamp and the position and
ose changes of the actual value at the adjacent time stamp, the obtained results are compared to obtain the relative
osition and pose error. In 943 m Park, the maximum drift error of the improved algorithm is less than 1 m. In
ddition, the square parts in Fig. 8(a) to (c) demonstrate that the improved algorithm is better than the other two
lgorithms. It can be seen that the tightly coupled odometer framework based on the optimization window can
omplete the localization and mapping work with a low drift during SLAM operation in large-scale outdoor scenes.

. Conclusion

This paper designed the overall framework of the SLAM system for a mobile robot. The hardware and software
omposition, working principles of the mobile robot experimental platform, laser, and IMU used in this paper
ere described, and the ROS operating system was also described. This paper mainly introduced the construction
f a tight coupling odometer positioning scheme based on laser IMU and described in detail the correction of
oint cloud distortion, feature extraction and classification, point cloud matching, and sliding window optimization.
he substation equipment monitoring robot can automatically carry out the global path planning in the substation
nd independently complete the inspection of the substation equipment with the help of LiDAR and GPS global
ositioning system. Besides, it can complete the image inspection of the substation equipment, the equipment
nstrument’s automatic identification, and the primary equipment’s infrared detection, etc.
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Furthermore, it can record the equipment information and provide an abnormal alarm. The monitoring task
avigation experiment compared the improved algorithm with mainstream algorithms using the KITTI dataset.
he results showed that the improved method possessed accuracy advantages. Since automatic inspection robots
ignificantly reduce personnel costs and increase error detection efficiency, the system draws a broad application
rospect in the power inspection field.
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