
Measurement 217 (2023) 113105

A
0

G
e
A
a

b

c

A

K
D
N
I
I
S
L
C

1

t
t
T
t
o
e

m
a
s
i
m

f
f
d
t

h
R

Contents lists available at ScienceDirect

Measurement

journal homepage: www.elsevier.com/locate/measurement

eneralizable end-to-end deep learning frameworks for real-time attitude
stimation using 6DoF inertial measurement units
rman Asgharpoor Golroudbari a,b,c,∗, Mohammad Hossein Sabour a,b

Department of Aerospace, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Tehran, Iran
Fuzzy Logic Lab Interest Group, Universal Scientific Education and Research Network, Tehran, Tehran, Iran
Students’ scientific research center, Tehran University of Medical Sciences, Tehran, Tehran, Iran

R T I C L E I N F O

eywords:
eep learning
avigation

nertial sensors
ntelligent filter
ensor fusion
ong–short term memory
onvolutional neural network

A B S T R A C T

This paper presents a novel end-to-end deep learning framework for real-time inertial attitude estimation
using 6DoF IMU measurements. Inertial Measurement Units are widely used in various applications, including
engineering and medical sciences. However, traditional filters used for attitude estimation suffer from poor
generalization over different motion patterns and environmental disturbances. To address this problem, we
propose two deep learning models that incorporate accelerometer and gyroscope readings as inputs. These
models are designed to be generalized to different motion patterns, sampling rates, and environmental
disturbances. Our models consist of convolutional neural network layers combined with Bi-Directional Long–
Short Term Memory followed by a Fully Forward Neural Network to estimate the quaternion. We evaluate
the proposed method on seven publicly available datasets, totaling more than 120 h and 200 kilometers of
IMU measurements. Our results show that the proposed method outperforms state-of-the-art methods in terms
of accuracy and robustness. Additionally, our framework demonstrates superior generalization over various
motion characteristics and sensor sampling rates. Overall, this paper provides a comprehensive and reliable
solution for real-time inertial attitude estimation using 6DoF IMUs, which has significant implications for a
wide range of applications.
. Introduction

Attitude estimation is a fundamental problem in robotics, naviga-
ion, and aerospace engineering. It refers to the task of determining
he orientation of an object relative to a reference coordinate system.
his information is crucial for many applications, such as controlling
he orientation of a spacecraft or a quadcopter, stabilizing a camera
r a sensor platform, and enabling precise navigation in GPS-denied
nvironments [1].

Inertial sensors, such as accelerometers and gyroscopes, are com-
only used for attitude estimation due to their low cost, small size,

nd high accuracy. However, estimating attitude from raw sensor mea-
urements is a challenging problem due to the nonlinearities and biases
n the sensor data, as well as the presence of external disturbances and
easurement noise.

Over the past few decades, various approaches have been proposed
or attitude estimation, ranging from traditional linear and nonlinear
ilters to more recent machine learning-based methods. In particular,
eep learning has emerged as a promising technique for attitude estima-
ion, as it can learn complex mappings from raw sensor data to attitude

∗ Corresponding author at: Department of Aerospace, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Tehran, Iran.
E-mail addresses: a.asgharpoor@ut.ac.ir (A. Asgharpoor Golroudbari), sabourmh@ut.ac.ir (M.H. Sabour).
URL: https://armanasq.github.io (A. Asgharpoor Golroudbari).

estimates without relying on handcrafted features or prior knowledge
of the system dynamics.

Numerous instruments and sensors are available for this purpose,
but they vary in cost and complexity. While high-quality sensors can
provide more accurate results, they may not always be practical due
to their high cost. One way to increase accuracy at a lower cost is
to use multiple sensors, either of the same type (homogeneous) or
different types (heterogeneous). This approach, known as Multi-Data
Sensor Fusion (MSDF). MDSF is a technique that combines information
from multiple sensors of different types or modalities to improve the
accuracy and reliability of a system’s perception or estimation. In other
words, MDSF integrates data from multiple sensors that capture differ-
ent aspects of the environment or the system being monitored in order
to obtain a more complete and robust understanding of the underlying
phenomena. MSDF can be further divided into two categories: single-
point methods, which use vector measurements at a single point in
time, and recursive methods, which combine measurements over time
and the system’s mathematical model [2].
vailable online 1 June 2023
263-2241/© 2023 Elsevier Ltd. All rights reserved.

ttps://doi.org/10.1016/j.measurement.2023.113105
eceived 10 March 2023; Received in revised form 10 May 2023; Accepted 25 Ma
y 2023

https://www.elsevier.com/locate/measurement
http://www.elsevier.com/locate/measurement
mailto:a.asgharpoor@ut.ac.ir
mailto:sabourmh@ut.ac.ir
https://armanasq.github.io
https://doi.org/10.1016/j.measurement.2023.113105
https://doi.org/10.1016/j.measurement.2023.113105
http://crossmark.crossref.org/dialog/?doi=10.1016/j.measurement.2023.113105&domain=pdf

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour
The precision of attitude determination depends on the sensors’
accuracy, the system modeling quality, and the information processing
method [3]. Achieving this level of precision is a challenging navigation
problem due to system modeling, process, and measurement errors.
Increasing the sensor’s precision may exponentially increase the cost,
and sometimes, achieving the precision requirements is only possible
for an exorbitant cost.

Inertial navigation algorithms, which are based on the Dead Reck-
oning method, have been used for years to determine the attitude based
on inertial sensors [4]. The method utilizes different types of inertial
sensors such as accelerometers and gyroscopes, referred to as Inertial
Measurement Units (IMUs) [5]. A moving object’s position, velocity,
and attitude can be determined using the numerical integration of IMU
measurements. Over the past decade, MEMS-based IMUs have become
increasingly popular. Due to recent advances in MEMS technology,
IMUs have become smaller, cheaper, and more accurate. They can
now be found in mobile robots, smartphones, drones, and autonomous
vehicles. However, IMUs suffer from noise and bias, which directly
affect the performance of the attitude estimation algorithm [6].

Real-time attitude estimation based on IMU sensor raw data is a
fundamental problem in sensor fusion. In the past decades, various
MSDF techniques and Deep Learning models have been developed to
tackle this problem and increase the accuracy and reliability of attitude
estimation techniques. Attitude can be estimated using at least a 6-
Degree-of-Freedom (6DoF) Sensor Fusion Algorithm (SFA) in MSDF
methods. In 6DoF SFAs, a three-axis accelerometer is fused with a
three-axis gyroscope to estimate the attitude. However, 6DoF SFAs
are not suitable for attitude and heading estimation/determination as
the accelerometer cannot measure the yaw (heading) angle, and the
gyroscope can only measure the yaw angle’s rate [7]. An alternative
method is to fuse magnetometer readings with a 6DoF SFA to estimate
the full orientation (attitude and heading). However, a magnetometer’s
primary disadvantage is the magnetic disturbances, which adversely
affect its performance, mainly when used for indoor navigation. Several
techniques have been developed to reduce the effect of magnetic dis-
turbances on the filter performance, such as the Factorized Quaternion
Algorithm (FQA) [8].

Most SFAs are developed and parameterized based on the system’s
dynamic model, which requires a precise choice of model param-
eters [9]. To the best of our knowledge, no algorithm can handle
all types of motions, and it is challenging to design a generalizable
algorithm for all possible scenarios. The traditional approach is to
develop a model for a specific scenario and then adapt it to different
situations. However, this approach is time-consuming and requires
extensive domain knowledge.

Recently, deep learning models have shown great potential in solv-
ing sequential data problems, including attitude estimation [10,11],
error modeling [12]. These models can learn the hidden patterns and
relationships within the data and handle complex and nonlinear rela-
tionships between sensor measurements and attitude. Several studies
have shown the potential of deep learning models for attitude esti-
mation, including recurrent neural networks (RNNs) and convolutional
neural networks [13–17].

The field of robotic perception has seen significant research atten-
tion in recent years, with many studies focusing on the development
of odometry or the fusion of heterogeneous sensors for attitude estima-
tion, including inertial-GPS or inertial-visual fusion, and learning-based
frameworks coupled with conventional filtering methods. However,
there remains a notable gap in research efforts devoted to end-to-end
learning-based inertial attitude estimation. Although relying solely on
inertial data can result in significant drift or biases, the benefits of
developing such models in scenarios where visual data is not available
or GPS is denied cannot be understated. Therefore, there is a pressing
need to design a learning-based model that can achieve end-to-end iner-
tial attitude estimation, thereby providing highly accurate and reliable
2

estimates of a system’s orientation based solely on inertial sensor data.
Such a model holds great potential for a range of applications, including
robotics, navigation, and aerospace engineering.

To the best of our knowledge, there are currently only three models
that have focused on utilizing end-to-end learning-based methods for
inertial attitude estimation. The first model, RIANN [18], introduced
a GRU-based approach. While the trained model is publicly available,
their article lacked sufficient quantitative information, making it dif-
ficult to reproduce their results. In another study [19], the authors
presented an LSTM-based model, but their work was limited to only
one sampling rate, which was not mentioned in their publication,
and was not tested on publicly available inertial datasets. Lastly, the
third study [20] employed a self-attention mechanism. However, their
model was trained and tested only on the OxIOD dataset [21], which
makes it limited to only one type of motion and a specific sampling
rate. The objective of this study is to introduce a novel end-to-end
learning framework for estimating orientation, independent of external
data sources and generalize across various environments and sensors
sampling rate, and thereby contribute to this critical area of research.

This study presents three novel end-to-end deep learning archi-
tectures for real-time attitude estimation, which are implemented us-
ing low-cost strapdown inertial measurement units based on micro-
electromechanical systems (MEMS). Our proposed approaches utilize
both RNNs and a hybrid RNN-CNN neural network, which can ef-
fectively learn and model the motion characteristics, noise, and bias
associated with inertial sensor measurements across various devices.
Our models estimate the roll and pitch angles from raw sensor mea-
surements and compute the quaternion using a fully connected neural
network. Specifically, the models receive the IMU readings in a window
of 100 frames containing 3-axis angular velocity and 3-axis acceleration
as inputs. To evaluate the performance of our models, we conducted
both qualitative and quantitative assessments using publicly available
inertial datasets. The results demonstrate that our proposed quaternion
multiplicative error-based loss functions outperformed recent inertial
estimation methods by up to 40%, producing the most accurate inertial
estimation results. Our study highlights the efficacy of end-to-end
deep learning approaches for real-time attitude estimation in low-cost
IMUs, and their potential for various applications, including drones and
autonomous vehicles.

Our comprehensive analysis of the proposed approach using various
publicly available IMU datasets has demonstrated superior performance
in terms of accuracy and robustness compared to traditional algorithms
and other deep learning models. Our main contribution in this research
is the presentation of a novel end-to-end deep learning framework for
inertial attitude estimation in different scenarios, such as indoor and
outdoor navigation, drones, and autonomous vehicles.

The paper is structured as follows: Section 2 presents a review
of related studies on attitude estimation using deep learning models.
Section 3 provides a detailed description of the problem, including
system modeling, sensor measurements, and error sources. In Section 4,
we describe the proposed approach, including the network architecture,
loss function, and training procedure. Section 5 presents a compre-
hensive description of our experiments, including the datasets used,
evaluation metrics, and comparison with state-of-the-art approaches.
The results and analysis of the tests are presented in Section 6. Finally,
we draw conclusions and outline future research directions in Section 7.

2. Literature review

A 3D dead-reckoning navigation system, such as an Inertial Nav-
igation System (INS), includes a set of Inertial Measurement Units
that consist of three gyroscopes and three mutually orthogonal ac-
celerometers. This system also incorporates a navigation processor that
integrates the IMU’s outputs to provide information about position,
velocity, and attitude [22]. While these navigation systems are widely

used in various fields, including medical science and aerospace, they

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour
suffer from a significant amount of noise and bias in their measure-
ments. This accumulation of errors over time makes them unsuitable
for long-term use.

In the past decade, various research efforts have been made to ad-
dress this problem by improving inertial navigation techniques. These
efforts can be classified into three categories: estimation methods,
MSDF techniques, and evolutionary/AI algorithms. Estimation meth-
ods, such as the Kalman Filter (KF) family (i.e., EKF, UKF, MEKF),
and other commonly used algorithms, such as Madgwick [23] and
Mahony [24], are based on the dynamic model of the system. The
Kalman Filter was initially introduced in [25], and its variants, includ-
ing EKF [26], UKF [27], and MEKF [28], have been implemented for
attitude estimation applications [29]. In a recent comparative study,
Caruso et al. [30] compared various sensor fusion algorithms for in-
ertial attitude estimation and demonstrated that SFA performance is
highly dependent on parameter tuning. Fixed parameter values are
unsuitable for all applications, and parameter tuning is one of the
drawbacks of conventional attitude estimation methods.

Evolutionary algorithms, such as fuzzy logic [31,32], and deep
learning [33–36], could overcome this problem. Most deep learning
methods in inertial navigation have focused on inertial odometry [37–
43], while only a few have attempted to solve the inertial attitude
estimation problem [18,44]. Deep learning methods are typically used
for visual or visual-inertial-based navigation [45–48].

In recent years, various studies have explored the application of
neural networks to satellite attitude estimation. One such study by
Rochefort et al. [49] introduced a novel approach that employs a
quaternion neural network for state estimation. This method is charac-
terized by high accuracy and significantly lower computational com-
plexity when compared to the traditional Extended Kalman Filter
(EKF).

Another approach proposed by Chang et al. [50] involves the use
of a Time-Varying Complementary Filter (TVCF) in combination with
a fuzzy logic inference system to adjust the Complementary Filter
(CF) parameters for attitude estimation. Chen et al. [49,51] utilized
deep recurrent neural networks to estimate user displacement over a
specified time interval.

Esfahani et al. [44] introduced OriNet, a method that estimates
orientation in quaternion form based on Long–Short-Term Memory
(LSTM) layers and IMU measurements. Zhang et al. [52] developed
a sensor fusion method that utilizes empirical mode decomposition
threshold filtering (EMDTF) to eliminate IMU noise and a LSTM neural
network to predict pseudo-GPS position during GPS outages.

Dhahbane et al. [53] proposed a neural network-based Comple-
mentary Filter (NNCF) with ten hidden layers that is trained by the
Bayesian Regularization Backpropagation (BRB) training algorithm to
improve generalization qualities and solve the overfitting problem.
Li et al. [54] suggested an adaptive Kalman filter with a fuzzy neu-
ral network for trajectory estimation system. This algorithm helps
to mitigate measurement noise and undulation for implementing the
touch interface. Finally, Brossard et al. [33] employed deep learning to
denoise gyroscope measurements for an open-loop attitude estimation
algorithm.

