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Computing research is increasingly addressing underwater environments and examining how computing can support
diving and other activities. Unlike on land, where well-established positioning methods are widely available, underwater
environments lack a common positioning mechanism, which is a prerequisite for many applications. Dead reckoning, the use
of angle and distance estimates to track position changes from a known point of origin, is a promising candidate for underwater
positioning as it does not rely on wireless signals (which decay rapidly in underwater environments) and as there is a wide
range of literature and algorithms freely available. Yet, currently it is unclear whether the existing techniques can be adopted
in underwater environments or whether the differences in medium and environment affect the performance of the dead
reckoning techniques. We contribute by evaluating and systematically analyzing the performance and trade-offs associated
with dead reckoning techniques in underwater environments. We present AEOLUS, a prototype unit comprising of a low-cost
microcontroller and inertial measurement unit, to perform experiments on the ground and in underwater environments to
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assess how well the performance of different techniques translates from ground-based use cases to underwater environments.
We benchmark 15 different algorithms and compare their performance in such environments to identify common patterns
and dissimilarities, and identify root causes for these differences. The results show that displacement and turn errors can be
estimated to within 5% error but that the best performing methods vary between land and underwater environments. We also
show that the performance depends on the shape of the motion patterns with some algorithms performing better for hard
turns whereas others perform better for gradual, more continuous turns.

CCS Concepts: • Human-centered computing→ Ubiquitous and mobile computing design and evaluation methods.

Additional Key Words and Phrases: Sensor Fusion, Dead Reckoning, Water Sensing, Internet of Things, AHRS, Orientation
Estimation, Position Estimation, Location Estimation, IMU, Underwater Positioning, Review.
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1 INTRODUCTION
Computing research is increasingly targeting underwater environments [71]. For example, underwater sensor
networks are used to monitor seabed events [91], remotely operated drones are used for monitoring pipelines
and other underwater infrastructure [3, 54], and scuba divers can use underwater vehicles or smaller computing
units to support underwater investigations of biodiversity, pollutants, and other factors [58]. Despite applications
addressing underwater environments becoming increasingly common, building them remains highly challenging
due to the fact that underwater environments severely restrict the propagation of wireless signals, making
common positioning and communications solutions inaccessible [28, 73]. While the latter task, the development
of underwater communications systems, has been an active research area [6, 44], the development of underwater
positioning solutions has received much less attention.
Dead reckoning, also known as inertial navigation or incremental positioning, is a common technique for

localization that operates by continually tracking the movements of an object from a known starting point
using distance and angle estimates. Dead reckoning usually relies on inertial measurement units (IMUs) that
integrate accelerometers, gyroscopes, magnetometers, and potentially also barometers, to estimate changes in
locations. IMUs are highly attractive as positioning solutions as they are affordable, lightweight, and energy-
efficient [16]. Dead reckoning is already widely adopted in many domains, including aerial drones [32, 47, 76],
surface vessels [69], and a wide range of land-based applications [49, 86]. While dead reckoning has been able to
operate reliably in these applications, it is far from trivial to generalize these results to underwater environments.
First, dead reckoning solutions are prone to drift as errors in individual angle and distance estimates accumulate
over time [37]. Second, currents and turbulence are unpredictable and inconsistent in underwater environments
which makes it difficult to remove their effects over time, potentially affecting the accumulation of errors. Third,
underwater environments lack clear reference points for re-calibrating the dead reckoning algorithms, meaning
that controlling for the errors can become highly difficult over time. Regardless of these challenges, dead reckoning
remains an attractive proposition for underwater environments as the main alternatives, such as sonars, lidars,
and vision-based approaches, are costly and highly resource intense [93].
The present paper contributes by conducting an extensive and systematic performance evaluation of dead

reckoning techniques for underwater environments. We develop a simple prototype that integrates IMUs with a
low-cost microcontroller and collected measurements separately from the ground and underwater environments,
using four movement patterns that are common in spatial sampling designs used to cover designated spatial areas
and thus are essential for navigation (line, triangle, square, and a warp pattern) [29]. Examples of applications
that benefit from these patterns include practically all monitoring applications, such as pipeline, plastic debris,
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fish farm, or reef monitoring [35, 71]. We benchmark the performance of 15 different algorithms and compare
their performance between the ground and underwater environments. Our results show that dead reckoning
techniques can provide sufficient accuracy in underwater environments (with 5% error for displacement and
turn respectively) but there are significant differences across different algorithms. The performance of different
techniques also depends on the type of motion pattern, with some algorithms struggling at continually changing
angles. Finally, we observe that the relative differences in the distance and angle estimates are consistent regardless
of the length of the motion pattern. Based on our results, we also discuss best practices and identify gaps and
open research challenges for the integration of dead reckoning techniques into underwater environments.

2 BACKGROUND AND RELATED WORK

2.1 Position Estimation with Inertial Sensor Systems
Inertial sensor systems have been thoroughly researched with the purpose of delivering position estimation of a
moving body. Inertial systems are typically autonomous, independent and do not rely on external information,
such as radio signals or electromagnetic waves [18]. Their navigation data can have short-term high accuracy,
and elevated data update rate [1]. Some of the known techniques are listed below.

2.1.1 Pedestrian Dead Reckoning (PDR). PDR is among the most explored, which combines step detection, step
length estimation, and orientation approximations to calculate the absolute position and heading of a person
walking. PDR can operate with a single accelerometer, although superior precision and robustness are obtained
with more sensors [26]. An IMU containing several accelerometers, gyroscopes, magnetometers, and even pressure
sensors are commonly employed to recognize steps and orientation. Such sensors are typically body- or shoe-
mounted. Pedestrian navigation systems can aid the blind and visually impaired, locating and rescuing firefighters
and other emergency workers, hiking, sports, and others [33]. Ladetto et al. [43] applied PDR in urban and indoor
areas seeking to assist blind people reaching unfamiliar locations along with aiming to facilitate emergency
coordinators to track rescue workers. Their study integrated a GPS receiver with a body-mounted IMU applying
pattern recognition to accelerometer signals, determining a user’s step signature. Stirling et al. [80] illustrated
an experiment exploiting a shoe-mounted sensor prototype that calculates stride length with accelerometers
and magnetometers. Their system measured angular acceleration by manipulating pairs of accelerometers as
an alternative to gyroscopes. Several other studies investigated the prospect of using inertial sensor systems
to estimate the absolute position and heading of a walking user for multiple purposes [12, 40, 79, 85]. With a
focus on low-cost inertial motion sensors, Coyte et al. [13] applied PDR to sporting training and rehabilitation.
They proposed solutions to acceleration noise accumulation and gyroscope angle error problems, improving
the accuracy of displacement estimation with a low-grade IMU and a Zero-Velocity Update (ZVU) algorithm.
However, the main drawback of PDR is its dependence on step prediction algorithms that must distinguish step
direction and step lengths as the user changes the pace. Such algorithms remain challenging when applied to
environments with aerial or underwater movements, such as in the case of identifying SCUBA diver’s kicks [55].

2.1.2 Strapdown Inertial Integration (SNIS). SNIS is another prevalent position estimation method where sensors
are usually tightly strapped or attached to the axes of the moving body’s structure. Such a technique integrates
accelerometer and gyroscope measurements to distinguish the variation of position and heading. The strapdown
system demands a high-level measurement rate, on average, beyond 2000𝐻𝑧, as highermeasurement rates translate
into more accurate integration readings of position and attitude. Strapdown systems are currently employed in
commercial andmilitary applications (airplanes, vessels, ROVs, projectiles) and are a topic of study among scholars.
Jameian et al. [36] introduced SNIS to nautical environments, proposing a compensationmethod against disturbing
forces affecting vessel motion caused by rough sea conditions. They aimed to resolve attitude determination
offset through self-alignment of SNIS by establishing vector observations. The such implementation makes use of
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a quaternion estimator for attitude determination, significantly diminishing computational complexity. An indoor
strapdown inertial navigation with small foot-mounted and self-contained sensor systems was also described by
Bird et al. [7]. Similarly to PDR, SNIS also has applications in pedestrian navigation systems, although operating
in an utterly distinct fashion. Unlike PDR, the SNIS navigation algorithm traces the entire movement of the foot
in between steps. Any movement like walking, running, climbing up or down, moving backward or sideways,
sliding, and even jumping can be tracked [75]. This is possible because of a ZVU which exploits the brief periods
of zero velocity when the feet are stationary on the ground. SNIS and PDR may also be used together, sharing
the same inertial sensors. In this case, inertial navigation is incorporated within the multi-sensor integration
architecture as the reference system and PDR as an aiding sensor.