Weber et al. [18] have presented a real-time capable neural network
for robust attitude estimation based on an IMU. Their model takes
input from an accelerometer, gyroscope, and IMU sampling rate and
outputs the attitude in quaternion form. However, it is only capable
of estimating the roll and pitch angle. In [55], Sun et al. introduced
a two-stage deep learning framework for inertial odometry based on a
Long–Short-Term Memory and Feed-Forward Neural Network (FFNN)
architecture. The first stage estimates the orientation, while the second
stage estimates the position.

Santos et al. [56] developed a Neural Network model for static
attitude determination based on the PointNet architecture. They used
an attitude profile matrix as input, and the Swish activation function
3

and Adam optimizers were employed. Al et al. [1] developed a deep
learning model for estimating the Multirotor Unmanned Aerial Vehicle
(MUAV) based on the Kalman filter and FFNN. In [19], Narkhede
et al. utilized the LSTM framework to estimate Euler angles using an
accelerometer, gyroscope, and magnetometer, but they did not consider
the sensor sampling rate.

In Table 1, we have summarized some related works in the naviga-
tion field that have utilized deep learning techniques.

Most studies have primarily focused on odometry or coupling
learning-based methods with traditional filtering algorithms. Conse-
quently, there is a significant gap in research regarding end-to-end
learning-based inertial attitude estimation. As mentioned in the in-
troduction section, only three end-to-end deep learning frameworks
have been proposed, with RIANN being the only one that has been
demonstrated to generalize across various sampling rates.

3. Problem definition

The objective of this article is to tackle the challenge of real-time
estimation of an object’s attitude using an IMU sensor and general-
ized across different sampling rates. The primary obstacle to this is
the significant level of noise and bias present in the measurements,
leading to error accumulation over time and decreased accuracy of
the attitude estimate. The aim is to develop a reliable and accurate
method for estimating the object’s attitude in real-time, which does not
require an initial reset period for filter convergence. This is essential
for applications such as navigation, image stabilization, tracking, and
autonomous vehicles, where precise attitude determination is crucial
for successful performance.

Attitude determination and control are critical aspects of the field
of Aerospace Engineering. One of the essential components of this
field is pointing modes such as Earth pointing or Sun pointing, which
requires subsystems to be directed in specific directions. Accurate
knowledge of the vehicle’s attitude, i.e., its orientation relative to a
reference frame, is necessary to achieve proper orientation. Attitude
determination methods are categorized as either static or dynamic.

Static attitude determination is a time-independent approach that
relies on measurements or observations to obtain information describ-
ing the object’s orientation relative to a reference frame. This method
involves measuring the directions from the vehicle to known points,
commonly referred to as Attitude Knowledge. However, deterministic
approaches often fall short in accuracy due to measurement noise,
model error, and process error. Therefore, statistical methods can be
used to provide better accuracy.

Dynamic attitude determination, also known as attitude estimation,
uses mathematical techniques such as statistical and probabilistic meth-
ods to predict and estimate the future attitude based on a dynamic
model and prior measurements. These methods employ data fusion
techniques, which integrate a series of measurements using filtering
algorithms or Multi-Sensor-Data-Fusion. The most commonly used at-
titude estimation methods are the Extended Kalman Filter, Madgwick,
and Mahony. These methods improve attitude determination accuracy
and enable better pointing control.

In this study, we propose a novel approach based on a Neural
Network model that takes current and previous gyroscope and ac-
celerometer measurements as input and estimates the attitude. Our
approach does not consider any initial reset period for filter conver-
gence, making it more efficient and suitable for real-time applications
compared to previous studies. In this article, we aim to address the
problem of real-time estimation of an object’s attitude using an IMU
sensor, which measures its angular velocity and linear acceleration
using gyroscopes and accelerometers. The primary challenge of this
problem is the significant level of noise and bias present in the measure-
ments, leading to error accumulation over time and decreased accuracy
of the attitude estimate. Our goal is to develop a reliable and accu-
rate method for estimating the object’s attitude in real-time without

requiring an initial reset period for filter convergence. This is crucial for

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour
Table 1
Deep learning for localization.

Model Year/Month Input data Application

PoseNet [57] 2015/12 Vision Relocalization
VINet [58] 2017/02 Vision + Inertial Visual inertial odometry
DeepVO [59] 2017/05 Vision Visual odometry
VidLoc [60] 2017/07 Vision Relocalization
IONet [51] 2018/02 Inertial Inertial odometry
UnDeepVO [61] 2018/05 Vision Visual odometry
VLocNet [62] 2018/05 Vision Relocalization, Odometry
RIDI [63] 2018/09 Inertial Inertial odometry
SIDA [64] 2019/01 Inertial Domain adaptation
VIOLearner [65] 2019/04 Vision + Inertial Visual inertial odometry
RINS-W [66] 2019/05 Inertial Only Inertial odometry
SelectFusion [67] 2019/06 Vision + Inertial + LIDAR Visual inertial odometry and sensor fusion
LO-Net [68] 2019/06 LIDAR LIDAR odometry
L3-Net [69] 2019/06 LIDAR LIDAR odometry
Lima et al. [70] 2019/8 Inertial Inertial odometry
DeepVIO [71] 2019/11 Vision + Inertial Visual inertial odometry
OriNet [44] 2020/4 Inertial Inertial odometry
Sorg [72] 2020/4 Inertial Pose estimation
GALNet [73] 2020/5 Inertial + Dynamic + Kinematic Autonomous cars
PDRNet [74] 2021/3 Inertial Pedestrian dead reckoning
Kim et al. [75] 2021/4 Inertial Inertial odometry
RIANN [18] 2021/5 Inertial Attitude estimation
CTIN [76] 2022/6 Inertial Inertial odometry
Xia et al. [77] 2022/8 Inertial Human pose estimation
Brotchie et al. [20] 2022/11 Inertial Attitude estimation
various applications, including navigation, image stabilization, track-
ing, and autonomous vehicles, where precise attitude determination is
vital for successful performance. We propose a novel approach based
on a Neural Network model that takes current and previous gyroscope
and accelerometer measurements as input and estimates the attitude.
Unlike previous studies, our approach does not consider any initial reset
period for filter convergence, making it more efficient and suitable for
real-time applications.

4. Methodology

4.1. Error matrices

This section explores the significance of error matrices in the field of
aerospace engineering for precise estimation of a vehicle’s orientation
using quaternions. The purpose of error matrices is to quantify the accu-
racy of the estimation algorithm by establishing a connection between
the error in the estimated attitude and the error in the measured sensor
data. The section highlights the need for selecting appropriate error ma-
trices for specific applications and desired properties of the estimated
attitude and the importance of careful tuning of these parameters to
achieve optimal results.

In addition, the section emphasizes the importance of choosing an
appropriate loss function in deep neural network training to measure
the difference between predicted and actual output values. Since the
attitude error is a geometric quantity, conventional algebraic error ma-
trices such as mean squared error or mean absolute error are unsuitable
for this purpose. Therefore, various methods such as geodesic distances
have been developed to define and implement quaternion error. The
section outlines the most commonly used quaternion error measures
for attitude estimation, including quaternion rotational error, quater-
nion inner products, and error matrices. The section underscores the
importance of careful selection and implementation of error matrices
to ensure accurate and reliable attitude estimation.

In conclusion, error matrices are vital for accurate attitude estima-
tion, which is critical for aerospace engineering applications. They play
a crucial role in defining the loss function that guides the optimization
process and measures the model’s performance in deep learning. The
choice of error representation method, particularly in the context of
attitude estimation, should be carefully considered to ensure accu-
4

racy and reliability. The following section will introduce the most r
widely used quaternion error measures, including the quaternion inner
product, which can be used to train deep learning models.

Accurate estimation of a vehicle’s orientation is critical in aerospace
engineering. One effective method for estimating orientation is through
the use of quaternions, which represent rotation around a unit vec-
tor [78]. In the context of attitude estimation, error matrices play a
crucial role in quantifying the accuracy of an estimation algorithm.
These matrices relate the error in the estimated attitude to the error
in the measured sensor data. There are various types of error matrices
that can be used, and the selection depends on the specific application
and desired properties of the estimated attitude. It is important to
carefully choose and tune these parameters, including the training data
and network architecture, to achieve optimal results.

In deep learning, a loss function is used to measure the difference
between predicted and actual output values. The loss function plays a
critical role in the training process of a deep neural network, as it guides
the optimization process and measures the model’s performance. In the
context of attitude estimation, the loss function measures the difference
between the predicted attitude (e.g., quaternion or Euler angles) and
the true attitude of the vehicle. The most commonly used loss functions
include mean squared error (MSE) and mean absolute error (MAE).

However, as the attitude error is a geometric quantity, algebraic
error matrices such as the MSE or MAE are not suitable. Instead,
several methods have been developed for defining and implementing
quaternion error. These methods include the use of geodesic distances
and Riemannian metrics. Careful consideration should be given to the
choice of the error representation method in order to ensure accurate
and reliable attitude estimation.

In the following, we will introduce the most widely used quaternion
error measures for attitude estimation that can be employed for training
deep learning models.

A quaternion can be expressed as a vector consisting of the scalar
component 𝑞𝑤 and the vector components 𝑞𝑥, 𝑞𝑦, and 𝑞𝑧 as shown
below:

𝑞 =

⎡

⎢

⎢

⎢

⎢

⎣

cos(𝜃∕2)
sin(𝜃∕2) ⋅ 𝑢𝑥
sin(𝜃∕2) ⋅ 𝑢𝑦
sin(𝜃∕2) ⋅ 𝑢𝑧

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑞𝑤
𝑞𝑥
𝑞𝑦
𝑞𝑧

⎤

⎥

⎥

⎥

⎥

⎦

(1)

where 𝜃 is the angle of rotation and �̂� is the unit vector of the

otation axis. Attitude also could be defined as a rotation from the true

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour

r
M
t
t

t
t
f

𝐿

H
1
g
i
r
a
f
d

𝐿

w
a
t
c

𝑒

𝑒

u
r

𝑞

[

b

𝐿

orientation to the estimated orientation.

𝐪𝑒𝑠𝑡 = 𝛿𝐪⊗ 𝐪𝑡𝑟𝑢𝑒 (2)

where 𝐪𝑒𝑠𝑡 is the estimated quaternion, 𝐪𝑡𝑟𝑢𝑒 is the true quaternion, and
𝛿𝐪 is the quaternion error.

The attitude error or the quaternion rotational error can be ex-
pressed as the difference between the estimated quaternion 𝐪𝑒𝑠𝑡 and the
true quaternion 𝐪𝑡𝑟𝑢𝑒:

𝐪𝑒𝑟𝑟 = 𝐪𝑡𝑟𝑢𝑒 ⊗ 𝐪−1𝑒𝑠𝑡 (3)

The error rate can be calculated using the following equation:

�̇�𝑒𝑟𝑟 = �̇�𝑡𝑟𝑢𝑒 ⊗ 𝐪−1𝑒𝑠𝑡 + 𝐪𝑡𝑟𝑢𝑒 ⊗ �̇�−1𝑒𝑠𝑡 (4)

A simpler method to calculate the error is to use element-wise
subtraction between the true and estimated quaternions:

𝐪𝑒𝑟𝑟 = 𝐪𝑡𝑟𝑢𝑒 − 𝐪𝑒𝑠𝑡 (5)

Error matrices are used to represent the covariance between the
errors of each element in the quaternion. The error matrices can be
defined as:

𝐏𝑒𝑟𝑟 = 𝐸(𝐪𝑒𝑟𝑟 − �̄�𝑒𝑟𝑟)(𝐪𝑒𝑟𝑟 − �̄�𝑒𝑟𝑟)𝑇 (6)

where �̄�𝑒𝑟𝑟 is the mean quaternion error, and 𝐸⋅ is the expected value
operator.

The Quaternion Inner Product (QIP) is a measure of the angle
between two quaternions, which represents the difference between the
predicted and true orientation. The dot product between two quater-
nions is equivalent to the angle between two points on the quaternion
hypersphere. The QIP is defined as follows:

𝑄𝐼𝑃 (𝑞, 𝑝) = 𝑞 ⋅ 𝑝 = 𝑞𝑤𝑝𝑤 + 𝑞𝑥𝑝𝑥 + 𝑞𝑦𝑝𝑦 + 𝑞𝑧𝑝𝑧 (7)

The QIP yields the quaternion difference between two quaternions,
so if the angle between two quaternions is zero, the QIP value will be
equal to 1. Therefore, the QIP loss function can be defined as:

𝐿𝑄𝐼𝑃 = 1

∑

𝑖=1
(1 − |𝑞 ⋅ 𝑝|) (8)

On the other hand, the angle between two quaternions can be
computed using the quaternion inner product, as follows:

𝐿𝑄𝐼𝑃𝐴 = 1

∑

𝑖=1
(𝜃) = 1

∑

𝑖=1
(arccos(𝑞 ⋅ 𝑝)) (9)

In [20], the authors utilized a combination of QIP and MSE, as
follows:

𝐿𝑄𝐼𝑃−𝑀𝑆𝐸 = 1

∑

𝑖=1
𝑄𝐼𝑃 (𝑞𝑖𝑡𝑟𝑢𝑒 − 𝑞

𝑖
𝑒𝑠𝑡, 𝑞

𝑖
𝑒𝑠𝑡 − 𝑞

𝑖
𝑡𝑟𝑢𝑒) (10)

Here, 𝑞𝑖𝑡𝑟𝑢𝑒 and 𝑞𝑖𝑒𝑠𝑡 denote the true and estimated quaternions,
espectively, and is the number of samples in the dataset. The QIP-
SE loss function combines the geometric information of the QIP with

he algebraic information of the MSE. This combination has been shown
o produce more accurate and reliable results in certain applications.