2.2 Sensor Fusion in Position and Orientation Estimation
Sensor fusion is defined as the blending of sensory information from two or more sources in a way that generates
a more consistent and dependable understanding of the system [27]. Fusing multiple inertial systems has raised
significant interest in the improvement of location and attitude estimation performance. Numerous methods
arose that merge information from various systems such as inertial sensors, GNSS [84], radar, radio telescopes,
signal of opportunity systems like Angle of Arrival (AOA), Time of Arrival (TOA), Received Signal Strength
Indicator (RSSI) [70], and Signal to Noise Ratio (SNR). Indeed, the combination of multiple sources can help
reduce noise with two different sensor types. These separate systems are integrated by sensor fusion (essentially
filter) algorithms which process each input and generate a more precise and reliable output [19]. A substantial
sum of distinct solutions designed to assess the orientation of a rigid body in reference three-dimensional frames
exists, while two main approaches aimed at sensor fusion are Kalman and complementary related filters.

2.2.1 Kalman Filters. Several research has been conducted on Inertial Navigation System (INS) and Global
Navigation Satellite System (GNSS) integration through data fusion, particularly using the Kalman Filter. To
overcome the shortcomings linked to the detached functioning of GNSS and INS,Wong et al. [88], Qi et al. [68], and
Nassar et al. [59] combined both systems so that their disadvantages were lessened or eradicated, complementing
one another. While GNSS was comparatively more stable and consistent for long periods, the INS had a more
reliable and comprehensive short-term signal. Updating INS position and velocity with GNSS data corrected error
expansion and at the same time delivered more precise estimates. The Kalman Filter attempted to adjust INS
information based on the system error model whenever GNSS signals were interrupted or limited. Other studies
attempted to achieve better performance of integrated INS/GNSS systems through the exploration of extended
and adaptive Kalman filtering techniques. Mohamed and Schwarz [53] performed an analysis on INS/GNSS
alternative integration through an adaptive Kalman filtering technique. Findings revealed that their adaptive
Kalman filter outperformed by almost 50% the conventional filters.

Among tests on Unmanned Aerial Vehicles (UAVs), the use of sensor fusion has grown due to the dissemination
of consumer-grade quadcopters. In autonomous aerial settings, an accurate altitude reading is crucial to control
the position of the flying system. Hetényi et al. [32] applied a Kalman Filter to fuse the sonar and accelerometer
signals, obtaining a considerably improved altitude estimation with minimal error. Similarly, Luo et al. [47]
combined the UAV sensor system and RSSI in a Kalman filter solution. The study sought to increase position
and altitude estimation as well as collision avoidance precision by approximating the distance between the
receiver and the transmitter via the use of radio frequency signals, further reducing the noise component. With
their application on robots, Sharma et al. [76] presented an experiment of Kalman filter-based sensor fusion for
extrapolation of robot’s orientation and depth to obstacle by fusing the inputs from three infrared sensors and an
inertial sensor system. The combination of multiple sensor inputs allowed the robot to operate in fault-tolerant
applications and enhanced its obstacle avoidance decision-making, localization, and orientation estimations.
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2.2.2 Complementary Filter (CF). Madgwick et al. outlined the formulation of an Extended Complementary Filter
(ECF) algorithm and exhibited its applicability as a human motion monitoring wearable [49]. Their design fused
magnetic, angular rate and gravity sensor data to remotely estimate limb orientation in stroke patients performing
rehabilitation exercises. They analyzed performance under a range of circumstances and benchmarked alongside
other frequently utilized sensor fusion algorithms. Authors claimed an improved computational efficiency of over
30% when compared against standard alternative algorithms. A complementary filter designed for sensor fusion
in quadrotor UAV employing a low-cost inertial measurement system was also proposed [60]. The CF filtered
high-frequency signals associated with the gyroscope and low-frequency signals linked to the accelerometer.
Their findings demonstrated that the complementary filter technique overcame the over-drift conundrum related
to gyroscopes, being capable of efficiently computing attitude angles. Similarly, Euston et al. conducted an
analogous study with a non-linear CF for attitude estimation in a UAV utilizing a low-cost IMU [21]. They
broadened the experiment to incorporate a model of the longitudinal angle-of-attack corresponding to the UAV’s
airframe acceleration using airspeed data. As a result, they could estimate the acceleration of the UAV during
continuous turns based on gyroscope and airspeed data. They accomplished attitude filtering performance of
similar quality as an Extended Kalman Filter (EKF) that fused GPS/INS at a far less computational cost.

2.2.3 Other Position Estimators. Among the plethora of existing estimation algorithms, most of them are typically
based on quaternions, and focus on integrating the differential equations to obtain a local rotation rate [78]. For
instance, the Algebraic Quaternion Algorithm (AQUA) estimates also a quaternion using magnetic observations,
by separately calculating the "tilt" and "heading", avoiding the impact of magnetic disturbances on the pitch and
roll components of the orientation [83]. Davenport also uses quaternions for rotation between two coordinate
systems [15]. Fast Accelerometer-Magnetometer Combination (FAMC) integrates the local gravity and the
Earth’s magnetic field [89], providing simplification of Davenport’s approach, resulting in the reduction in time
consumption. Fast Linear Attitude Estimator (FLAE) uses the attitude quaternion with an eigenvalue-based
solution, obtaining polynomial derived for a higher computation speed [89]. Fourati uses the values from an
accelerometer, magnetometer and gyroscope combined and based on the time integral of the angular velocity using
Earth’s magnetic field and gravity vector to compensate for what was predicted by the gyroscope [22]. Madgwick
also stands on quaternions, providing orientations in three dimensions, avoiding gimbal locks traditionally
made by the Euler angle representation [48]. Other estimators such as Mahony require accelerometer and
gyroscope for providing good estimates as well as online gyro bias computation [51]. Optimal Linear Estimator
of Quaternion (OLEQ) further enhances quaternions, applying least-squares to the set of pre-computed single
rotated quaternions [95]. QUEST is an algorithm that determines the attitude from the best-weighted overlap
of reference and observation vectors [77]. Additionally, the Recursive Optimal Linear Estimator of Quaternion
(ROLEQ) is a modified version of OLEQ, with the attitude measuring the angular velocity [95], simplifying further
the rotational operations. Super-fast Attitude from Accelerometer and Magnetometer (SAAM) is streamlined
Davenport’s solution, being reduced to floating point operations to spare computational time [89]. TILT provides
further attitude estimation using gravity acceleration measurements [82].