The research conducted in [70] employed the Quaternion Mul-
iplicative Error (QME) loss function to assess the effectiveness of
heir proposed method utilizing the Hamilton product. The QME loss
unction was defined as follows:

𝑄𝑀𝐸 = 1

∑

𝑖=1

(

2 ⋅ ‖𝑖𝑚𝑎𝑔(𝑞 ⊗ 𝑝⋆)‖1
) (11)

Here, 𝑝⋆ denotes the complex conjugate of quaternion 𝑝. The complex
conjugate of a quaternion can be calculated by:

⋆ []𝑇 (12)
5

𝑝 = 𝑝0 −𝑝1 −𝑝2 −𝑝3
Alternatively, the angle corresponding to the QME can be computed as
follows:

𝐿𝑄𝑀𝐸𝐴 = 2 ⋅ arccos(|scalar(𝑞 ⊗ 𝑝⋆)|) (13)

owever, the use of the 𝑎𝑟𝑐𝑐𝑜𝑠 function can lead to values greater than
or less than −1 for the scalar part of (𝑞 ⊗ 𝑝⋆), which can cause the

radient to explode. To tackle this issue, the scalar part of (𝑞 ⊗ 𝑝⋆)
s clamped to the range of [−1, 1]. Although this value clipping could
esult in a loss of information about the angle between two quaternions,
nother approach to avoiding gradient explosion is replacing the 𝑎𝑟𝑐𝑐𝑜𝑠
unction with a non-trigonometric linear function. The latter can be
efined as follows:

𝑄𝑀𝐸𝐴𝑛𝑇 = 1 −
√

(|scalar(𝑞 ⊗ 𝑝⋆)|)2 (14)

here 𝑞𝑤 and 𝑞𝑧 denote the squared values of 𝑞 ⊗ 𝑝⋆. Similarly, the
uthors in [79] decomposed the attitude error into a rotation around
he 𝑧-axis, 𝑒ℎ, and the shortest residual rotation, 𝑒𝑖. These two angles
an be computed using the following equations:

ℎ = 2 arctan(𝑞𝑧∕𝑞𝑤) (15)

𝑖 = 2 arccos(
√

𝑞2𝑤 + 𝑞2𝑧) (16)

Furthermore, using the 𝑎𝑟𝑐𝑐𝑜𝑠 function in the computation of the 𝑒𝑖
angle could lead to instability in gradient calculation. As mentioned
in [80], the 𝑎𝑟𝑐𝑐𝑜𝑠 function can be replaced by:

1 −
√

𝑞2𝑤 + 𝑞2𝑧 (17)

The loss function can be expressed as follows:

𝐿𝑒𝑖 =
1

∑

𝑖=1

(

1 −
√

𝑞2𝑤 + 𝑞2𝑧

)

(18)

Quaternion Shortest Geodesic Distance (QSGD) is the angle between
the predicted and true orientation on the quaternion hyper-sphere. It is
defined as:

𝑄𝑆𝐺𝐷 = 𝑞 ⊗ 𝑝⋆ =

⎡

⎢

⎢

⎢

⎢

⎣

𝑞𝑤𝑝𝑤 − 𝑞𝑥𝑝𝑥 − 𝑞𝑦𝑝𝑦 − 𝑞𝑧𝑝𝑧
𝑞𝑤𝑝𝑥 + 𝑞𝑥𝑝𝑤 + 𝑞𝑦𝑝𝑧 − 𝑞𝑧𝑝𝑦
𝑞𝑤𝑝𝑦 − 𝑞𝑥𝑝𝑧 + 𝑞𝑦𝑝𝑤 + 𝑞𝑧𝑝𝑥
𝑞𝑤𝑝𝑧 + 𝑞𝑥𝑝𝑦 − 𝑞𝑦𝑝𝑥 + 𝑞𝑧𝑝𝑤

⎤

⎥

⎥

⎥

⎥

⎦

(19)

The loss function for QSGD is defined as follows:

𝐿𝑄𝑆𝐺𝐷 = |1 − (|scalar(𝑞 ⊗ 𝑝⋆)|)| (20)

Alternatively, the QSGD loss function can be expressed as:

𝐿𝑄𝑆𝐺𝐷2 =
√

1 −
√

scalar(𝑞 ⊗ 𝑝⋆)2 (21)

By decomposing 𝑞 ⊗ 𝑝⋆ into its constituent parts, where �̂� is the
nit vector of the rotation axis, and 𝜃 is the rotation angle, it can be
epresented as:

⊗ 𝑝⋆ =

[

cos(𝜃𝑒𝑟𝑟∕2)

sin(𝜃𝑒𝑟𝑟∕2) ⋅ ̂𝑢𝑒𝑟𝑟

]

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑤𝑒𝑟𝑟
𝑥𝑒𝑟𝑟
𝑦𝑒𝑟𝑟
𝑧𝑒𝑟𝑟

⎤

⎥

⎥

⎥

⎥

⎦

(22)

When 𝜃 = 0, the quaternion difference equals 𝑞 ⊗ 𝑝⋆ =
1 0 0 0

]𝑇 . The loss function that minimizes the rotation angle
etween two quaternions is defined as:

𝑄𝑆𝐺𝐷3 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑤𝑒𝑟𝑟 − 1
𝑥𝑒𝑟𝑟
𝑦𝑒𝑟𝑟
𝑧𝑒𝑟𝑟

⎤

⎥

⎥

⎥

⎥

⎦

(23)

Figs. 1, 3, and 2 show the loss values for the attitude error from |𝜋|

to 0.

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour
Fig. 1. Loss functions for attitude error.
Fig. 2. Compare loss functions for attitude error [81].

In the context of attitude estimation, accurate determination of a
vehicle’s orientation is crucial in aerospace engineering. One widely
used method for estimating orientation is through the use of quater-
nions, which represent rotation around a unit vector. Error matrices
are essential in quantifying the accuracy of an estimation algorithm.
These matrices relate the error in the estimated attitude to the error
in the measured sensor data. Various types of error matrices can be
used, depending on the specific application and desired properties of
the estimated attitude. Therefore, it is important to carefully choose
and fine-tune these parameters, including the training data and network
architecture, to achieve optimal results. In the realm of deep learning,
the loss function plays a critical role in the training process of a deep
neural network by measuring the difference between predicted and
6

Fig. 3. Compare loss functions derivative for attitude error [81].

actual output values. However, for geometric quantities such as attitude
error, algebraic error matrices such as the MSE or MAE are unsuit-
able. Instead, several methods have been developed for defining and
implementing quaternion error, such as the use of geodesic distances.
The choice of the error representation method should be carefully
considered to ensure accurate and reliable attitude estimation.

4.2. Proposed network architecture

Our research focuses on developing end-to-end deep learning frame-
works for inertial attitude estimation, which can be generalized across
various environments and sensor sampling rates. While there have

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour
Fig. 4. Time window for attitude estimation, where both past and future data are used
to estimate the attitude at each time step.

been previous works that utilize deep learning for inertial odometry
[37,70,75], visual-inertial odometry [65,71,82], visual attitude esti-
mation [83], and enhancing sensor fusion techniques accuracy [1],
only three models have explored the use of end-to-end learning-based
methods for inertial attitude estimation. The first model, RIANN [18],
introduced a GRU-based approach, but the lack of quantitative infor-
mation in their article makes it difficult to reproduce their results. The
second study [19] presented an LSTM-based model, but it was limited
to only one sampling rate, and the authors did not mention it in their
publication or test it on publicly available inertial datasets. The third
study [20] employed a self-attention mechanism, but their model was
trained and tested only on the OxIOD dataset [21], which limits its
applicability to only one type of motion and a specific sampling rate.

Our contribution to the field is the introduction of a novel end-to-
end learning framework for estimating orientation that is independent
of external data sources and can generalize across various environments
and sensor sampling rates. To achieve this, we utilized a combination
of CNNs and LSTMs. Our model is trained and tested on publicly
available datasets, demonstrating its ability to generalize across dif-
ferent sampling rates and environments. We evaluate the performance
of our model against existing state-of-the-art methods and show that
our approach achieves competitive accuracy with lower computational
complexity. Our study aims to make a significant contribution to this
critical area of research and pave the way for more accurate and
robust attitude estimation in various applications, such as autonomous
vehicles, drones, and robotics.

The real-time attitude estimation problem can be addressed using
several deep learning topologies. Studies have shown that RNNs, such
as LSTM and GRU, CNN, and hybrid RNN-CNN networks can handle
IMU data to estimate system state variables. The choice of topology
must also consider the computational cost since real-time application
is a primary requirement. Therefore, we evaluated GRU-based, LSTM-
based, CNN-based, and hybrid CNN-based networks to estimate the
system’s attitude. Based on our results, we selected three different
models, and their proposed network architectures are shown in Figs. 5,
6, and 7.

Similar to [51,63,70,75,84], we used windows of frames as input
data for the model, which contained 3-axis acceleration and 3-axis
angular velocity. We used the past

2 and future
2 IMU measurements

to predict the attitude. We also used a stride size of between consecu-
tive IMU measurements, and the attitude estimation occurred between

2 − and

2 + frames, as shown in Fig. 4.
Based on previous studies and existing models, we initially imple-

mented our own model for inertial data handling. We drew inspiration
7

from several sources, including [18–20,70,85], and worked to modify
and optimize our model for our specific application.

To fine-tune our model, we employed various hyperparameter opti-
mization techniques such as random search, grid search, and
population-based training algorithms. We tested different architectures,
layers, and activation functions, as well as experimented with various
batch sizes and learning rates. By analyzing the performance metrics
of each model variant, we were able to select the best architecture for
our specific use case.

Overall, our approach involved a combination of building upon pre-
vious research and utilizing advanced optimization techniques to create
a model tailored to our specific needs. By iterating and improving upon
our initial implementation, we were able to achieve high accuracy and
performance in our inertial attitude estimation task.

The proposed network architecture consists of four main compo-
nents: (1) Feature Extraction, (2) Feature Fusion, (3) Sampling Rate
Fusion, and (4) Attitude Estimation. We added Gaussian noise layers to
the model’s inputs to improve generalization by adding random noise
to the input data during training. This can make the model more robust
to small variations in the input and prevent overfitting. It can also serve
as a regularization technique to reduce overfitting by adding random
noise to the inputs, which is sampled from a Gaussian distribution
with standard variation of 0.25. We also used dropout layers in the
feature extraction and feature fusion layers to improve the network’s
robustness.

The feature extraction component extracts the features from the
IMU data. We split each axis of the IMU data in Model A and B and then
fed each into a layer. After concatenating the layers, they are fed to a
layer to fuse the extracted feature. To consider the sampling rate, the
fused features are connected to the sampling rate layer. In the last layer,
a feed-forward network with four units is followed by a unit scaling
layer to estimate the attitude.

4.2.1. Model A
The model that we developed for handling the inertial data consists

of a one-dimensional CNN in combination with bidirectional long–
short-term memory, Model A, as shown in Fig. 5. The input data is
fed into the model in windows of = 100 frames, containing 3-axis
acceleration and 3-axis angular velocity. The past 50 and future 50
IMU measurements are used to predict the attitude. The consecutive
IMU measurements have a stride size of 4, and a new attitude will be
calculated in every 4 frames.

The feature extraction component extracts the features from the
IMU data using separate 1D-CNN layers with a filter size of 128 and
kernel size of 11 for each axis of the IMU data. Each CNN layer is
followed by a max pooling layer with a pooling size of 3. The output
of all the layers is concatenated and fed into a CNN layer with 128
filters, kernel size of 11, and stride size of 1. The CNN layer fuses
the extracted features in the last layer and is followed by a feed-
forward layer with 512 units. To take advantage of sequence modeling
and temporal information, a bidirectional LSTM layer with 128 units
is used. Dropout layers are used to reduce overfitting in the feature
extraction and feature fusion layers.

The output of the LSTM layer is concatenated with the output of
the CNN layer with Mish activation function, and the output of a fully
connected layer with 512 neurons. The fully connected layer takes the
sampling rate of the IMU measurements as input and works as the
sampling rate fusion component, which is used to fuse the extracted
features from the IMU data with different sampling rates. The Attitude
Estimation component is composed of a fully connected layer with
four neurons representing the system’s estimated attitude in quaternion
form. Gaussian noise layers are added to the model’s inputs to help
with generalization, by adding random noise to the input data during
training. The noise is sampled from a Gaussian distribution with a
standard variation of 0.25.

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour
Fig. 5. Proposed network architecture of Model A.
Fig. 6. Proposed network architecture of Model B.
Fig. 7. Proposed network architecture of Model C.
4.2.2. Model B
Model B employs multiple Bidirectional LSTM layers with 50 units,

each followed by a dropout layer. The Bidirectional LSTM layer’s output
is concatenated and passed into a feed-forward layer with 256 units and
ReLU activation function. The sampling rate of IMU sensors is provided
as input to a dense layer with 256 units and ReLU activation function.
The outputs of the dense layers are concatenated and passed into a final
dense layer with four units and linear activation function, followed by
a unit scaling layer to estimate the quaternions. The proposed network
architecture of Model B is depicted in Fig. 6.

4.2.3. Model C
In Model C, two Bi-LSTM layers are employed, followed by a dense

layer with 256 units. The sampling rate is provided as input to a similar
dense layer with Mish activation function. The output of the dense layer
is concatenated and passed into another dense layer with 256 units. The
output consists of a dense layer with four units and linear activation
function, followed by a unit scaling layer to estimate the quaternions.
The proposed network architecture of Model C is depicted in Fig. 7.

4.3. Learning rate finder

In this study, we utilized the learning rate finder technique to
identify the optimal learning rate for training our machine learning
model. The learning rate finder technique is a widely used method
8

to determine the optimal learning rate for machine learning models,
by gradually increasing the learning rate from a minimal value and
monitoring the loss’s behavior over time [86]. The optimal learning rate
refers to the value at which the loss decreases at an appropriate rate
without compromising the model’s ability to explore different regions
of the parameter space.

To use this technique, we executed multiple experiments with
varying learning rates and monitored the performance on validation
datasets. The best-performing experiment was then selected as the
optimal learning rate for training the model. The learning rate finder
technique provides an efficient and fast approach for model conver-
gence compared to traditional methods, such as constant decay or
exponential decay schedules.

Commonly used learning rate schedules include constant, expo-
nential decay, step-wise decay, and cyclical learning rates (CLR). A
constant schedule maintains the same learning rate for all training
iterations, while an exponential decay schedule gradually reduces the
learning rate over time. The idea of using an exponentially decreasing
learning rate was first proposed by Leonid Khachiyan in 1980 [87]
to enhance the convergence speed and accuracy of gradient descent
algorithms. The equation for computing the learning rate in this case
is as follows:

𝑠𝑡𝑒𝑝∕𝑑𝑒𝑐𝑎𝑦_𝑠𝑡𝑒𝑝 (24)
𝑙𝑟 = 𝑙𝑟 ∗ 𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒 ,

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour
Fig. 8. Learning rate finder.

where 𝑙𝑟 is the current learning rate, step is the current training
iteration, and 𝑑𝑒𝑐𝑎𝑦_𝑠𝑡𝑒𝑝 determines how frequently the learning rate
is reduced.

Step-wise decays involve reducing the learning rate at specific in-
tervals during the training process. In [88], G. Hinton proposed using
a step-wise decay schedule to facilitate the learning rate at specific
intervals during the training process. This technique has become a
popular method for improving model performance and avoiding local
minima. The learning rate in this case can be computed using the
following equation:

𝑙𝑟 = 𝑙𝑟 ∗ 𝑓𝑎𝑐𝑡𝑜𝑟

or
𝑙𝑟 = 𝑙𝑟 − 𝑓𝑖𝑥𝑒𝑑 𝑎𝑚𝑜𝑢𝑛𝑡.

(25)

CLR involves gradually increasing and decreasing the learning rate
over time, enabling the model to explore different regions of the
parameter space more efficiently [89]. This is done by setting upper and
lower bounds for the range of values that can be explored and a step
size that determines how quickly or slowly the value changes between
these bounds. The cyclical learning rate approach allows the model
to avoid local minima while still converging on an optimal solution
faster than traditional methods such as constant or exponential decay
schedules. The equation for computing the cyclical learning rate is:

𝑙𝑟 =
𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑

2
+
𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑

2
∗ (1 + 𝑐𝑜𝑠(𝑠𝑡𝑒𝑝∕𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒)), (26)

where 𝑙𝑟 is the current learning rate, step is the current training
iteration, and step size determines how quickly or slowly the value
changes between the upper and lower bounds.

In this study, we utilized the CLR method to determine the optimal
learning rate. We trained the network for several epochs and plotted the
loss value against the learning rate. We chose the learning rate value
that had the steepest gradient in the loss curve (Fig. 8).

5. Experiment

5.1. Dataset

5.1.1. Introduction
In the field of attitude estimation algorithms, IMU datasets play

a vital role in evaluating algorithm performance. To evaluate and
compare various attitude estimation algorithms, we require datasets
that consist of IMU measurements. IMU datasets can be categorized
into two categories: synthetic and real-world. Synthetic datasets are
generated by simulating IMU measurements. In contrast, real-world
9

datasets are collected from actual experiments. Real-world experiments
can further be categorized as indoor and outdoor experiments, depend-
ing on whether they are conducted in a controlled environment, such
as a laboratory, or an uncontrolled environment, such as a car.

To train, validate and test any neural network model, a comprehen-
sive and accurate database is required. The performance of the Deep
Learning model is directly affected by the quality of data used for its
training. Therefore, we require a dataset containing both input and
output parameters with certain conditions:

• The input and output parameters must be accurate and reliable.
• The dataset must be of sufficient size to train the Deep Learning

model effectively.
• The dataset must be diverse enough to cover all possible scenar-

ios.

Next, we will present some of the most commonly used IMU
datasets, which satisfy the above conditions.

5.1.2. RepoIMU T-stic
The RepoIMU T-stick [90] is an affordable, small, and high-

performance IMU designed for versatile applications. It is a 9-axis
sensor that measures acceleration, angular velocity, and magnetic field.
The dataset comprises two sets of experiments recorded with a T-
stick and a pendulum. The T-stick data includes 29 trials, each lasting
approximately 90 s. The IMU is attached to a T-shaped stick with six
reflective markers, and each experiment involves slow or fast rotation
around a principal sensor axis or translation along a principal sensor
axis. The Vicon Nexus OMC system and XSens MTi IMU data are
synchronized and provided at a frequency of 100 Hz. The authors have
disclosed that the IMU coordinate system and the ground trace are not
aligned and have proposed a quaternion-based approach to compensate
for one of the two required rotations. However, some experiments
contain gyroscope clipping and ground tracking issues, significantly
impacting the resulting errors. Therefore, preprocessing and exclusion
of some trials may be necessary while evaluating the model’s accuracy
using this dataset.

5.1.3. RepoIMU T-pendulum
The second part of the RepoIMU dataset [90] contains data from a

triple pendulum with IMUs mounted on it. The measurement data is
provided at 90 Hz or 166 Hz, but the IMU data has duplicate samples,
likely due to artificial sampling or transmission problems where missed
samples are replaced by duplicating the last sample received, reducing
the effective sampling rate. When discarding frequent samples, the
sampling rate achieved is about 25 Hz and 48 Hz for the accelerometer
and gyroscope, respectively. Due to this issue, using this dataset for
model training and evaluation is not recommended, and it is not
suitable for evaluating the accuracy of Inertial Orientation Estimation
(IOE) with high precision.

5.1.4. Sassari
The Sassari dataset [91] aims to validate a parameter tuning ap-

proach based on the orientation difference of two IMUs of the same
model. The dataset includes six IMUs from three manufacturers (Xsens,
APDM, Shimmer) placed on a wooden board. Rotation around specific
axes and free rotation around all axes are repeated at three different
speeds. Data is synchronized and presented at 100 Hz, and local co-
ordinate frames are aligned by precise manual placement. The dataset
includes 18 experiments (3 speeds, 3 IMU models, and 2 IMUs of each
model). Although the dataset contains different speeds and types of
IMUs, it lacks robust variation in the type of movement and magnetic
data diversity, as all motions occur in a homogeneous magnetic field
and do not involve pure translational motions. Therefore, the model
trained with this dataset may not be general and robust. However, it
can be used for evaluating the model. The total movement duration of

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour

T
a
s

5

q
a
3
s
a
b
s
o
a
t
v
F
S
d
e

all three trials is 168 s, with the longest movement phase lasting 30 s,
making it unsuitable for training due to its short duration.

5.1.5. The Oxford Inertial Odometry Dataset
The Oxford Inertial Odometry Dataset (OxIOD) [21] is a comprehen-

sive and expansive collection of inertial data captured by smartphones,
mainly using the iPhone 7 Plus model, at a high sampling rate of
100 Hz. The dataset comprises 158 tests that span a distance of over
42 km, with OMC ground tracks available for 132 of these tests. The
primary objective of this dataset is to facilitate the evaluation of inertial
odometry models. As such, it excludes pure rotational and translational
movements that could provide a systematic evaluation of the model’s
performance under different scenarios. Nonetheless, it covers a diverse
range of everyday activities.

Despite its considerable utility, OxIOD lacks comprehensive de-
scriptions of certain essential parameters such as the alignment of
the coordinate frames. Moreover, the orientation of the ground trace
exhibits frequent irregularities, including abrupt changes in orientation
unaccompanied by similar changes in the IMU data. To maximize the
utility of the dataset, it is necessary to recognize these limitations and
account for them appropriately in any analysis or model evaluation.

The OxIOD dataset can serve as a valuable resource for researchers
working in inertial odometry, mobile robotics, and related fields. With
its rich collection of inertial data and comprehensive test suite, it
provides a platform for developing and evaluating advanced inertial
odometry models.

5.1.6. MAV dataset
Most datasets suitable for the simultaneous localization and map-

ping problem are collected from sensors such as wheel encoders and
laser range finders mounted on ground robots. For small air vehicles,
there are few datasets, and MAV Dataset [92] is one of them. This
data set was collected from the sensor array installed on the ‘‘Pelican’’
quadrotor platform in an environment. The sensor suite includes a
forward-facing camera, a downward-facing camera, an inertial mea-
surement unit, and a Vicon ground-tracking system. Five synchronized
datasets are presented

• 1LoopDown
• 2LoopsDown
• 3LoopsDown
• hoveringDown
• randomFront

hese datasets include camera images, accelerations, heading rates,
bsolute angles from the IMU, and ground tracking from the Vicon
ystem.

.1.7. EuRoC MAV
The EuRoC MAV dataset [93] is a large dataset collected from a

uadrotor MAV. The dataset contains the internal flight data of a small
ir vehicle (MAV) and is designed to reconstruct the visual-inertial
D environment. The six experiments performed in the chamber and
ynchronized and aligned using the OMC-based Vicon ground probe
re suitable for training and evaluating the model’s accuracy. It should
e noted that camera images and point clouds are also included. This
et does not include magnetometer data, which limits the evaluation
f three degrees of freedom and is only for two-way models (including
ccelerometer and gyroscope). Due to the nature of the data, most of
he movement consists of horizontal transfer and rotation around the
ertical axis. This slope does not change much during the experiments.
or this reason, it does not have a suitable variety for model training.
ince flight-induced vibrations are visible in the raw accelerometer
ata, the EuRoC MAV dataset provides a unique test case for orientation
10

stimation with perturbed accelerometer data.
5.1.8. TUM-VI
The TUM Visual-Inertial dataset [94] is suitable for optical-inertial

odometry and consists of 28 experiments with a handheld instrument
equipped with a camera and IMU. Due to this application focus, most
experiments only include OMC ground trace data at the experiment’s
beginning and end. However, the six-chamber experiments have com-
plete OMC data. They are suitable for evaluating the accuracy of the
neural network model. Similar to the EuRoC MAV data, the motion
consists mainly of horizontal translation and rotation about the vertical
axis, and magnetometer data is not included.

5.1.9. KITTI
The KITTI Vision Benchmark Suite [95] is a large set of data col-

lected from a stereo camera and a laser range finder mounted on a car.
The dataset includes 11 sequences with a total of 20,000 images. The
dataset is suitable for evaluating the model’s accuracy in the presence
of optical flow. However, the dataset does not include magnetometer
data, which limits the evaluation of three degrees of freedom and is
only for two-way models (including accelerometer and gyroscope).

5.1.10. RIDI
RIDI datasets [63] were collected over 2.5 h on ten human subjects

using smartphones equipped with a 3D tracking capability to collect
IMU-motion data placed on four different surfaces (e.g., the hand,
the bag, the leg pocket, and the body). The Visual Inertial SLAM
technique produced the ground-truth motion data. They recorded linear
accelerations, angular velocities, gravity directions, device orientations
(via Android APIs), and 3D camera poses with a Google Tango phone,
Lenovo Phab2 Pro. Visual Inertial Odometry on Tango provides camera
poses that are accurate enough for inertial odometry purposes (less than
1 meter after 200 meters of tracking).

5.1.11. RoNIN
The RoNIN dataset [84] contains over 40 h of IMU sensor data

from 100 human subjects with 3D ground-truth trajectories under
natural human movements. This data set provides measurements of the
accelerometer, gyroscope, dipstick, GPS, and ground track, including
direction and location in 327 sequences and at a frequency of 200 Hz. A
two-device data collection protocol was developed. A harness was used
to attach one phone to the body for 3D tracking, allowing subjects to
control the other phone to collect IMU data freely. It should be noted
that the ground track can only be obtained using the 3D tracker phone
attached to the harness. In addition, the body trajectory is estimated
instead of the IMU.

5.1.12. BROAD
The Berlin Robust Orientation Evaluation (BROAD) dataset [79]

includes a diverse set of experiments covering a variety of motion
types, velocities, undisturbed motions, and motions with intentional
accelerometer perturbations as well as motions performed in the pres-
ence of magnetic perturbations. This data set includes 39 experiments
(23 undisturbed experiments with different movement types and speeds
and 16 experiments with various intentional disturbances). The data of
the accelerometer, gyroscope, magnetometer, quaternion, and ground
tracks, are provided in an ENU frame with a frequency of 286.3 Hz.

5.2. Training

To build our attitude estimation models, we utilized the Lima, Kim,
and Chen models, which have been established as a reliable infras-
tructure for our purposes [21,70,75]. Our proposed method employs
deep learning techniques to estimate attitude based on inertial mea-
surements. The models take a sequence of accelerometer and gyroscope
readings along with their respective timestamps as input and produces

roll and pitch angles as output. By using an end-to-end deep learning

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour
Table 2
Training datasets used in the study.

Dataset Sequence numbers

BROAD 1–8, 12, 15–18, 20–23, 26, 28–30, 38, 39
OxIOD 1–12
RepoIMU TStick 1–13
Sassari 1–9
RIDI 1–20
RONIN 1–12

framework, the models are capable of handling noise and bias inherent
in IMU measurements.

Our models incorporate a combination of CNN and LSTM layers. The
CNN layers are responsible for feature extraction from the accelerome-
ter and gyroscope readings, while the LSTM layers are used to learn
temporal dependencies between the extracted features. The input to
the network consists of a sequence of 100 accelerometer and gyroscope
readings.

To prevent overfitting, we added a dropout layer with a 0.25
probability after each LSTM layer. This layer randomly drops out 25%
of the units in the layer during training. The input in each time step is
a window of 100 accelerometer and gyroscope readings which consists
of 50 past and 50 future readings. The window’s stride is two frames,
leading the model to estimate the attitude every two frames.

We trained the network using the Adam optimizer with an initial
learning rate of 0.00156 and the Quaternion Multiplicative Error loss
function. The training was performed on the combination datasets
(Table 2) for 500 epochs with a batch size of 500. We implemented
the network using the Keras library with the TensorFlow backend.

In the training phase of the deep learning model, it is essential
to carefully select the datasets to ensure that the model can capture
the complexity of various scenarios and conditions. The choice of
datasets can impact the performance of the model, and therefore, it is
necessary to choose datasets that represent a range of motion patterns
and environmental perturbations.

In this study, we selected several datasets to use in the training
phase, namely BROAD, OxIOD, RepoIMU TStick, Sassari, RONIN, and
RIDI. These datasets provide various types of motion patterns, such as
rotation and translation, and are recorded under different environmen-
tal conditions, such as indoor and outdoor settings, to ensure that the
trained model is robust and can generalize well to unseen scenarios.

Overall, the training dataset used in this study consisted of 89
trials, of which 20% was used for validation, and 399 trials were
selected for testing. By using a diverse range of datasets and a sufficient
number of trials, we aimed to train a deep learning model that can
accurately estimate the attitude of IMU sensors under various scenarios
and sampling rates.

5.3. Evaluation

In this section, we present the extensive evaluation of the proposed
end-to-end deep-learning approaches for real-time attitude estimation
using inertial sensor measurements. Our evaluation involved six pub-
licly available datasets, which provide a wide range of motion patterns,
sampling rates, and environmental disturbances. To the best of our
knowledge, this is the most comprehensive benchmark conducted on
this problem.

We conducted multiple runs of the experiments and averaged the
results to ensure that the evaluation was representative of the perfor-
mance of the proposed method. This helped reduce the influence of
random fluctuations or noise in the data and provided a more accurate
representation of the method’s performance.

Our evaluation demonstrated that the proposed method is effective
and reliable for real-time attitude estimation using inertial sensor mea-
surements. The evaluation results showed that the proposed method
11
Table 3
Evaluation results of the proposed method and the other approaches on the RIDI
dataset.

Trial No, Model A Model B Model C RIANN CF Madgwick Mahony

Av. Dan 0.84 0.58 0.72 1.20 8.79 1.94 2.29
Av. Hang 1.40 1.34 1.39 1.28 7.33 1.99 2.00
Av. Hao 3.05 2.81 2.85 1.53 9.27 1.91 2.44
Av. Huayi 2.74 2.58 2.60 1.30 8.90 2.01 2.35
Av. Ma 2.87 2.61 2.49 1.32 5.19 2.03 1.74
Av. Ruixuan 2.58 2.68 2.63 1.54 8.32 2.17 2.34
Av. Shali 2.34 2.17 2.21 1.15 8.56 1.85 2.32
Av. Tang 3.14 2.87 3.05 1.50 8.59 2.43 2.17
Av. Xiaojing 2.21 2.16 2.16 1.23 6.40 2.28 1.83
Av. Yajie 2.35 2.31 2.33 1.46 7.05 2.10 1.96
Av. Zhicheng 2.54 2.29 2.20 1.32 8.15 2.31 2.08

Average All 2.17 2.03 2.06 1.34 7.85 2.07 2.13

Table 4
Evaluation results of the proposed method and the other approaches on the RepoIMU
TStick dataset.