Overall, some studies have conducted comparisons between the sensor fusion algorithms in distinct settings to
assess their performance in unique conditions. For instance, Ludwig et al. compared Madgwick and Mahony
in a foot-mounted experiment [45], finding that Madgwick achieved better heading orientation than Mahony.
Nonetheless, the overall performance of Mahony was still superior to Madgwick [45]. The same authors tested
on quadcopters the EKF, Madgwick, and Mahony filters [46]. Results showed that Mahony delivered a more
precise orientation estimation and faster execution time than Madgwick and EKF. Also, Diaz et al. presented
a comparison among Madgwick and Mahony, a basic Attitude Heading Reference System (AHRS) estimation
algorithm [17]. The study centered around comparing the performance of Madgwick, Mahony, EKF, and their
own sensor fusion algorithm, emphasizing the behavior under magnetic perturbations. Various examples of the
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Fig. 1. AEOLUS Position estimation pipeline.
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Fig. 2. Calibration procedure during sampling (from left to right): (a) Accelerometer: raw (top), calibrated (bottom); (b)
Gyroscope: raw (top), calibrated (bottom); and (c) Magnetometer: raw (blue), calibrated (orange).

movement were analyzed, from carrying the sensor at separate places such as pockets, shoes, and hands. Their
algorithm was slightly less influenced by magnetic perturbations than the others, but overall, the algorithms
performed similarly. Most of these state-of-the-art algorithms will be further benchmarked in this study, and
contested both in underwater and on-the-ground environments, simulating the frictionless environment. It
remains unknown whether the existing techniques can be adopted in underwater environments or whether the
differences in medium and environment affect the performance of the dead reckoning techniques.

3 AEOLUS POSITION ESTIMATION PIPELINE
We next describe the procedure to assess the system’s performance describing procedures for IMU sensor
calibration. Moreover, steps for orientation, displacement, and position estimation are shown. The selection of
sampling frequency is described. Orientation is obtained using sensor fusion while the displacement uses double
integration of accelerometer readings, removing the gravity influence (Figure 1). The position method combined
orientation and displacement using known dead reckoning techniques, mentioned in the related work.

3.1 Sensor Calibration
Calibration of inertial sensors is essential for the compensation of their systematic errors, biases, and scale
factors [90]. Prior to any data collection, the inertial sensor is calibrated while the system is stationary and
stabilized to compensate for static errors that might corrupt the measurements. The used IMU throughout this
study is MPU9250 and will be detailed in the next section.
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3.1.1 Accelerometer. Calibration of the accelerometer requires taking advantage of the acceleration due to gravity,
which we can use in the positive and negative orientation of the IMU [87]. Additionally, we can also position the
IMU perpendicular to gravity in order to acquire a third calibration point. This results in three unique values that
can be combined to obtain a linear fit between the three values and the output values accelerometer axis. The
result of the accelerometer’s calibration offset correction (Figure 2a), where the calibrated output shows an offset
correction with the 𝑎𝑥 and 𝑎𝑦 readings centered at 0𝑚/𝑠2 while the 𝑎𝑧 oscillating around 9.8𝑚/𝑠2.

3.1.2 Gyroscope. The simplest IMU calibration consists in calculating the offset for each gyroscope axis. The
gyroscope is the easiest among other sensors for calibration due to the expected readings in steady conditions.
Each of the three axes of the gyro should read 0 radians-per-second (𝑟𝑎𝑑/𝑠) when the IMU is not moving. The
offsets can be measured by first taking some readings while the IMU is not moving, then using those values as
’offsets’ when reading the gyro values in the future [61]. The result of the gyroscope’s calibration offset correction
indicates shows adequate offsets with the 𝜔𝑥 , 𝜔𝑦 , and 𝜔𝑧 readings centered at 0 𝑟𝑎𝑑/𝑠 (Figure 2b).

3.1.3 Magnetometer. To calibrate the magnetometer, a series of measurements of the nearby magnetic field are
taken while holding the sensor in an "eight/infinity" figure pattern, passing through every orientation possible [74].
Ideally, the measurements should portray a perfect sphere centered at the coordinate origin and where the radius
of the sphere is the magnetic field’s strength [41]. Plotting the default magnetometer’s raw measurements (as
seen in Figure 2c), it is visible that these do not form a perfect sphere, nor that they are centered at the origin.
These are referred to as "hard iron" and "soft iron" errors or biases, respectively [90]. If no magnetic anomaly
algorithm is applied to such distortions in the magnetic field, it will cause changes in orientation.
Hard iron biases are commonly the largest and the simplest errors to rectify [23]. With the magnetic field

measurements, it is straightforward to compensate for hard iron biases by keeping track of the minimum and
maximum field measured in𝑚𝑥 ,𝑚𝑦 and𝑚𝑧 . Once the minimum and maximum field measured in𝑚𝑥 ,𝑚𝑦 and𝑚𝑧

are known, the average can be subtracted, resulting in the re-centering of the field at the origin of coordinate
system. Expression 1 illustrates how a hard iron correction can be implemented:

𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑥 = (𝑚𝑎𝑥𝑥 +𝑚𝑖𝑛𝑥 )/2 (1)

It is possible now to filter any soft iron biases by taking the minimum and maximum of the measured field
and manipulating it to rescale the magnetometer data to normalize the output across𝑚𝑥 ,𝑚𝑦 and𝑚𝑧 . Such is
done by calculating the scale factor with the ratio of the average max - min through each axis and the numerical
mean of all three axes. This means, for instance, if 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 ratio is considerable,𝑚𝑥 has its magnetic field
scale reduced, or if the 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑎𝑥 ratio is smaller compared to the other axes, it has its magnetic field values
increased. This is also known as orthogonal rescaling, identical to a diagonalized 3 × 3 calibration matrix while
enabling further scale bias correction as in expression 2. Rescaling is depicted in Figure 2c.

∆𝑥 =
(𝑚𝑎𝑥𝑥 −𝑚𝑖𝑛𝑥 )

2
,∆𝑦 =

(𝑚𝑎𝑥𝑦 −𝑚𝑖𝑛𝑦)
2

,∆𝑧 =
(𝑚𝑎𝑥𝑧 −𝑚𝑖𝑛𝑧)

2
,∆ = (∆𝑥 + ∆𝑦 + ∆𝑧)/3

𝑠𝑐𝑎𝑙𝑒𝑥 = ∆/∆𝑥 , 𝑠𝑐𝑎𝑙𝑒𝑦 = ∆/∆𝑦, 𝑠𝑐𝑎𝑙𝑒𝑧 = ∆/∆𝑧

(2)

3.2 Orientation Estimation
After performing calibration, the next step is to obtain the correct orientation using a fusion of the three sensor
raw outputs (Figure 3a). The accelerometer provides the device proper acceleration; the gyroscope supplies the
device’s angular rate, and the magnetometer presents the detected magnetic flux. To successfully estimate the
orientation from the raw sensor data, two approaches can be performed: (i) real-time – applying a sensor fusion
algorithm directly in the inertial system’s microcontroller, which estimates orientation in real-time while the
measurements were taken. The Madgwick algorithm [49] with gradient descent correction was utilized for its

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 73. Publication date: June 2023.



73:8 • Radeta et al.

(a) (b) (c) (d)

Fig. 3. Sensor Fusion procedure (from left to right): (a) Collected raw sensor data with 9 Degrees of Freedom (DoF) IMU:
accelerometer, gyroscope and magnetometer; (b) Quaternions obtained using Madgwick’s algorithm; (c) Euler angles derived
from quaternions; and (d) Raw (blue) and linear acceleration measurements (orange) with gravity compensation. The gravity’s
acceleration approximates 9.8𝑚/𝑠2 when tilting the sensor.

well-recognized proficiency to merge accuracy with computational cost and simplicity of implementation; (ii)
post-processing – storing the raw sensor data in an SD card to be processed later with the sensor fusion algorithm.
Throughout this study, the second approach was used as it facilitated a benchmark of how different sensor fusion
algorithms perform under the same collected data. Plots in Figures 3 and 5 are based on data collection and
microcontroller running the Madgwick real-time sensor fusion, while the same principle applies to any arbitrary
sensor fusion algorithm based on quaternions. The choice of using Madgwick algorithm in the below plots was for
its well-recognized proficiency to merge accuracy with computational cost and simplicity of implementation [50].

Sensor fusion algorithm takes as an input the raw sensor measurements from the IMU (Figure 3a) and outputs
the estimated orientation as a set of four quaternions (Figure 3b), in an effort to obtain three Euler angles,
commonly known as pitch, roll and yaw (Figure 3c). A good theoretical background of understanding quaternions
may be found in literature [42]. For brevity, we showcase the derivation of typical quaternion:

𝑞 = 𝑞0 + 𝑞1𝑖 + 𝑞2 𝑗 + 𝑞3𝑘, (3)

where 𝑞0 is the real and 𝑞1, 𝑞2, and 𝑞3 are the imaginary components. Rotation from coordinate frame to any
arbitrary frame (e.g. from frame A to B) is given by the conjugation operation, so the expression 𝑞𝐵 = 𝑞𝑅×𝑞𝐴×𝑞𝑅∗
as a matrix is:

𝑀 = 2

𝑞2

0 + 𝑞2
0 − 1

2 𝑞1𝑞2 − 𝑞0𝑞3 𝑞0𝑞2 + 𝑞1𝑞3
𝑞0𝑞3 + 𝑞1𝑞2 𝑞2

0 + 𝑞2
2 − 1

2 𝑞2𝑞3 − 𝑞0𝑞1
𝑞1𝑞3 − 𝑞0𝑞2 𝑞0𝑞1 + 𝑞2𝑞3 𝑞2

0 + 𝑞2
3 − 1

2

 . (4)

From the obtained matrix, the trace is calculated as:

𝑇𝑟𝑎𝑐𝑒(𝑀) = 𝑀11 + 𝑀22 + 𝑀33 = 4𝑞2
0 − 1. (5)
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Using trace, all individual quaternions are found as:

|𝑞0 |=
√︂
𝑇𝑟𝑎𝑐𝑒(𝑀) + 1

4
,

|𝑞1 |=
√︂

𝑀11

2
+

1 −𝑇𝑟𝑎𝑐𝑒(𝑀)
4

,

|𝑞2 |=
√︂

𝑀22

2
+

1 −𝑇𝑟𝑎𝑐𝑒(𝑀)
4

,

|𝑞3 |=
√︂

𝑀33

2
+

1 −𝑇𝑟𝑎𝑐𝑒(𝑀)
4

(6)

From obtained quaternions, we finally obtain the Euler angles and device heading by next expression (Figure 3c):
𝜙

\

𝜓

 =


arctan 2(𝑞0𝑞1+𝑞2𝑞3)

1−2(𝑞2
1+𝑞2

2)
arcsin(2(𝑞0𝑞2 − 𝑞3𝑞1))

arctan 2(𝑞0𝑞1+𝑞1𝑞2)
1−2(𝑞2

2+𝑞2
3)

 (7)

3.3 Obtaining Linear Acceleration
As input accelerometer measurements are affected by the Earth’s gravitational field (as seen on X-axis in
Figure 3a) such considerably amplify numerical errors. If the gravity component is not subtracted from the
physical acceleration of the device, it will eventually generate exceedingly elevated errors in the measured
acceleration. To overcome this challenge, a gravity compensation algorithm is crucial for subtracting the impact
of the gravity component on acceleration readings.We rotate the accelerometer reading by the obtained quaternion
into the Earth frame of reference (Earth’s spherical coordinate system), then subtract the gravity from it. The
residual acceleration is the acceleration of the sensor in the Earth frame of reference often called the linear
acceleration. Through orientation estimation determined previously, it is possible to find the orientation of the
Earth frame with respect to the sensor frame. Therefore, we compute the expected direction of gravity and then
subtract that from the accelerometer readings (Figure 3d).

3.4 Sampling Rate Selection
Prior empirical testing was conducted to select the sampling rate by performing the estimation of line geometrical
shape trajectory of 4𝑚, reaching amaximum 20Hz due to hardware limitations of the used inertial system. Selected
sampling frequency was chosen (6 𝐻𝑧), resulting in a frequency where all of the state-of-the-art estimation
algorithms reached a plateau (Figure 4b). Hereinafter, we assume that such sampling frequency holds true when
applied to all tested environments. This frequency also made sense considering that the magnetometer samples
were obtained at a rate of 8 𝐻𝑧 which is a technical constraint that we selected for this study. Used hardware and
AEOLUS inertial system will be described in the next section.

3.5 Displacement Estimation
Once the heading is obtained, we next estimate the displacement. As accelerometer readings measure proper
acceleration forces, a common practice is to determine device velocity and position relative to a starting point [39].
From obtained linear acceleration, numerical integration yields velocity, and double integration yield the position
vector (Figure 4a). Inertial frame velocity 𝑣𝑖 and position 𝑥𝑖 we calculate as:

𝑣𝑖 = 𝑣0 +
∫𝑡

𝑎𝑖 ∆𝑡 and 𝑥𝑖 = 𝑥0 +
∫𝑡

𝑣𝑖 ∆𝑡 . (8)
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Fig. 4. (a) Example of displacement estimation obtained from acceleration measurements in X-axis; (b) Selection of sampling
frequency for each algorithm based on their average error.

where 𝑖 indicates any of the vector three axis in Euclidean space 𝑥,𝑦, 𝑧. From prior empirical tests, using the
existing setup showed that the system would come to a stationary state. However, the software would keep
adding and summing the position vectors. This is a known fact that perceived velocity will be increased (and
hence accumulated displacement) since double integrations of acceleration (even if the sensed acceleration in
the known axis is 0m/s^2) can cause drifts [92]. Thus, in our drift reduction Algorithm 1, we added additional
factors to zero out the accumulated perceived velocity when accelerometer was indicating no acceleration using
𝑉𝑥∗ = 0.55, 𝑉𝑦∗ = 0.55 and 𝑉𝑧∗ = 0.80, which were calibrated from the range of 0 to 1 for yielding minimal
distances between the estimated corner positions and those of the geometry baseline. The selection of these
constants was based on prior empirical tests by manually matching the obtained displacements with baseline
shape positions.

Algorithm 1 AEOLUS Drift Reduction Algorithm

1: if 𝑎𝑐𝑐𝑋 == 0.00 then
2: 𝑣𝑒𝑙𝑋 ← 𝑣𝑒𝑙𝑋 ∗ 0.55
3: else
4: 𝑣𝑒𝑙𝑋 ← 𝑎𝑐𝑐𝑋 ∗ ∆𝑡

5: end if

6: if 𝑎𝑐𝑐𝑌 == 0.00 then
7: 𝑣𝑒𝑙𝑌 ← 𝑣𝑒𝑙𝑌 ∗ 0.55
8: else
9: 𝑣𝑒𝑙𝑌 ← 𝑎𝑐𝑐𝑌 ∗ ∆𝑡

10: end if

11: if 𝑎𝑐𝑐𝑍 == 0.0 then
12: 𝑣𝑒𝑙𝑍 ← 𝑣𝑒𝑙𝑍 ∗ 0.80
13: else
14: 𝑣𝑒𝑙𝑍 ← 𝑎𝑐𝑐𝑍 ∗ ∆𝑡

15: end if

3.6 Position Estimation
To obtain the exact position of the object, the dead reckoning technique (expression 9, Figure 5a) is applied so the
new position 𝑥𝑖 , is given by applying a direction vector to the previously determined position 𝑥𝑖−1. The norm
of the direction vector is given by the displacement in that axis over the period from the last sample (∆𝑥) and
its angle from the decomposition of attitude estimation (yaw \ ) into two components, cos\ for the 𝑥 axis, and
sin\ for the 𝑦 axis (as shown in Figure 5b). An example of integrations using two axes is depicted in Figure 5c.
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(a) (b) (c) (d)

Fig. 5. Dead reckoning approach, from left to right: (a) Current object’s position is determined by the last known position
(heading angle ∆\ and traveled distance ∆𝑥); (b) Attitude angle \ seen in polar coordinates; (c) Estimated position using
Madgwick algorithm of an arbitrary trajectory in Cartesian coordinate system seen in 2D; and (d) Same trajectory seen in 3D.

Expanding the same method for three-dimensional estimation is seen in Figure 5d.

𝑥𝑖 = ∆𝑥 cos(\ ) + 𝑥𝑖−1 and 𝑦𝑖 = ∆𝑦 sin(\ ) + 𝑦𝑖−1 (9)

4 APPARATUS: AEOLUS INERTIAL SYSTEM
We next describe the used hardware and software to leverage the AEOLUS position estimation pipeline.