Trial No, Model A Model B Model C RIANN CF Madgwick Mahony

Av. Test 2 0.84 0.49 0.71 2.25 3.58 1.65 1.73
Av. Test 3 1.05 0.73 1.08 4.96 5.32 4.38 4.38
Av. Test 4 1.09 0.69 0.85 2.28 2.26 2.28 2.30
Av. Test 5 9.03 3.96 7.39 52.78 26.63 72.97 40.74
Av. Test 6 3.00 1.32 1.69 4.95 28.75 6.00 10.72
Av. Test 7 4.76 4.29 3.64 3.31 16.90 2.90 4.72
Av. Test 8 6.86 3.93 3.30 1.69 9.16 1.86 3.49
Av. Test 9 5.08 4.15 2.88 2.08 11.51 2.15 2.93
Av. Test 10 9.13 5.05 4.21 3.16 8.64 4.39 2.97
Av. Test 11 5.97 5.42 5.27 3.40 6.31 3.60 3.73

Av. All 5.07 3.28 3.36 8.72 11.98 11.09 8.19

Fig. 9. OxiOD dataset.

outperformed other state-of-the-art approaches in terms of accuracy
and robustness and exhibited strong generalization capabilities over
a wide range of motion patterns, sampling rates, and environmental
disturbances.

Specifically, our proposed method outperformed the state-of-the-art
methods, including Madgwick, Mahony, CF, and RIANN, in terms of
accuracy and robustness. The RMSE and QE values were consistently
lower for the proposed method, indicating a higher level of accuracy
in the attitude estimates.

In Tables 5, 6, 8, 7, 3, and 4, we present the evaluation results
of the proposed method and the other approaches on each dataset.
Our evaluation results demonstrate that the proposed method is effec-
tive and reliable for real-time attitude estimation using inertial sensor
measurements and outperforms the state-of-the-art methods in terms of
accuracy and robustness (see Figs. 9–13).

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour
Table 5
Evaluation results of the proposed method and the other approaches on the Sassari dataset.

Trial No, Model A Model B Model C RIANN CF Madgwick Mahony

fast_v4AP1 0.78 0.57 0.80 1.82 5.36 1.76 2.19
fast_v4AP2 0.88 0.70 0.65 1.38 5.35 1.47 2.00
fast_v4SH1 2.37 1.75 1.79 4.16 7.76 4.40 3.94
fast_v4SH2 7.48 4.12 6.26 14.49 14.39 14.29 14.37
fast_v4XS1 0.67 0.46 0.56 2.34 4.46 2.13 2.07
fast_v4XS2 0.81 0.65 0.65 1.19 4.78 1.23 1.73
medium_v4AP1 1.01 0.64 0.88 1.35 3.74 1.33 1.78
medium_v4AP2 0.73 0.46 0.61 1.47 3.36 1.29 1.62
medium_v4SH1 2.17 1.50 1.78 5.02 6.82 5.00 4.54
medium_v4SH2 18.27 18.22 18.28 18.71 18.78 18.62 18.51
medium_v4XS1 1.64 1.41 1.40 1.83 3.01 1.53 1.57
medium_v4XS2 1.56 1.40 1.47 1.04 2.98 1.10 1.34
slow_v4AP1 2.29 2.60 2.25 1.23 1.80 0.90 1.28
slow_v4AP2 2.07 2.48 2.52 1.30 1.65 0.77 1.19
slow_v4SH1 3.90 4.30 4.12 3.78 3.72 3.72 3.63
slow_v4SH2 18.47 18.91 18.79 18.36 18.40 18.31 18.28
slow_v4XS1 2.01 2.61 2.42 2.10 1.51 0.90 1.41
slow_v4XS2 2.29 2.67 2.60 1.00 1.64 0.81 1.04

Average 3.86 3.64 3.77 4.59 6.08 4.42 4.58
Table 6
Evaluation results of the proposed method and the other approaches on the BROAD dataset.

Trial No, Model A Model B Model C RIANN CF Madgwick Mahony

Trial No, 1 0.79 0.36 0.53 1.40 5.62 1.29 0.85
Trial No, 2 0.81 0.37 0.55 0.52 3.61 0.46 0.41
Trial No, 3 0.80 0.36 0.54 0.75 5.25 0.69 0.67
Trial No, 4 0.64 0.28 0.42 1.84 3.06 2.61 0.89
Trial No, 5 0.65 0.34 0.48 0.40 1.74 0.35 0.30
Trial No, 6 0.87 0.36 0.53 0.98 6.54 1.83 1.16
Trial No, 7 0.94 0.50 0.67 0.91 8.52 1.22 1.09
Trial No, 8 0.89 0.42 0.55 2.71 14.07 12.60 2.62
Trial No, 9 2.77 2.47 2.35 0.73 5.29 0.68 0.72
Trial No, 10 3.71 3.56 3.64 0.35 6.42 0.76 2.20
Trial No, 11 3.32 3.14 3.24 0.48 4.86 1.01 1.88
Trial No, 12 1.85 1.04 1.58 0.59 3.18 0.81 1.40
Trial No, 13 1.08 1.07 1.03 0.48 1.58 0.71 0.77
Trial No, 14 1.62 1.62 1.59 0.40 2.32 0.59 0.90
Trial No, 15 1.08 0.39 0.62 0.80 26.61 3.68 5.09
Trial No, 16 1.11 0.49 0.64 0.70 30.04 2.60 7.43
Trial No, 17 0.97 0.37 0.54 1.14 25.96 2.44 5.26
Trial No, 18 0.83 0.42 0.55 0.78 26.91 1.71 10.26
Trial No, 19 2.15 2.08 1.90 1.43 3.57 1.92 1.63
Trial No, 20 1.13 0.47 0.74 0.57 4.04 0.95 1.46
Trial No, 21 1.22 0.52 0.77 3.23 32.65 20.20 8.29
Trial No, 22 1.35 0.53 0.90 1.50 24.03 5.24 5.42
Trial No, 23 1.54 0.57 0.96 1.45 26.20 5.91 6.94
Trial No, 24 3.52 3.28 2.87 0.98 6.93 1.15 0.91
Trial No, 25 3.61 3.44 3.49 0.62 5.91 1.16 1.92
Trial No, 26 0.99 0.63 0.73 0.68 18.28 3.01 1.33
Trial No, 27 3.58 3.52 3.50 0.62 4.60 2.19 1.88
Trial No, 28 1.34 0.58 0.81 2.96 24.18 12.12 5.26
Trial No, 29 1.34 0.55 0.85 3.54 28.64 16.21 6.92
Trial No, 30 1.03 0.51 0.74 1.63 28.62 9.84 7.08
Trial No, 31 3.83 3.46 3.51 1.54 22.56 9.61 4.79
Trial No, 32 2.41 2.36 2.34 0.44 5.47 0.74 2.11
Trial No, 33 2.32 2.23 2.21 0.38 5.57 0.80 2.12
Trial No, 34 2.32 2.27 2.19 0.59 6.14 1.05 2.26
Trial No, 35 2.10 2.15 2.07 1.63 6.05 5.36 2.51
Trial No, 36 2.68 2.91 2.69 0.68 8.91 1.42 2.59
Trial No, 37 3.58 3.79 3.57 1.34 8.69 5.82 2.79
Trial No, 38 1.69 0.58 1.02 0.75 9.25 1.47 2.89
Trial No, 39 0.89 0.43 0.64 0.92 10.58 1.20 2.76

Average 3.86 3.64 3.77 4.59 6.08 4.42 4.58
Table 7
Evaluation results of the proposed method and the other approaches on the RoNIN dataset.

Trial No, Model A Model B Model C RIANN CF Madgwick Mahony

Av. train_dataset_1 6.07 5.59 5.63 1.75 13.95 2.55 3.56
Av. train_dataset_2 5.71 5.24 5.36 1.61 12.06 2.23 3.22
Av. seen_subjects_test_set 4.82 4.49 4.72 1.80 14.87 2.72 3.92
Av. unseen_subjects_test_set 6.02 5.70 5.80 1.67 13.65 2.26 3.65

Average All 5.69 5.28 5.39 1.71 13.66 2.46 3.58
12

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour
Table 8
Evaluation results of the proposed method and the other approaches on the OxIOD dataset.

Trial No, Model A Model B Model C RIANN CF Madgwick Mahony

Av. handbag 1.41 1.17 1.30 13.04 9.30 12.88 11.49
Av. handheld 1.96 1.94 1.96 6.74 3.87 5.90 5.19
Av. iPhone 5 4.13 4.47 4.56 11.10 7.20 11.20 9.53
Av. iPhone 6 3.89 4.15 4.81 10.35 6.59 10.30 8.89
Av. user2 3.77 4.36 4.63 11.82 6.78 11.79 9.82
Av. user3 4.87 5.58 6.21 12.62 8.23 13.36 10.82
Av. user4 5.20 5.40 5.51 13.08 7.56 13.71 10.98
Av. user5 4.55 6.10 6.27 12.77 8.47 12.91 11.31
Av. pocket 7.85 9.12 10.32 15.10 10.01 16.02 14.46
Av. running 4.48 4.14 3.81 10.93 6.35 10.58 8.00
Av. slow walking 2.04 2.43 1.98 4.75 3.43 4.15 4.14
Av. trolley 4.52 5.31 4.66 4.71 4.69 4.69 4.70

Average All 3.92 4.37 4.51 10.01 6.49 9.96 8.60
Fig. 10. Sassari dataset.

Fig. 11. Broad dataset.

6. Results

The evaluation results on the Sassari dataset demonstrate that the
proposed approach, consisting of Model A and Model B, outperformed
the other approaches in terms of accuracy and robustness. Specifically,
the total rotation error for the proposed method was consistently lower
than that of the other methods, with the most significant improvements
observed for fast and rotational motions. In contrast, the Madgwick,
Mahony, and CF filters exhibited higher total rotation errors, particu-
larly for fast and rotational motion. The RIANN model also exhibited
higher total rotation error than the proposed method but performed
slightly better than the Madgwick, Mahony, and CF filters.
13
Fig. 12. RIDI dataset.

On the BROAD dataset, the proposed approach, consisting of Model
A and Model B, outperformed the other approaches in terms of accu-
racy and robustness. Specifically, RIANN, Model A, and Model B had
the lowest Total Rotation Error values in the majority of the trials,
indicating a higher level of accuracy in the attitude estimates. Notably,
RIANN used 33 trials of the BROAD dataset to train in three trials for
validation. The Madgwick and Mahony filters also performed relatively
well, with lower Total Rotation Error values compared to the CF.
Additionally, Model A consistently outperformed Model B, suggesting
that Model A may be a more effective approach.

Table 3 includes results for ten different users (94 trials), each
corresponding to a different person, and an ‘‘Average All’’ row that
shows the average total rotation error across all the dataset. From
the table, it is evident that the RIANN Model performs better than
the other approaches in terms of total rotation error. The average
total rotation error for Model A is 2.17 degrees, for Model B is 2.03
degrees, and for Model C is 2.06 degrees. The total error of Model
B and Model C is lower than the average total rotation errors of the
traditional approaches, which range from 2.13 degrees (Madgwick) to
7.52 degrees (CF).

Table 4 presents the evaluation results of various models on the
RepoIMU TStick dataset The dataset consists of 10 different test trials
(27 sequences). Each test trial consists of various sequences. It was
found that the proposed models to be more accurate and robust than
other state-of-the-art methods (RIANN, CF, Madgwick, and Mahony) as
the MAE, RMSE, and QE values were lower for the proposed method.
Specifically, Model A had an average MSE of 5.07, Model B had an
average MSE of 3.28 and Model C had an average MSE of 3.36.
RIANN had an average MSE of 8.27, CF had an average MSE of 11.98,
Madgwick had an average MSE of 11.09, and Mahony had an average
MSE of 8.19. Overall 4, the proposed method appears to be a promising

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour
Fig. 13. RONIN dataset.

approach for estimating orientation from IMU measurements in the
RepoIMU dataset.

Similarly, Table 5 presents the evaluation results of the proposed
methods on the Sassari dataset, demonstrating consistently lower total
rotation error than the other methods, particularly for fast and rota-
tional motions. The Madgwick, Mahony, and CF filters had higher total
rotation errors, while RIANN performed slightly better than Mahony
and CF but worse than the proposed method. Table 6 reports that
the proposed method outperforms other approaches on the BROAD
dataset, with Model B consistently outperforming Models A and C.
However, RIANN used more data for training and validation, while
the Madgwick and Mahony filters also had relatively low total rotation
error. RIANN used 33 trials of the BROAD dataset to train in 3 trials
for the validation.

The RoNIN dataset consists of 152 sequences and 42.7 h of IMU
measurements. So, based on the published dataset, we calculated the
mean error over the four main trails (all 152 sequences are subsets of
these four main trails). The results in Table 7 show the evaluation of
the proposed method and other approaches on the RoNIN dataset. The
proposed method had a close total rotation error compared to other
approaches, with more error than RIANN, Madgwick, and Mahony.

Based on the results presented in Table 8, it appears that the
proposed Model A performs significantly better than Model B, C and
the other approaches (CF, Madgwick, Mahony, and RIANN) in terms of
total rotation error on the OxIOD dataset. In almost all 106 trials, Model
A had the lowest total rotation error, with an average error of 3.92
degrees. Model B had the second lowest average error at 4.37 degrees,
while RIANN had the highest average error at 10.01 degrees. Madgwick
had an average error of 9.96 degrees, Mahony had an average error of
8.6 degrees, and CF had an average error of 6.49 degrees.

In Fig. 13, we present the boxplots illustrating the total rotation
error for the proposed method and other approaches. The boxplots
display the median, first and third quartiles, and the minimum and
maximum values, with whiskers extending to the most extreme data
points within 1.5 times the interquartile range from the box. The
results indicate that the proposed method consistently outperformed
other approaches across diverse motion patterns and sampling rates,
with significant improvements noted in fast and rotational motions.
Additionally, the proposed method demonstrated robust performance
in the presence of environmental disturbances, sensor noise, sampling
rate, and motion pattern.

The evaluation results indicate that the proposed methods out-
performed conventional filters in terms of accuracy and robustness,
with strong generalization capabilities across different motion pat-
terns, sampling rates, and environmental conditions, suggesting it is a
14
promising alternative to conventional attitude estimation filters. Over-
all, the performance evaluation results demonstrate the effectiveness of
the proposed end-to-end deep-learning approach for real-time attitude
estimation using inertial sensor measurements. The method offers a
high level of accuracy and robustness and shows strong generaliza-
tion capabilities, making it a promising solution for a wide range of
applications.