4.1 Hardware
LoPy4 microcontroller (based on ESP32) was selected as the navigational computing device of the inertial system
since it provides integrated WiFi which will be leveraged for data collection [62]. The LoPy expansion board was
used to interface with the external physical inertial sensor through connection pins (Figure 6b). The used IMU
was MPU-9250 (Figure 6a), being one of the most widely available low-cost commercial sensors. This chip is
extensively employed in wearable sensors for health [2, 52], fitness [4], and sports [20, 56, 72], motion-based game
controllers [30], and portable gaming [8, 57]. This IMU is operated to estimate motion by identifying the presence
of acceleration vectors, rotational rates, and local magnetic field direction. It encompasses an MPU-6050 (3-axis
accelerometer and 3-axis gyroscope combination) and an AK8963 3-axis magnetometer [65]. The MPU-6050
coordinate system is based on a traditional Cartesian coordinate system with a counter-clockwise rotation as the
positive rotation direction [64]. The AK8963 shifts the x and y-axis directions while reversing the direction of the
z-axis [63], as depicted in Figure 6c.

4.2 Underwater Enhancement
For the mechanical housing of the sensors tailored for water environments, we used existing apparatus made of a
transparent acrylic sphere capable of withstanding pressure at a depth of 10𝑚 [14, 71]. The IMU, MCU, and the
power bank were attached to the inner base of the sphere using J-Hook adapters for sports cameras. For easy
handling of the sphere underwater, we further added a 50𝑚𝑚 rigid Chlorinated Hydrocarbon Polymer (PVC)
tube extension being 3 𝑚𝑚 thick. The plate had a diameter of 30 𝑐𝑚, on which the holes were been manually
drilled at one end to facilitate attachment to the plastic base of the sphere using zip ties. At the opposite end of
the tube, lead diving weights were attached to the line, creating a downward force from the sphere, resulting in
5 𝑘𝑔 weight for neutral buoyancy at 5𝑚 depth. Image of the housing and sensor is seen in Figure 8c.
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(a) (b) (c)

Fig. 6. Microcontroller and IMU used in the experiments: (a) IMU (MPU-9250); (b) Pin connection between microcontroller
and IMU; and (c) Coordinate system of the 3-axis accelerometer, 3-axis gyroscope (MPU-6050) and 3-axis magnetometer
(AK8963).

4.3 Software
The microcontroller ran MicroPython, already tested in constrained environments [81]. The inertial module’s raw
measurements were interpreted by the microcontroller through the i2c MicroPython driver serial, allowing it to
read the peripheral’s memory addresses synchronously. The i2c communication makes use of the SDA and SCL
pins of the MPU9250. The SCL offered the serial clock, and the SDA provided the raw serial data. The memory
address of the MPU9250 was at address 0x68 when the pin was connected to the ground and was set by the pin
AD0. The AK8963’s address is by default at 0𝑥0𝐶 . Prior to the communication begins the SCL and SDA are equally
high, triggered by the pull-up resistors. These pull-up resistors are arranged to make specific pins turn out to
be high when not being defined by the LoPy, this avoids communication difficulties when the LoPy is waiting
for inbound serial data. When the transmission between the LoPy (master) and the MPU9250 (slave) initializes
the start order is produced. This is accomplished by lowering SDA. Later the SCL commences to produce clock
pulses and the initial byte is sent out by the master. This first byte holds the 7-bit address of the slave and a
read/write bite. If the read/write bit is 0 the master writes to the slave. If the read/write bit is 1 the master reads
from the slave. The bits can only be sent when the serial clock is high. Each byte sent should be followed by an
acknowledge bit. When the master is done writing/reading then the stop condition is created. The readings of
each sensor are later averaged and linearized to better detect and reduce the presence of outlier readings [38].
Code interfacing with the IMU including the AEOLUS estimation pipeline is available online repository1.

4.4 Additional Underwater Considerations
We next take into consideration the possible influence of the underwater environment (e.g. high currents, greater
depths, magnetic sources) on the position estimation performance. Prior works already showcase the feasibility of
AEOLUS hardware system during recreational SCUBA diving [71], being representative of the needs of real-world
underwater data science applications. More recently, the same apparatus was further expanded with multiple
units and demonstrated in underwater edge computing [14]. These studies addressed the usage of accelerometer,
CPU, amd memory and found no influences on sensor readings at greater depths, given that the encasing pressure
was the same as of those at the sea surface. In fact, a temperature drop of 4 degrees Celsius has been observed
during the 20-minute SCUBA diving duration and depth at 8 m, showing an ideal passive cooling. Same studies
also found a negative correlation between high water motion using water pumps and communication, whereas,
in a high turbulent environment it is challenging to use the accelerometer readings and hence, perform the
integrations. Still, we foresee the usage of AEOLUS at greater depths during SCUBA or Autonomous Unmanned
Vehicles (AUV) surveys, as swells decay exponentially with greater depth [11]. Moreover, ship wreckage sites

1https://bitbucket.org/wave_labs/aeolus/src/master/
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may also influence the readings of magnetometer [5], and in such conditions, the pipeline should stop integrating
position.

5 EXPERIMENTAL PROCEDURE
We next conduct rigorous experiments to assess the position estimation performance of AEOLUS inertial system
under different contexts (ground, underwater). The system was moved following predetermined geometric shapes
(line, square, triangle, warp). Such geometric shapes were used to assess the position estimation performance
of the system against a ground truth. All conducted experiments stored the raw data onto the AEOLUS SD
card, where the position estimation algorithms were conducted in post-processing. We investigate the effects
of distance on position estimation at six different distance magnitudes, having 4, 5, 16, 20, 24 and 28 meters for
the side lengths of the next geometric shapes: line (with 4, 16 and 28 m total distance), triangle (with 12, 48 and
84 m total distance), square (with distances of 16, 64 and 112 m respectively (Figure 7a), and warps (with total
distances of 136, 150 and 448 m respectively, seen in Figure 7b. The rationale for using such distances was made
of practical reasons, to fit into constrained public space on the ground (Figure 7a) or to fit into the wooden frame
structure in an underwater setting (Figure 8a).

5.1 On the Ground Setup
Geared with simulating the friction-less environment, we initially challenged our estimation pipeline in a
controlled environment, using carpet floor inside the building space and by pulling the motion device on pre-
determent shape trajectory (Figure 7c). We used 4 wheel motion device by placing on top of the AEOLUS hardware
being kept inside of a cardboard container. The IMU sensor was placed outside of a cardboard container, facing
upwards. The motion device was pulled with the rope, following the trajectory until the rear wheels reached
the corner of the ground geometrical figure. The motion device was then rotated by hand and aligned with
the next side of the ground geometrical figure. We noticed that the 4 wheels and carpet further contributed to
the braking of the system, and we thus moved to a public outdoor space (Figure 7d). The motion device was
then based on two wheels and was pushed using the steering wheel, facilitating the rotation at the corner. The
AEOLUS hardware was placed onto the top side of the motion device, being further secured with the rubber band.
The outdoor setting was a public space with a floor made of 49 concrete square tiles of 4 × 4𝑚 each, providing
the open space of 28 × 28𝑚. The choice of this space was as it was the only possible open space providing us
with greater dimensions.

Such shapes were formed using a guiding rope laid on the ground, acting as the baselines. We placed the
inertial system on a movable platform (an electrical scooter or a skateboard) and pushed/pulled the platform at a
constant walking speed along the planned path marked by the rope, pausing at the corners when the direction
changed; see Figures 7c and 7d. The system periodically estimates the attitude and position and stores data on an
SD card for post-processing.