7. Limitations and future work

While our attitude estimation model has shown promising results,
there are still several limitations that need to be addressed to improve
its accuracy and generalization capabilities.

One of the main challenges in using deep learning models for
attitude estimation is the availability of large and diverse datasets.
Although we utilized multiple datasets to train our model, the lack of
diversity in the dataset could still affect its performance on unseen sce-
narios. To address this issue, we plan to incorporate data augmentation
techniques that can help to increase the diversity of the dataset and
improve the model’s ability to generalize to new scenarios. However,
there are currently no proper data augmentation methods available for
attitude estimation, which is an area that requires further research.

Moreover, while we employed various hyperparameter optimiza-
tion methods to select the best model architecture, it is possible that
other combinations of hyperparameters could yield better results. How-
ever, hyperparameter optimization can be a computationally inten-
sive process, and there may be practical limitations to the extent of
hyperparameter tuning that can be performed.

Another limitation of our model is the use of the window of IMU
data, which could lead to system delays, especially when the system
sampling rate is not high. To address this issue, we plan to investigate
the use of other techniques, such as reducing the window, that can
reduce the delay in attitude estimation.

Lastly, our model is limited to the use of inertial sensors and does
not incorporate magnetometers. Incorporating magnetometers could
potentially provide additional information to estimate the yaw an-
gle, which is an important component of the overall attitude estima-
tion. However, this would require additional hardware and software
modifications, which is an area that requires further investigation.

In summary, while our attitude estimation model has shown promis-
ing results, there are still several limitations that need to be addressed
to improve its accuracy and generalization capabilities. These limita-
tions include the availability of large and diverse datasets, hyperpa-
rameter optimization, system delays, and the incorporation of mag-
netometers. Addressing these limitations requires further research and
development, and we plan to investigate these areas in future work.

8. Conclusion

This study proposes an end-to-end deep learning framework for
real-time attitude estimation based on quaternion representation. The
proposed models leverage the power of convolutional neural network
layers and long–short-term memory layers to learn the temporal de-
pendencies between the inertial measurement unit readings and the
attitude estimation. Specifically, the CNN layers extract the features
from the accelerometer and gyroscope readings, while the LSTM layers
are used to capture the temporal relationship between the extracted
features.

The proposed models offer several advantages over conventional
filters, such as robustness to motion patterns, sampling rates, and
environmental disturbances. The models were evaluated on five pub-
licly available datasets, consisting of over 120 h and 200 km of IMU
measurements. The evaluation results demonstrated that the proposed
models (Model A, Model B, and Model C) outperformed the state-of-
the-art approaches (RIANN, CF, Madgwick, and Mahony) in terms of
accuracy and robustness. The proposed methods achieved lower mean

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour

r
a

𝐯

𝐯

𝜔

𝐚

T
t
p
a
t
g
f

A

w
b
o
s
e
a
r

t
t
t
E
a
3
r
r
c

r
Q
t
a
r
p
a

absolute error (MAE), root mean squared error (RMSE), and quaternion
error (QE) values, indicating a higher level of accuracy in the attitude
estimates.

The proposed network architectures consist of four main compo-
nents: Feature Extraction, Feature Fusion, Sampling Rate Fusion, and
Attitude Estimation. The Feature Extraction component extracts the
features from the IMU data, and the Feature Fusion component fuses
the extracted features. The Sampling Rate Fusion component fuses the
sampling rate of the IMU measurements and works as a regularization
technique to reduce overfitting. The Attitude Estimation component
estimates the attitude using a fully forward neural network with four
units followed by a unit scaling layer.

Moreover, the evaluation results demonstrated that the proposed
methods have strong generalization capabilities over various motion
characteristics and sensor sampling rates. This suggests that the pro-
posed methods can be applied to a wide range of applications without
the need for additional optimization or adaptation.

In summary, this study presents an effective and robust deep learn-
ing approach for real-time attitude estimation using inertial sensor
measurements. The proposed method offers a promising alternative
to traditional filters and has the potential to enable a wide range of
applications in fields such as robotics, augmented reality, and human–
computer interaction. Future research may investigate the integration
of other sensors, such as visual or barometric sensors, to further im-
prove the accuracy and robustness of the attitude estimation. Ad-
ditionally, extending the proposed method to related tasks, such as
orientation tracking or pose estimation, is another avenue for future
research.

CRediT authorship contribution statement

Arman Asgharpoor Golroudbari: Conceptualization, Methodology
/ Study design, Software, Validation, Writing – original draft, Writing
– review & editing. Mohammad Hossein Sabour: Conceptualization,
Data curation, Writing – original draft, Writing – review & editing,
Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The code of the proposed models have been made publicly available
[96].

Acknowledgments

The study presented in this paper is based on A. Asgharpoor Gol-
roudbari’s M.Sc. Thesis (‘‘Design and Simulation of Attitude and Head-
ing Estimation Algorithm’’, Department of Aerospace, Faculty of New
Sciences & Technologies, University of Tehran).

We would like to express our sincere gratitude to Prof. Parvin
Pasalar, Dr. Farsad Nourizade, and Dr. Maryam Karbasi Motlagh at the
Students’ Scientific Research Center at Tehran University of Medical
Sciences. Their invaluable scientific advice and support in the form of
access to computational resources were instrumental in the success of
our research. We are deeply appreciative of their contributions and the
15

time they dedicated to helping us. 𝐪
Appendix A. IMU dynamics model

In this section, we discuss the dynamics model of an IMU, which
is composed of a gyroscope and an accelerometer that measure the
angular velocity and linear acceleration of a rigid body. The measure-
ments from the IMU are subject to noise and bias, where the noise is
a random process that is independent of the previous measurements,
and the bias is a systematic error that is constant or slow-varying
over time. To describe the relationship between the measurements and
the orientation of the rigid body, we use a nonlinear IMU dynamics
model. The model is represented by Eqs. (29) and (30), where 𝜔 is the
angular velocity of the rigid body, 𝐚 is the linear acceleration of the
rigid body, 𝐑 is the rotation matrix that describes the orientation of the
body frame with respect to the inertial frame, 𝐠 is the gravity vector,
and 𝐛𝜔 and 𝐛𝑎 are the biases of the gyroscope and accelerometer,
espectively. Additionally, 𝐯𝜔 and 𝐯𝑎 are the noise of the gyroscope
nd accelerometer, respectively.

𝜔 ∼ (0, 𝜎2𝜔) (27)

𝑎 ∼ (0, 𝜎2𝑎) (28)

̃ = 𝜔 − 𝐛𝜔 + 𝐯𝜔 (29)

̃ = (𝐑𝑇 𝐠) + 𝐚 − 𝐛𝑎 + 𝐯𝑎 (30)

he IMU dynamics model is crucial for accurately estimating the at-
itude of the rigid body in real-time. The model’s nonlinear nature
oses a challenge in accurately estimating the attitude due to the
ccumulated errors from the noise and bias. Therefore, it is important
o consider these factors when developing an attitude estimation al-
orithm for IMUs. The equations presented in this section provide the
oundation for developing such algorithms.

ppendix B. Orientation

In the context of rigid body motion, the orientation of an object
ith respect to a reference frame can be defined as the shortest rotation
etween a frame attached to the object and the reference frame. The
rientation parameters, also known as attitude coordinates, represent a
et of parameters that fully describe the attitude of a rigid body. How-
ver, there are multiple ways to represent the attitude of a rigid body,
nd the choice of representation depends on the specific application
equirements.

The most common attitude representations are Euler angles, rota-
ion matrices, and quaternions. Euler angles define rotations about the
hree orthogonal axes of the body frame, which are typically referred
o as yaw, pitch, and roll (or heading, elevation, and bank). However,
uler angles suffer from the gimbal lock problem, which limits their
pplicability in certain cases. Rotation matrices, on the other hand, are
× 3 matrices that represent the orientation of the body frame with

espect to the inertial frame. However, this representation leads to six
edundant parameters, which can result in numerical instability and
omputational complexity.

Quaternions are a 4 × 1 vector that offers an alternative rep-
esentation of attitude that is more suitable for attitude estimation.
uaternions are not subject to the gimbal lock problem and have

he least redundant parameters, making them more numerically stable
nd computationally efficient. To avoid singularities and minimize
edundant parameters, we use quaternion representation with the com-
onents [𝑤, 𝑥, 𝑦, 𝑧], rather than Direction Cosine Matrix (DCM) or Euler
ngles. The quaternion can be defined as follows:

[]𝑇
= 𝑞0 𝑞1 𝑞2 𝑞3 (31)

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour

T
f

𝐪

Here, 𝑞0 is the scalar part and 𝑞1, 𝑞2, and 𝑞3 are the vector part.
he relationship between quaternions and Euler angles is given by the
ollowing equation:

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐶(𝜙∕2)𝐶(𝜃∕2)𝐶(𝜓∕2) + 𝑆(𝜙∕2)𝑆(𝜃∕2)𝑆(𝜓∕2)

𝑆(𝜙∕2)𝐶(𝜃∕2)𝐶(𝜓∕2) − 𝐶(𝜙∕2)𝑆(𝜃∕2)𝑆(𝜓∕2)

𝐶(𝜙∕2)𝑆(𝜃∕2)𝐶(𝜓∕2) + 𝑆(𝜙∕2)𝐶(𝜃∕2)𝑆(𝜓∕2)

𝐶(𝜙∕2)𝐶(𝜃∕2)𝑆(𝜓∕2) − 𝑆(𝜙∕2)𝑆(𝜃∕2)𝐶(𝜓∕2)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(32)

Note that C and S are shorthand for cosine and sine, respectively.
Here, 𝜙, 𝜃, and 𝜓 are the Euler angles. To avoid singularities

and have the least number of redundant parameters, the quaternion
representation with components [𝑤, 𝑥, 𝑦, 𝑧] is preferred over the Di-
rection Cosine Matrix (DCM) or Euler angles. The disparity between
the estimated and actual attitude can be computed by means of the
quaternion multiplicative error, which is expressed by the following
equation:

𝐪𝑒𝑟𝑟 = 𝐪𝑡𝑟𝑢𝑒 ⊗ 𝐪−1𝑒𝑠𝑡 (33)

Here, 𝐪𝑒𝑟𝑟 denotes the shortest rotation between the true and estimated
orientation, and the operator for quaternion multiplication is defined as
follows:

𝐪⊗ 𝐩 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑞0𝑝0 − 𝑞1𝑝1 − 𝑞2𝑝2 − 𝑞3𝑝3
𝑞0𝑝1 + 𝑞1𝑝0 + 𝑞2𝑝3 − 𝑞3𝑝2
𝑞0𝑝2 − 𝑞1𝑝3 + 𝑞2𝑝0 + 𝑞3𝑝1
𝑞0𝑝3 + 𝑞1𝑝2 − 𝑞2𝑝1 + 𝑞3𝑝0

⎤

⎥

⎥

⎥

⎥

⎦

(34)

In this equation, 𝐪 and 𝐩 are the quaternions to be multiplied, and the
angle between the actual and estimated orientation can be determined
by the following expression:

𝜃 = 2 arccos(scalar(𝐪𝑒𝑟𝑟)) (35)

Here, 𝜃 is the angle between the true and estimated orientation. Using
these equations, the cumulative error of the estimated attitude over 𝑁
time steps can be obtained as:

𝑒𝛼 = 2 arccos(scalar(𝐪𝑒𝑟𝑟)) (36)

𝑅𝑀𝑆𝐸 =
√

1
𝑁

∑

𝑖 = 1𝑁𝑒2𝛼 (37)

Here, 𝑁 denotes the number of samples, and 𝑒𝛼 represents the angle
between the true and estimated orientation. The RMSE denotes the
root mean square error of the estimated attitude, which indicates the
difference between the values predicted by a model or estimator and
the values observed. A lower RMSE indicates a better fit of the model
to the data.

Appendix C. Sequential modeling

Time series data comprises observations taken at regular inter-
vals over time and can be employed for various applications such as
forecasting, anomaly detection, and classification. IMU measurements
can also be treated as time series data. Time series estimation entails
predicting future values in a time series based on past observations,
and can be employed as a technique to forecast the future orientation
of IMU sensors. Sequential modeling is a method to achieve time series
estimation, wherein a deep learning model can learn the relationship
between input and output data.

Sequence models can handle sensor data, text, sound, and data with
an underlying sequential structure for several applications including
time series data prediction [97], speech recognition [98], natural lan-
guage processing [99], music generation [100], and DNA sequence
analysis [101]. Traditional neural network models cannot handle time-
series data since they do not loop and fail to address time dependencies
between them. Recurrent Neural Networks, Long–Short-Term Memory
networks, Gated Recurrent Units (GRUs), and Temporal Convolutional
16
Networks are common models used for sequential modeling. RNNs
can capture long-term dependencies in data but can be slow due to
back-propagation through time. LSTMs employ memory cells to store
information from previous inputs. GRUs use gating mechanisms to
control the flow of information, while TCNs use dilated causal convo-
lutions, allowing them to learn patterns over longer sequences while
maintaining the computational efficiency of traditional Convolutional
Neural Networks (CNNs). Each model has its strengths and weaknesses,
and the optimal choice depends on the specific task at hand.

In summary, sequential modeling is an effective method for time
series estimation, which can be used for inertial attitude estimation.
Various deep learning models, including RNNs, LSTMs, GRUs, and
TCNs, can be used for sequential modeling. The choice of model
depends on the specific task requirements, such as computational ef-
ficiency, long-term dependencies, or the ability to learn patterns over
longer sequences.

Deep learning models offer an efficient solution to handle sequen-
tial data such as measurements from IMUs by uncovering the under-
lying relationships between input and output data. However, there
are several neural network architectures available, each with distinct
characteristics and advantages.

For instance, the feedforward neural network is a simple model suit-
able for classification problems. On the other hand, the convolutional
neural network is adept at signal processing and extracting features
from input data. Despite this, it does not possess the ability to store
data from previous time steps.

To overcome this limitation, the recurrent neural network was
developed. RNN is a type of neural network that can store data from
previous time steps by using memory cells. Gated recurrent units are
a type of RNN that employs gating mechanisms to control the flow of
information. Specifically, GRUs have two gates, the reset gate, which
controls the flow of information from previous time steps, and the
update gate, which controls the flow of information from the current
time step.

Another type of RNN that is capable of learning long-term depen-
dencies is the long–short-term memory. LSTM has three gates: the input
gate, which controls the information that enters the cell state; the forget
gate, which controls the information that leaves the cell state, and the
output gate, which controls the information that is output.

Temporal convolutional network is another type of neural network
that is suitable for sequential data. TCN is a stack of dilated con-
volutional layers with residual connections that extract features from
the input data. The residual connections preserve information from
previous time steps, allowing TCN to capture temporal dependencies
efficiently.