5.2 Underwater Setup
Underwater experiments were carried out at a local dive spot, where AEOLUS was placed in an underwater
spherical housing built for 360 cameras rated until 10 m with, including a portable 1350 𝑚𝐴ℎ power-bank
(Figure 8c). Since the hardware was inaccessible inside the housing, we configured the software to support the
remote triggering of the system via a wireless hotspot using a mobile phone. The entrance to the water marked
the start time of integration. The underwater experiments were conducted to evaluate the estimation quality of
the proposed solution underwater by a SCUBA diver (Figure 8d). A 5-meter square net from wood was being
held by two persons above water, serving as a guideline to the scuba diver to follow the trajectory during diving
(Figure 8a). The total diving trajectory was estimated to be 150 m, comprising the 6 times that the diver completes
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(a) (b) (c) (d)

Fig. 7. On the Ground experimental setup: (a) Squares of increasing side length; (b) Warp-based shape with increasing length
sides; (c) IMU being placed on a skateboard while pulling; and (d) IMU on a scooter while pushing.

(a) (b) (c) (d)

Fig. 8. Underwater experimental setup. (a) Baseline wooden structure of 5x5 meters at sea surface; (b) Diver performing
trajectory beneath the surface baseline structure; (c) Acrylic sphere with IoT components on underwater environment; and
(d) IoT components with housing carried by a scuba diver at a depth of 4.1 m.

the same square shape beneath the baseline structure. The diver held the spherical housing while swimming
along the guideline maintaining a constant speed while slowly increasing the depth (Figure 8d). The total dive
time took 20 minutes and was conducted at a depth between 4 to 5 m.

5.3 Ground Truth
To quantify howwell a test performed in estimating position, we compare the computed position against geometric
markers in physical space. On the ground, guided geometry trajectories (line, triangle, square, warp) were formed
using existing physical block marks on the ground with side lengths of 4𝑚. Such was combined with thin flat
ropes laid on the ground following the markings of geometrical trajectories (Figure 7d). In an underwater setting,
a floating square made of a wooden frame with side lengths of 5𝑚 deployed at the sea surface acted as a guided
trajectory for the scuba diver, as seen in Figures 8a and 8b. Such structure was with positive buoyancy, and to
avoid the surface drifting, it was further attached to the other surface buoys and support lines which are typically
used by SCUBA divers for descending and starting the dive, and was additionally supported by swimmers during
the data collection as seen in Figure 8a.

5.4 Error Assessments
An error was quantified in two ways. Turn error was calculated by assessing how far were the estimated shape
corners from the ground truth’s vertices (Figure 9a). A turning detection algorithm Ramer-Douglas-Peucke
(RDP) [94]) was used to estimate when a vertice was present in the estimated path (Figure 9c). By measuring how
far the estimated turn point is from the closest real shape vertice point (using the Euclidean distance between
two points in three-dimensional space using the expression below), it was possible to gain insights into how well
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(a) (b) (c) (d) (e) (f)

Fig. 9. Error estimation in Cartesian coordinate system in 2D and 3D: (a,b) estimated trajectory over the ground truth; (c,d)
turn error detection using distance to corners; and (e,f) displacement error using the distance between sampled points and
perpendicular closest points on the ground truth.

a specific shape was estimated by the inertial solution.

𝑑 =
√︃
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2 (10)

Displacement error used distance from every estimated point to the closest neighbor in the ground truth’s path
(Figure 9e). Each reading point from the estimated trajectory is connected perpendicularly to the point on the
ground truth trajectory. To assess the position estimation performance, we sum and average each pair of ground
truth/estimation points, computing the traditional Mean Absolute Error (MAE) as:

𝑀𝐴𝐸 =
1
𝑛

𝑛∑︁
𝑖=1
|𝑥𝑖 − 𝑥 | . (11)

Figure 9 depicts an example output when applying AEOLUS in an experiment following the trajectory of the
4𝑚 × 4𝑚 square geometrical shape. The figure shows a succession of position points, each calculated by the last
known position, the heading angle, and the traveled distance. The position given is relative to the sensor’s own
body frame, and not the real world’s frame.

6 RESULTS
We next present the effects of trajectory shapes, Degree-of-Freedom (DoF) of IMUs, and position estimation
algorithms on the errors of displacement and turn. We also include the qualitative analysis of the best-performing
algorithms, with displacement and turn error, seen for each geometric shape (lines: Figure 14, triangles: Figure 15,
squares: Figure 16 and warps: Figures 17 and 18).

6.1 Effects of Trajectory Shapes on the Errors of Displacement and Turn
By evaluating the magnitude of the error in displacement and turn for different shapes, it is possible to better
understand the effect of trajectory on the drift. Figure 10 shows the variance of error of different trajectory shapes
on the ground. The errors of displacement (line: 1.02± 1.27 m, triangle: 6.26± 5.55 m, square: 8.86± 9.16 m, warp:
12.85 ± 12.62 m) and turn (line: 3.3 ± 1.67 m, triangle: 9.65 ± 8.29 m, square: 10.02 ± 1.48 m, warp: 17.47 ± 18.42
m) for the line trajectory are the lowest with the least variance compared to other geometric trajectories. When
comparing the displacement errors between the experiments performed on the ground and underwater for the
warp trajectory, we observe that the average errors of displacement underwater (7.44 ± 6.30 m) are similar to
that of trajectory paths with lower turning on the ground (i.e., triangle, square), and are much lower compared to
the similar trajectory on the ground (warp). Analogous to prior studies in PDR with walking, this can be further
explained by the difference in medium. Specifically, in the underwater environment, the dominant motion results
from "kicks" by the scuba diver [25] and from underwater currents which typically have a regular and periodic
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(a) (b)

Fig. 10. Effects of trajectory shapes on errors of displacement and turn (m).

structure, which makes it easier to isolate them. In contrast, on the ground, the motion intensity is higher and
more frequent, and also the surface of the ground induces variations in the signals [33], unlike in the underwater
environment. On the ground, there are also more variations along the vertical axis (due to constant motion and
uneven surface). The magnitude of errors depends on the intensity of motion and thus the accumulated error
is higher during periods of intense motion, further explaining the higher errors in the ground setting. A good
indicator of these errors is the integration drifts seen along the Z-axis of all complex shapes in the ground setting
(triangle in Figure 15, square in Figure 16 and warp in Figures 17).

ANOVA test considering different shapes as experimental conditions show statistically significant differences
in displacement errors (F(3,137)=13.301, p<0.001, [2=0.119) and turn errors (F(3,137)=8.358, p<0.001, [2=0.079).
Posthoc tests (using the Holm correction) indicate the complexity of trajectory shapes produces higher significant
errors for all pairs except the triangle-square pair. This can be explained due to the geometric similarity between
triangle and square in terms of the perimeter and the number of turns (triangle: 3 turns, square: 4 turns).

6.2 Effects of Degree-of-Freedom (DoF) on the Errors of Displacement and Turn
Figure 11 shows the variances in displacement errors and turn errors when the samplings were performed using
different sensor combinations, and thus also different numbers of degrees-of-freedom: 6-DoF level (acc+mag) and
9-DoF level (acc+gyr+mag). When the experiments were performed on the ground, we observe slightly higher
magnitudes of displacement and turn errors in the 9-DoF level compared to the 6-DoF level. In contrast, the
average errors for the warp trajectory in the underwater environment at the 9-DoF level (displacement error:
6.28±3.19 m, turn error: 6.01±2.91) is lower in both magnitude and variance compared to those at the 6-DoF level
(displacement error: 8.31±9.28 m, turn error: 8.01±8.98). The results from the ANOVA test show these differences
are not statistically significant, suggesting that either the accelerometer or gyroscope can be removed in the
interest of saving power consumption for the sensing units as using both induces higher electricity consumption
compared to using the magnetometer and only one of the other sensors. This finding is in line with [24]. The
results also indirectly indicate that the benefits of a magnetometer depend on the setting. On the ground, the
turns are faster and there are more sources of magnetic disturbances whereas underwater settings typically have
fewer sources of magnetic noise – or at least the sources are generally more constant in the underwater setting.
For example, while wrecks, anchors, moorings, drone engines, or moving ships can cause magnetic fields, these
are typically fairly consistent and highly localized, enabling common algorithms to compensate against them.
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(a) (b)

(c) (d)

Fig. 11. Effects of DoF levels on the errors of displacement and turn (m).