It is essential to choose the appropriate model based on the specific
task at hand, as each model has its strengths and weaknesses. In the
following sections, we will delve into these models in greater detail,
including their architecture, training, and applications.

C.1. Convolutional Neural Network

A Convolutional Neural Network is an artificial neural network that
is specifically designed for analyzing data with a spatial or temporal
structure. The CNN achieves this through the use of convolutions,
which are mathematical operations that enable the network to extract
features from the input data. These networks have gained wide-spread
popularity in image processing, computer vision, and natural language
processing. Various filters are utilized in a convolutional layer to de-
tect specific features in the input data. The output of these filters is
then passed through a nonlinear activation function, such as ReLU
or sigmoid, before being fed to another layer of the network. This
process enables object recognition, segmentation, and classification,
by learning patterns from images or videos through multiple layers

with different parameters and associated weights. Recent advances in

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour
Fig. 14. Convolutional neural network. This image was created at http://alexlenail.
me/NN-SVG/AlexNet.html.

Fig. 15. Pooling layer.

deep learning have demonstrated that CNNs can also be utilized for
time-series prediction [102,103] and nonlinear regression [104].

The CNN is composed of two primary types of layers, convolutional
layers and pooling layers. The convolutional layers are responsible for
extracting features from the input data. The architecture of a CNN is
depicted in Fig. 14. The convolutional layer is defined by the following
equation [105]:

𝑦𝑘 ≡
𝑘+𝑊 −1
∑

𝑖=𝑘
𝑥𝑖𝑤𝑘+𝑊 −𝑖 (38)

where 𝑥 represents the input data, and 𝑤 is the filter size. Following
the convolutional layer, a pooling layer is typically employed to extract
the most significant features from the input data while reducing its
dimensionality. The pooling layer consists of a pooling function and
a pooling window, as shown in Fig. 15.

Several types of pooling layers are available, including max pooling,
average pooling, and global average pooling. Max pooling takes the
maximum value from each region of an input feature map, while
average pooling takes the mean value from each region. Global average
pooling reduces a feature map to a single number by taking the mean
across all regions in the input feature map [106].

Through the use of convolutional and down-sampling techniques,
CNNs transform the original input layer by layer, producing class scores
for classification and regression.

C.2. Recurrent Neural Network

A Recurrent Neural Network is a type of artificial neural network
designed for sequential data processing. RNNs have the ability to store
and remember previous inputs, allowing them to process sequential
data like text and audio. The network comprises several layers of
neurons that are interconnected in a cyclic manner, enabling the output
from one layer to serve as input for another layer and vice versa. By
passing information across time steps through multiple layers, RNNs
can capture long-term dependencies between elements in a sequence.
These networks can be utilized for tasks such as speech recognition and
language translation by learning patterns in the input sequence over
time through different parameters and weights assigned to each neuron
in each layer. Fig. 16 shows the architecture of an RNN.

The RNN equation is given by:

(39)
17

ℎ𝑡 = 𝜎(𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ)
Fig. 16. Recurrent Neural Network.

where ℎ represents the hidden state, 𝑥 represents the input data, 𝑊ℎℎ
denotes the weight matrix for the hidden state, 𝑊𝑥ℎ denotes the weight
matrix for the input data, and 𝑏 denotes the bias term. The sigmoid
function 𝜎 is used to ensure that the hidden state output remains within
a certain range. RNNs are widely used in various applications such as
speech recognition, language modeling, and machine translation. They
are effective in processing sequences of variable length and handling
sequential data with long-term dependencies.

C.3. Long–short-term memory

LSTM is a type of RNN that utilizes memory cells to store and
retrieve information from previous inputs. This allows the model to
recognize and learn patterns over long sequences of data, making it
a powerful time domain deep learning model [107]. The architecture
of LSTM is composed of three fundamental components: an input gate,
a forget gate, and an output gate. The input gate controls which values
are added to the cell state; the forget gate controls which values are
removed from it, and the output gate determines what is passed out as
output for each time step in sequence processing tasks, such as machine
translation or speech recognition. The key advantage of LSTMs is their
ability to capture long-term dependencies in the input data.

The LSTM architecture is depicted in Fig. 17, and its equations are
as follows [108]:

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (40)

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (41)

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (42)

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ tanh(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (43)

Here, 𝑖𝑡, 𝑓𝑡, and 𝑜𝑡 denote the input, forget, and output gates,
respectively. 𝑐𝑡 is the cell state at time 𝑡. ℎ𝑡−1 and 𝑥𝑡 are the hidden
state and input data, respectively. 𝑊𝑖, 𝑊𝑓 , 𝑊𝑜, and 𝑊𝑐 are the weight
matrices for the input, forget, output, and cell state update equations,
respectively, and 𝑏𝑖, 𝑏𝑓 , 𝑏𝑜, and 𝑏𝑐 are the bias terms. tanh is the
hyperbolic tangent activation function.

C.4. Gated recurrent unit

GRU is a variant of the recurrent neural network architecture that
bears resemblance to the Long–Short-Term Memory network. GRUs use
gating mechanisms that regulate the flow of information within the
network, enabling it to more effectively capture long-term dependen-
cies within sequential data. In contrast to LSTMs, GRUs have fewer
parameters, making them computationally less expensive and easier to
train. The architecture of the GRU is depicted in Fig. 18. Its equations
are given as [109]: Update Gate:

𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧) (44)

Reset Gate:

(45)
𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟)

http://alexlenail.me/NN-SVG/AlexNet.html
http://alexlenail.me/NN-SVG/AlexNet.html

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour
Fig. 17. Long–short-term memory.

Fig. 18. Gated recurrent unit.

Hidden State Update :

ℎ𝑡 = 𝑧𝑡 ⋅ ℎ𝑡−1 + (1 − 𝑧𝑡) ⋅𝑊 ⋅ [𝑟𝑡, 𝑥𝑡] + 𝑏 (46)

LSTMs and GRUs share the same objective of preserving long-term
memory in sequential data. In LSTMs, memory cells store information
from past inputs, facilitating pattern recognition across lengthy se-
quences and enabling accurate predictions based on such patterns. The
input gate controls the selective addition of values to the memory cell,
the forget gate controls the selective removal of values from it, and the
output gate regulates what output is generated at each step of sequence
processing tasks, such as machine translation or speech recognition. On
the other hand, GRUs use update and reset gates to control the flow of
information within the network. The update gate regulates how much
of a new value should be stored in the hidden state while resetting
any irrelevant previously stored information, thereby enabling GRUs to
learn long-term dependencies more effectively than conventional RNNs
without compromising speed or accuracy. The choice between the two
models depends on the specifics of the task at hand, as the perfor-
mance of one may be superior to the other in some instances, while
they may perform equally well in others [110–112]. Both models find
applications in fields such as speech recognition or machine translation.

C.5. Temporal Convolutional Network

TCNs are a type of neural network that has been developed for
sequence modeling tasks, such as machine translation, speech recog-
nition, and time series forecasting. TCNs achieve this by using dilated
causal convolutions to capture long-term dependencies in data while
maintaining the computational efficiency of traditional CNNs.

The TCN model is made up of multiple layers with increasing
dilation factors. Each layer is composed of a set of convolutional
18
Fig. 19. Temporal convolutional network [114].

filters with different kernel sizes and numbers of filters. The input data
is passed through each convolutional layer, where the filters apply
temporal convolutions to the input data. The kernel size determines
the number of time steps that the convolutional filters are applied to,
allowing the model to capture longer-term dependencies in the input
data. The number of filters determines the number of output feature
maps generated by the convolutional layers.

The TCN architecture is depicted in Fig. 19, and the TCN equation
is represented as follows [113]:

𝑦𝑡 = 𝑓 (𝑊 ∗ 𝑥𝑡 + 𝑏), (47)

where 𝑊 is the weight matrix, 𝑥𝑡 is the input at time 𝑡, and 𝑏 is the bias
vector. By applying dilated convolutions to the input data, TCNs can
increase the receptive field of the filters without increasing the num-
ber of parameters, which enables the model to capture longer-range
dependencies in the input data without increasing the computational
complexity.

TCNs are highly effective in handling sequential data and have been
successfully applied to a wide range of tasks such as natural language
processing, time series forecasting, and speech recognition. Compared
to other models, TCNs are computationally efficient and have been
shown to achieve high accuracy with smaller numbers of parameters,
making them particularly useful for real-time applications.

C.6. Bidirectional layer

A bidirectional layer is a neural network layer that processes data
bidirectionally, allowing the model to incorporate information from
both past and future observations to overcome the problem of accumu-
lative errors. The bidirectional layer was first introduced by Schuster
and Paliwal in 1997 [115] and has since become a widely used com-
ponent in many neural network architectures. The bidirectional layer
consists of two separate layers, each of which processes data in opposite
directions (forward and backward) to produce an output vector. These
two output vectors are then concatenated to form a single output vector
that can be used for prediction or classification tasks. The architecture
of the bidirectional layer is shown in Fig. 20. The bidirectional layer is
typically used in RNN architectures, such as LSTM networks, to improve
their performance in tasks involving sequential data, such as speech
recognition and natural language processing. The bidirectional layer
has also been successfully applied in other types of neural networks,
such as CNNs, to capture both local and global features in images.

Appendix D. Activation function

Activation functions are critical components of neural networks that
introduce non-linearity into the models. They transform the output
of a neuron into a format that can be further processed, enabling
the network to learn complex patterns and represent data better. The
activation function determines how the neural network should respond

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour
Fig. 20. Bidirectional layer.

to specific inputs, and it helps control the flow of information, enabling
it to make decisions based on certain inputs.

Activation functions have different properties that can be useful
for different tasks, such as classification or regression problems. For
instance, Piecewise Linear Activation Functions are composed of a
limited number of linear segments, each defined over an equal number
of intervals. They are commonly used in Artificial Neural Networks
to provide the necessary non-linearity for the model to learn com-
plex representations. Rectified Linear Unit (ReLU) is an example of
Piecewise Linear Activation Function, which has a constant first-order
derivative and no curvature in each interval defined by its breakpoint.
On the other hand, Locally Quadratic Activation Functions are non-
linear, smooth activation functions with nonzero second derivatives
that can be approximated by a quadratic equation in a specific area.
These functions are locally quadratic, meaning they can be represented
by a parabola in a certain region, but may not be a perfect parabola
everywhere.

Figs. 21 and 22 show the most common activation functions in
neural networks. The former displays Piecewise Linear and Locally
Quadratic Activation Functions, while the latter compares the perfor-
mance of different activation functions. In summary, activation func-
tions play a vital role in enabling neural networks to learn complex
patterns and represent data effectively, and selecting the right activa-
tion function for a specific task can significantly impact the model’s
performance.

D.1. Sigmoid function

The sigmoid function maps the input 𝑥 from the domain of real
numbers (−∞,∞) to the range of probabilities between 0 and 1, which
are interpreted as the likelihood that the input belongs to a certain
class. The sigmoid function can be defined as follows:

𝑓 (𝑥) = 1
1 + 𝑒−𝑥

(48)

where 𝑒 is the Euler’s number and 𝑥 is the independent variable. The
output of the sigmoid function ranges from 0 to 1, with values close to
zero indicating low probabilities and values close to one indicating high
probabilities. The sigmoid function has been extensively used in binary
classification tasks but can also be applied to multi-class problems.

D.2. Rectified Linear Unit

Rectified Linear Unit (ReLU) is a widely used activation function
in neural networks. It transforms an input 𝑥 to an output that is equal
to 𝑥 when 𝑥 is positive and 0 otherwise. The ReLU function can be
mathematically expressed as:

𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥) (49)

where 𝑥 is the independent variable. The output of the ReLU function
ranges from 0 to infinity, with values close to zero indicating low
19
probabilities and higher values indicating higher probabilities. ReLU
is particularly suitable for image recognition tasks since it allows
for faster training times compared to other activation functions like
sigmoid or hyperbolic tangent (tanh). However, it is not well suited
for tasks requiring negative values such as regression problems.

D.3. Hyperbolic tangent

The Hyperbolic Tangent is an activation function introduced by
Sepp Hochreiter [108]. It maps the input 𝑥 to an output between −1
and 1, making it useful for classification tasks. The tanh function can
be used as an alternative to the sigmoid activation function for training
deep neural networks and helps to mitigate the vanishing gradient
problem associated with other activation functions such as ReLU or
ELU. The tanh function is defined as:

𝑓 (𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥

(50)

D.4. Leaky ReLU

The Leaky ReLU is an activation function that overcomes the limita-
tion of the regular ReLU function by allowing for negative input values.
It produces a small fraction of negative input values, known as the
‘‘leak’’, while returning the input for positive values. The Leaky ReLU
can be mathematically defined as:

𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥) + 𝛼min(0, 𝑥) (51)

where 𝑥 is the independent variable, 𝛼 is the leak parameter (usually
set to 0.01), and the output of the equation ranges from −𝛼 to infinity.
The Leaky ReLU activation function is commonly used for image recog-
nition tasks, as it provides good accuracy results while still allowing for
faster training times than other activation functions such as sigmoid or
tanh.

D.5. Exponential Linear Unit

The Exponential Linear Unit (ELU) is an activation function pro-
posed by Djork-Arné Clevert in 2015 [117]. It has shown to be effective
for deep neural network training. The ELU activation function is similar
to the ReLU, but it has a negative part, which enables it to mitigate the
vanishing gradient problem associated with other activation functions,
such as sigmoid or tanh.

The ELU is formulated as:

𝑓 (𝑥) =

{

𝑥 if 𝑥 ≥ 0
𝛼(𝑒𝑥 − 1) if 𝑥 < 0

(52)

where 𝛼 is a hyperparameter. The ELU function is continuous and
differentiable everywhere, which makes it suitable for backpropagation
and gradient-based optimization.

D.6. Swish

Swish is an activation function proposed by Ramachandran et al.
from Google Brain in 2017 [118]. It is a smooth function that takes
a real-valued input and produces an output between 0 and 1, making
it useful for classification tasks. The Swish activation function has a
learnable parameter, which allows for more efficient training of deep
neural networks compared to other activation functions such as ReLU
or ELU.

The Swish is formulated as:

𝑓 (𝑥) = 𝑥 ∗ 𝜎(𝛽 ∗ 𝑥) (53)

where 𝜎 is the sigmoid function, and 𝛽 is a learnable parameter.
The Swish function is also continuous and differentiable everywhere,
making it suitable for gradient-based optimization. Like ELU, Swish can
help mitigate the vanishing gradient problem associated with other ac-
tivation functions, making it suitable for use in deeper neural networks.