This contrasts with ground scenarios where magnetic disturbances typically have abnormal and dynamically
changing patterns [10].

6.3 Effects of Position Estimation Algorithms on the Errors of Displacement and Turn
Figure 12 shows the error variance of different position algorithms. High magnitudes of errors in displacement and
turn are observed with FAMC, QUEST, and Fourati algorithms compared to other position estimation algorithms.
These significant differences in displacement and turning are confirmed from ANOVA tests, with displacement
errors (F(13,137)=9.697, p<0.001, [2=0.416) and turn errors (F(3,137)=10.259, p<0.001, [2=0.451), and posthoc
tests using the Holm correction. While FAMC and QUEST use an accelerometer and magnetometer (6-DoF)
for location estimation, Fourati algorithm requires an accelerometer, gyroscope, and magnetometer (9-DoF),
suggesting that the high estimation error would be associated with the input requirements of the algorithms, e.g.,
QUEST algorithm has the capability of handling very simple dynamic models but it requires the attitude rate
time history as an input [67]. Compared with other algorithms, QUEST and FAMC may be over-simplistic and
fast for the computation of rotation matrices while Fouriati needs a high-bandwidth rate for gyro when there is
constant propulsion. Indeed, the errors of displacement estimation performed by QUEST increase multiple folds
with trajectory complexity, i.e., the average displacement error of the triangle is approximately 3 times higher
compared to the line (5.86 m).
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(a) (b)

Fig. 12. Effects of attitude estimation algorithms on errors of displacement and turn (m). DAV: Davenport, FAM: Famc, FLA:
Flae, OLE: Oleq, QUE: Quest, ROL: Roleq, SAA: Saam, TIL: Tilt, AQU: Aqua, COM: Complementary, EKF: Ekf, FOU: Fourati,
MAD: Madgwick, MAH: Mahony.

(a) (b)

Fig. 13. Comparison of average errors of trajectory displacement and turning (m) on the ground and underwater envi-
ronments. DAV: Davenport, FAM: Famc, FLA: Flae, OLE: Oleq, QUE:Quest, ROL: Roleq, SAA: Saam, TIL: Tilt, AQU: Aqua,
COM: Complementary, EKF: Ekf, FOU: Fouriati, MAD: Madgwick, MAH: Mahony. acc: accelerometer, gyr: gyroscope, mag:
magnetometer.

Figure 13 shows the comparison of average displacement and turn errors estimated by different algorithms
for the warp trajectory being the most complex shapes in both settings. In underwater environments, attitude
estimation is best computed using OLEQ (displacement error=1.04𝑚, turn error=1.71𝑚) or ROLEQ whereas
FAMC, QUEST and Fourati algorithms produce high errors. Interestingly, attitude estimation computed using
some algorithms (e.g., FAMC, Fourati) result in high errors on the ground but lower errors when the experiments
were performed in the underwater environment. Such may further enhance the time the dead-reckoning can be
used in one run without resetting the values to a known baseline.

6.4 Qualitative Assessments
6.4.1 Estimating Line (on the ground). The line shape consisted of moving the inertial system in a straight line
for a determined distance. Three line distances were tested: 4, 16, and 28 meters (Figure 14). For the 4-meter
line experiment, the OLEQ algorithm which had the lowest displacement error with an average of 0.13 meters
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(3.24% of error margin), and ROLEQ with an average of 0.24 meters of turn error (6.06% of error margin). For the
16-meter line experiment, the FAMC algorithm had the lowest displacement error with an average of 0.43 meters
(2.69% of error margin), and Mahony with an average of 2.11 meters of turn error (13.21% of error margin). For
the 28-meter line experiment, the Complementary algorithm had the lowest displacement error with an average
of 0.52 meters (1.85% of error margin), and SAAM with an average of 4.23 meters of turn error (15.09% of error
margin).

(a) OLEQ (b) ROLEQ (c) FAMC (d) Mahony (e) Complementary (f) SAAM

Fig. 14. Line Estimation (on the ground). Position estimation for different line sizes using the algorithms with the lowest
displacement error (a) 4-meter, (c) 16-meter, (e) 28-meter; and with the lowest turn error (b) 4-meter, (d) 16-meter, (f) 28-meter.

6.4.2 Estimating Triangle (on the ground). The triangle shape consisted of moving the inertial system in a triangle
pattern for a determined distance. We tested three (3) distances: 4, 16, and 28 meters (Figure 15). For the 4-meter
triangle experiment, the Mahony algorithm had the lowest displacement error with an average of 0.90 meters
(7.50% of error margin), and EKF with an average of 0.49 meters of turn error (4.09% of error margin). For the
16-meter triangle experiment, the Mahony algorithm had the lowest displacement error with an average of 1.79
meters (3.74% of error margin), and EKF with an average of 1.59 meters of turn error (3.32% of error margin). For
the 28-meter triangle experiment, the Mahony algorithm had the lowest displacement error with an average of
2.93 meters (3.49% of error margin), and EKF with an average of 5.04 meters of turn error (5.99% of error margin).

(a) Mahony (b) EKF (c) Mahony (d) EKF (e) Mahony (f) EKF

Fig. 15. Triangle Estimation (on the ground). Position estimation for different triangle sides using the algorithms with the
lowest displacement error (a) 4-meter, (c) 16-meter, (e) 28-meter; and with the lowest turn error (b) 4-meter, (d) 16-meter, (f)
28-meter.

6.4.3 Estimating Square (on the ground). The square shape consisted of moving the inertial system in a square
pattern for a determined distance. We tested three (3) line distances: 4, 16, and 28 meters (Figure 16). For the
4-meter square experiment, the Mahony algorithm had the lowest displacement error with an average of 0.53
meters (3.34% of error margin), and FLAE with an average of 0.38 meters of turn error (2.37% of error margin).
For the 16-meter square experiment, the Madgwick algorithm had the lowest displacement error with an average
of 1.93 meters (3.02% of error margin), and FLAE with an average of 1.82 meters of turn error (2.84% of error
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margin). For the 28-meter square experiment, the Mahony algorithm had the lowest displacement error with an
average of 2.97 meters (2.65% of error margin), and FLAE with an average of 3.23 meters of turn error (2.89% of
error margin).

(a) Mahony (b) FLAE (c) Madgwick (d) FLAE (e) Mahony (f) FLAE

Fig. 16. Square Estimation (on the ground). Position estimation for different square sides using the algorithms with the
lowest displacement error (a) 4-meter, (c) 16-meter, (e) 28-meter; and with the lowest turn error (b) 4-meter, (d) 16-meter, (f)
28-meter.

6.4.4 Estimating Warps (on the ground). Warp shapes included a spiral and growing squares (Figure 17). For the
spiral experiment, Davenport’s algorithm had the lowest displacement error with an average of 2.64 meters (1.78%
of error margin), and Madgwick with an average of 2.46 meters of turn error (1.66% of error margin). For the
maximum 28-meter line experiment of growing squares, the Tilt algorithm which had the lowest displacement
error with an average of 6.11 meters (4.88% of error margin), and SAAM with an average of 7.23 meters of turn
error (4.77% of error margin).

(a) Davenport (b) Madgwick (c) TILT (d) SAAM

Fig. 17. Warp Estimation (on the ground). Position estimation using the algorithms with (a) the lowest displacement error
and (b) the lowest turn error for warp tests; (c) the lowest displacement error; and (d) the lowest turn error for squares tests.

6.4.5 Estimating Warps (underwater). Obtained warps2 showcase the scuba diving performing the trajectory
beneath the wooden base structure (Figure 18). Trajectory indicates the clear 6 passages of the square patterns with
the depth ranging up to 5 m. OLEQ and ROLEQ had similar results with both of them achieving a displacement
error of close to 1𝑚 or 0.001% and a turn error of nearly 1.7𝑚 or 0.01% with the use of only two sensors which
indicates the robust performance of the estimator, while the worst performing was QUEST with 4.51𝑚 and 4.07𝑚
displacement and turn error respectively which translates to a 0.03% error for both of them.

2The shape trajectory by the diver is square, while the estimated trajectory resembles the warp shape.
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(a) OLEQ (b) ROLEQ

Fig. 18. Warp Estimation (underwater). Position estimation using the algorithms: (a) the lowest displacement error and
(b) the lowest turn error. The thin rectangle indicates the base wooden surface structure, while the thick line indicates the
trajectory taken by the scuba diver. The vertical axis indicates the estimated depth.

When comparing all of the obtained results in an underwater setting for a 150 m baseline distance, a 5% error
for displacement and a 5% error for the turn were obtained. On the ground with a 136 m baseline distance, an
error of 8% for displacement and an error of 12% for the turn was obtained. Similarly, on the ground with 448 m,
the error was smaller (having 3% of an error for displacement estimation and an error of 4% for the turn). On the
ground, from every test made, Mahony ranks best at displacement with an average of 1.94 meters of absolute
displacement error and 3.72% relative error. Closely followed by SAAM and TILT with 2 meters of displacement
error and 4.12% of relative displacement error. SAAM and TILT ranked best at turn error both with an average of
2.79 meters of absolute turn error and 6.93% of relative turn error. Closely followed by Mahony with 6.97% meters
of relative turn error. On the other hand, Fourati had the worst general performance among all algorithms, with
a 24.19 (36.14% relative displacement error) meter error average displacement and 31.87 (48.16% relative turn
error) meter turn error average. FAMC, QUEST, and AQUA also had poor overall results generally performing
under average to the other sensor fusion algorithms.

7 DISCUSSION

7.1 Implications
The results demonstrated that IMU-based dead reckoning can achieve sufficient performance in most underwater
applications but that the choice of sensors, the choice of algorithms, and target patterns all affect which methods
should be chosen. Most techniques have been designed for ground scenarios and while the overall error tends to
be higher on the ground – due to more frequent and intense motion than in underwater settings – the variation
in performance across techniques, sensors, or shapes is smaller than in the underwater setting. Another key
difference comes from the type of error as on the ground the displacement error tends to dominate the overall
error, whereas in the underwater case displacement error tends to be smaller than the turn error. The general
trend of errors is the same for both ground and underwater settings with the absolute error increasing with
the length of the pattern whereas the relative error decreases. In terms of algorithms, those that rely on faster
turn detection tended to result in worse performance in the underwater setting, highlighting the effect of turn
estimation errors. Specifically, techniques that are widely used in pedestrian settings, such as complementary
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filtering, EKF, and Madwick, had worse performance than OLEQ, ROLEQ, SAAM, TILT, FLAE, and Davenport
techniques.
Besides this, Figure 11, Figure 12 and Figure 13, it is possible to draw a correlation between what sensors are

used by each algorithm and how they performed at estimating position. Results depicted there show that the
worst performing algorithms on the surface are generally the ones that do not use every sensor available, when
the algorithm allowed for the optional use of a sensor it was used, for instance, FAMC, QUEST and AQUA do not
fuse the gyro’s readings to estimate orientation. Fourati’s poor performance might be explained by the fact that it
depicts a rigid body’s attitude in space with respect to the navigation frame (𝑋𝑁 ,𝑌𝑁 ,𝑍𝑁 ), where the navigation
frame follows the convention North East Down, opposite of the convention used by the other algorithms, East
North Up. In the underwater experience, the use of a third sensor did not seem to improve the results since the
values from the algorithms that only use two sensors when compared with the ones that use all three sensors are
similar with the best-performing ones being the ones limited to two sensors.

7.2 Comparison with Literature
Prior studies have mostly relied on acoustic sensors [66] and computer vision [34] while in our article we
contribute with an overview of the principles and the review of existing dead reckoning algorithms, analyzing
their performance with data obtained from inertial sensors, how complex and different number of degrees of
freedom can influence such results, and determining guidelines for what should be used in different situations.
Acoustic sensors are sensitive to underwater noise, which is becoming a significant concern [9], whereas computer
vision requires support for computations that are difficult to provide [14]. Ladetto et al. [43] applied PDR in urban
and indoor areas seeking to assist blind people reaching unfamiliar locations along with aiming to facilitate
emergency coordinators to track rescue workers. The study integrated a GPS receiver with a body-mounted IMU
applying pattern recognition to accelerometer signals, and determining a user’s step signature. They verified
an average position error of 5% of distance traveled which is significantly smaller than our results of 12%
average traveled error. Nonetheless, Ladetto et al. [43] had GPS receivers and other sensors to help improve
absolute position, which is not our case. When compared to other scholars, Stirling et al. [80] illustrates an
experiment exploiting a shoe-mounted sensor prototype that calculates stride length with accelerometers and
magnetometers. Their system measures angular acceleration by manipulating pairs of accelerometers as an
alternative to gyroscopes. The foot pod stride length measurement was generally less than 10% different from the
distances given by their control point surveyed path. With a total distance estimated by the foot pod of 978 meters,
compared to 862 meters for the survey which goes into conformity with our own results of 12% displacement
error. Other experiments conducted by Ludwig et al. [45] using quadcopter data and results show that Mahony
provides better orientation estimation than both Madgwick and EKF when using optimum parameters. The
same authors tested on quadcopters the EKF, Madgwick, and Mahony filters [46]. Results showed that Mahony
delivered a more precise orientation estimation and faster execution time than Madgwick and EKF which also
goes in compliance with our results.

7.3 Generalization
The patterns that we considered were chosen as common patterns that are considered in underwater monitoring
scenarios and practically any application that relies on spatial sampling designs benefits from our approach (see,
e.g., [35] for thorough coverage of possible scenarios). One limitation of our study, however, was the reliance
on scuba divers as the source of motion, and in practice also underwater vehicles should be supported. In
these cases, the general effects of water as the medium are the same but the propulsion patterns can have an
effect on the motion characteristics, and thus on the performance of the algorithms. Underwater vehicles also
incorporate ferrous components which generate magnetic fields and thus require integrating magnetometer
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compensation techniques before the inertial navigation techniques can be used. In practice, these propulsion
patterns of underwater vehicles apply a consistent force on the vehicle and thus the variation in the motion
patterns is even smaller than in the diving scenario – and clearly smaller than in ground-based navigation. Thus,
we would expect the performance to be largely similar or even better than in the scuba diving case. While further
research is needed to validate this more accurately, our work serves as an important starting point in bringing
pervasive sensing and ubicomp solutions into underwater domains.

7.4 Challenges
Naturally we also encountered some challenges while carrying out the measurement campaigns and we next
briefly highlight some of them with the aim of pointing out further research directions that would need addressing.
First, low-cost sensors for micro-controllers have varying reliability and consistency and thus it is essential
to verify the sensor performance separately prior to carrying out measurement campaigns. The casing for
underwater settings is also challenging as there are no plug-and-play solutions but custom designs that can
potentially affect the performance of the sensors are needed. The sensors also need calibration before data
collection. On the ground, the calibration can be done opportunistically by identifying periods where the sensors
are sufficiently stable [31] but generalizing these techniques to underwater settings is not straightforward as
currents and other factors can result in difficulties in identifying suitable rest periods for calibration. Finally, the
choice of sensors also poses limitations on the algorithms in terms of sampling rate and data availability. For
example, pressure sensors could further improve accuracy by providing more accurate depth estimates, whereas
higher sampling rates could potentially reduce sensor drift. Note that even low sampling rates are sufficient for
scuba diving scenarios as the frequency of motion patterns is typically low (below one hertz) to preserve oxygen.
Thus faster sampling rates are more important for other scenarios, such as navigating underwater vehicles.
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