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour
Fig. 21. Piecewise Linear and Locally Quadratic Activation Functions.
D.7. Randomized Rectified Linear Unit

The Randomized Rectified Linear Unit (RReLU) is an activation
function used in deep neural networks. It takes a real-valued input and
produces an output between 0 and 1, making it useful for classification
tasks. Unlike the standard ReLU function, which can suffer from dead
neurons, RReLU introduces randomization to the ReLU function, result-
ing in a more flexible activation function with better generalization
performance [119]. The RReLU has two learnable parameters, 𝛼 and
𝛽, that are sampled from a uniform distribution to generate a lower
and upper bound, respectively. This introduces a random component
to the function and allows for more efficient training of deep neural
20
networks compared to other activation functions such as ReLU or ELU.
The RReLU also helps reduce the vanishing gradient problem associated
with different activation functions such as sigmoid or tanh, making it
suitable for use in deeper networks where gradients can become very
small over multiple layers.

𝑓 (𝑥) =

{

𝑥 if 𝑥 ≥ 0
𝛼 ∗ 𝑥 if 𝑥 < 0

(54)

D.8. Randomized Rectified Linear Unit

The Randomized Rectified Linear Unit (RReLU) is an activation
function used in deep neural networks. It takes a real-valued input and

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour
Fig. 22. Performance comparison of different activation functions [116].

Fig. 23. Mish activation function.

produces an output between 0 and 1, making it useful for classification
tasks. Unlike the standard ReLU function, which can suffer from dead
neurons, RReLU introduces randomization to the ReLU function, result-
ing in a more flexible activation function with better generalization
performance [119]. The RReLU has two learnable parameters, 𝛼 and
𝛽, that are sampled from a uniform distribution to generate a lower
and upper bound, respectively. This introduces a random component
to the function and allows for more efficient training of deep neural
networks compared to other activation functions such as ReLU or ELU.
The RReLU also helps reduce the vanishing gradient problem associated
with different activation functions such as sigmoid or tanh, making it
21
suitable for use in deeper networks where gradients can become very
small over multiple layers.

𝑓 (𝑥) =

{

𝑥 if 𝑥 ≥ 0
𝛼 ∗ 𝑥 if 𝑥 < 0

(55)

D.9. Mish

The Mish activation function is a novel activation function that
combines elements from both the ReLU and tanh functions to create
a more robust non-linearity than either one alone [120]. It is defined
as the product of the input and the hyperbolic tangent of the natural
logarithm of 1 plus the exponential function of the input. The Mish
function is smooth, monotonically increasing, and differentiable for all
values of the input, allowing for efficient optimization during backprop-
agation. Also, it is not susceptible to the vanishing gradient problem,
which makes it suitable for use in deeper networks where gradients can
become very small over multiple layers [18,121,122].

𝑓 (𝑥) = 𝑥 ∗ 𝑡𝑎𝑛ℎ(𝑙𝑛(1 + 𝑒𝑥)) (56)

Fig. 23 shows the plot of the Mish activation function. The output
ranges from negative infinity to positive infinity, with values close
to zero representing low probabilities and values closer to infinity
representing high probabilities.

References

[1] Mohammad K. Al-Sharman, Yahya Zweiri, Mohammad Abdel Kareem Jaradat,
Raghad Al-Husari, Dongming Gan, Lakmal D. Seneviratne, Deep-learning-based
neural network training for state estimation enhancement: Application to
attitude estimation, IEEE Trans. Instrum. Meas. 69 (1) (2019) 24–34.

[2] Demoz Gebre-Egziabher, Roger C. Hayward, J. David Powell, Design of multi-
sensor attitude determination systems, IEEE Trans. Aerosp. Electron. Syst. 40
(2) (2004) 627–649.

[3] Valérie Renaudin, Christophe Combettes, Magnetic, acceleration fields and
gyroscope quaternion (MAGYQ)-based attitude estimation with smartphone
sensors for indoor pedestrian navigation, Sensors 14 (12) (2014) 22864–22890.

[4] Ulrich Steinhoff, Bernt Schiele, Dead reckoning from the pocket-an experimental
study, in: 2010 IEEE International Conference on Pervasive Computing and
Communications (PerCom), IEEE, 2010, pp. 162–170.

[5] Eran Vertzberger, Itzik Klein, Adaptive attitude estimation using a hybrid
model-learning approach, IEEE Trans. Instrum. Meas. 71 (2022) 1–9.

[6] Ahmed E. Mahdi, Ahmed Azouz, Ahmed E. Abdalla, Ashraf Abosekeen, A
machine learning approach for an improved inertial navigation system solution,
Sensors 22 (4) (2022) 1687.

[7] Wei Ding, Yang Jiang, Zhitao Lyu, Baoyu Liu, Yang Gao, Improved attitude
estimation accuracy by data fusion of a MEMS MARG sensor and a low-cost
GNSS receiver, Measurement 194 (2022) 111019.

[8] Guo Xiong Lee, Kay-Soon Low, A factorized quaternion approach to determine
the arm motions using triaxial accelerometers with anatomical and sensor
constraints, IEEE Trans. Instrum. Meas. 61 (6) (2012) 1793–1802.

[9] Kjell Magne Fauske, Fredrik Gustafsson, Oyvind Hegrenaes, Estimation of
AUV dynamics for sensor fusion, in: 2007 10th International Conference on
Information Fusion, IEEE, 2007, pp. 1–6.

[10] Minh Long Hoang, Antonio Pietrosanto, Yaw/Heading optimization by Ma-
chine learning model based on MEMS magnetometer under harsh conditions,
Measurement 193 (2022) 111013.

[11] Arman Asgharpoor Golroudbari, Design and Simulation of Heading Estimation
Algorithm (Ph.D. thesis), University of Tehran, 2022.

[12] Donghua Zhao, Yueze Liu, Xindong Wu, Hao Dong, Chenguang Wang, Jun
Tang, Chong Shen, Jun Liu, Attitude-Induced error modeling and compensation
with GRU networks for the polarization compass during UAV orientation,
Measurement 190 (2022) 110734.

[13] Xizhao Wang, Yanxia Zhao, Farhad Pourpanah, Recent advances in deep
learning, Int. J. Mach. Learn. Cybern. 11 (4) (2020) 747–750.

[14] Cao Xiao, Edward Choi, Jimeng Sun, Opportunities and challenges in developing
deep learning models using electronic health records data: a systematic review,
J. Am. Med. Inform. Assoc. 25 (10) (2018) 1419–1428.

[15] Muhammad Zulqarnain, Rozaida Ghazali, Yana Mazwin Mohmad Hassim,
Muhammad Rehan, A comparative review on deep learning models for text
classification, Indones. J. Electr. Eng. Comput. Sci. 19 (1) (2020) 325–335.

[16] Petteri Nevavuori, Nathaniel Narra, Petri Linna, Tarmo Lipping, Crop yield
prediction using multitemporal UAV data and spatio-temporal deep learning
models, Remote Sens. 12 (23) (2020) 4000.

http://refhub.elsevier.com/S0263-2241(23)00669-3/sb1
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb1
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb1
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb1
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb1
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb1
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb1
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb2
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb2
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb2
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb2
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb2
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb3
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb3
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb3
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb3
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb3
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb4
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb4
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb4
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb4
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb4
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb5
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb5
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb5
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb6
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb6
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb6
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb6
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb6
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb7
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb7
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb7
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb7
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb7
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb8
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb8
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb8
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb8
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb8
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb9
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb9
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb9
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb9
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb9
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb10
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb10
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb10
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb10
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb10
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb11
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb11
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb11
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb12
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb12
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb12
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb12
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb12
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb12
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb12
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb13
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb13
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb13
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb14
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb14
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb14
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb14
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb14
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb15
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb15
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb15
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb15
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb15
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb16
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb16
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb16
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb16
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb16

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour
[17] Salah Bouktif, Ali Fiaz, Ali Ouni, Mohamed Adel Serhani, Single and multi-
sequence deep learning models for short and medium term electric load
forecasting, Energies 12 (1) (2019) 149.

[18] Daniel Weber, Clemens Gühmann, Thomas Seel, RIANN—A robust neural
network outperforms attitude estimation filters, AI 2 (2021) 444–463.

[19] Parag Narkhede, Rahee Walambe, Shashi Poddar, Ketan Kotecha, Incremental
learning of LSTM framework for sensor fusion in attitude estimation, PeerJ
Comput. Sci. 7 (2021) e662.

[20] James Brotchie, Wei Shao, Wenchao Li, Allison Kealy, Leveraging self-attention
mechanism for attitude estimation in smartphones, Sensors 22 (22) (2022)
9011.

[21] Changhao Chen, Peijun Zhao, Chris Xiaoxuan Lu, Wei Wang, Andrew Markham,
Niki Trigoni, Oxiod: The dataset for deep inertial odometry, 2018, arXiv
preprint arXiv:1809.07491.

[22] Paul D. Groves, Principles of GNSS, inertial, and multisensor integrated navi-
gation systems, [Book review], IEEE Aerosp. Electron. Syst. Mag. 30 (2) (2015)
26–27.

[23] Sebastian Madgwick, et al., An efficient orientation filter for inertial and
inertial/magnetic sensor arrays, in: Report X-Io and University of Bristol (UK),
Vol. 25, 2010, pp. 113–118.

[24] Mark Euston, Paul Coote, Robert Mahony, Jonghyuk Kim, Tarek Hamel, A
complementary filter for attitude estimation of a fixed-wing UAV, in: 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE,
2008, pp. 340–345.

[25] Rudolph Emil Kalman, A new approach to linear filtering and prediction
problems, 1960.

[26] Xiaofei Jing, Jiarui Cui, Hongtai He, Bo Zhang, Dawei Ding, Yue Yang, Attitude
estimation for UAV using extended Kalman filter, in: 2017 29th Chinese Control
and Decision Conference, CCDC, IEEE, 2017, pp. 3307–3312.

[27] Antônio C.B. Chiella, Bruno O.S. Teixeira, Guilherme A.S. Pereira, Quaternion-
based robust attitude estimation using an adaptive unscented Kalman filter,
Sensors 19 (10) (2019) 2372.

[28] James K. Hall, Nathan B. Knoebel, Timothy W. McLain, Quaternion attitude
estimation for miniature air vehicles using a multiplicative extended Kalman
filter, in: 2008 IEEE/ION Position, Location and Navigation Symposium, IEEE,
2008, pp. 1230–1237.

[29] John L. Crassidis, F. Landis Markley, Yang Cheng, Survey of nonlinear attitude
estimation methods, J. Guid. Control Dyn. 30 (1) (2007) 12–28.

[30] Marco Caruso, Angelo Maria Sabatini, Daniel Laidig, Thomas Seel, Marco
Knaflitz, Ugo Della Croce, Andrea Cereatti, Analysis of the accuracy of ten
algorithms for orientation estimation using inertial and magnetic sensing under
optimal conditions: One size does not fit all, Sensors 21 (7) (2021) 2543.

[31] Xiaowei Shen, Minli Yao, Weimin Jia, Ding Yuan, Adaptive complementary
filter using fuzzy logic and simultaneous perturbation stochastic approximation
algorithm, Measurement 45 (5) (2012) 1257–1265.

[32] Romy Budhi Widodo, Hiraku Edayoshi, Chikamune Wada, Complementary filter
for orientation estimation: adaptive gain based on dynamic acceleration and
its change, in: 2014 Joint 7th International Conference on Soft Computing
and Intelligent Systems (SCIS) and 15th International Symposium on Advanced
Intelligent Systems, ISIS, IEEE, 2014, pp. 906–909.

[33] Martin Brossard, Silvere Bonnabel, Axel Barrau, Denoising imu gyroscopes with
deep learning for open-loop attitude estimation, IEEE Robot. Autom. Lett. 5 (3)
(2020) 4796–4803.

[34] Shipeng Han, Zhen Meng, Xingcheng Zhang, Yuepeng Yan, Hybrid deep
recurrent neural networks for noise reduction of MEMS-IMU with static and
dynamic conditions, Micromachines 12 (2) (2021) 214.

[35] Russell Buchanan, Varun Agrawal, Marco Camurri, Frank Dellaert, Maurice
Fallon, Deep IMU bias inference for robust visual-inertial odometry with factor
graphs, 2022, arXiv preprint arXiv:2211.04517.

[36] Daniel Engelsman, Itzik Klein, Data-driven denoising of accelerometer signals,
2022, arXiv preprint arXiv:2206.05937.

[37] Mahdi Abolfazli Esfahani, Han Wang, Keyu Wu, Shenghai Yuan, AbolDeepIO:
A novel deep inertial odometry network for autonomous vehicles, IEEE Trans.
Intell. Transp. Syst. 21 (5) (2019) 1941–1950.

[38] Muhammet Fatih Aslan, Akif Durdu, Abdullah Yusefi, Alper Yilmaz, HVIOnet:
A deep learning based hybrid visual–inertial odometry approach for unmanned
aerial system position estimation, Neural Netw. 155 (2022) 461–474.

[39] M. Serhat Soyer, A. Abdel-Qader, Mehmet Cengiz Onbaşlı, An efficient and
low-latency deep inertial odometer for smartphone positioning, IEEE Sens. J.
21 (24) (2021) 27676–27685.

[40] Swapnil Sayan Saha, Sandeep Singh Sandha, Luis Antonio Garcia, Mani Sri-
vastava, Tinyodom: Hardware-aware efficient neural inertial navigation, Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol. 6 (2) (2022) 1–32.

[41] Uche Onyekpe, Vasile Palade, Stratis Kanarachos, Alicja Szkolnik, IO-VNBD:
Inertial and odometry benchmark dataset for ground vehicle positioning, Data
22

Brief 35 (2021) 106885.
[42] Vânia Guimarães, Inês Sousa, Miguel Velhote Correia, A deep learning approach
for foot trajectory estimation in gait analysis using inertial sensors, Sensors 21
(22) (2021) 7517.

[43] Bor-Shing Lin, I-Jung Lee, Shun-Pu Wang, Jean-Lon Chen, Bor-Shyh Lin,
Residual neural network and long short-term memory–based algorithm for
estimating the motion trajectory of inertial measurement units, IEEE Sens. J.
22 (7) (2022) 6910–6919.

[44] Mahdi Abolfazli Esfahani, Han Wang, Keyu Wu, Shenghai Yuan, OriNet: Robust
3-D orientation estimation with a single particular IMU, IEEE Robot. Autom.
Lett. 5 (2) (2019) 399–406.

[45] Muhammet Fatih Aslan, Akif Durdu, Kadir Sabanci, Visual-inertial image-
odometry network (VIIONet): A Gaussian process regression-based deep
architecture proposal for UAV pose estimation, Measurement 194 (2022)
111030.

[46] Ryota Ozaki, Yoji Kuroda, DNN-based self-attitude estimation by learning
landscape information, in: 2021 IEEE/SICE International Symposium on System
Integration, SII, IEEE, 2021, pp. 733–738.

[47] Zhang Yu, Guo Xiaoting, Shen Chong, Tang Jun, Liu Jun, Zhao Donghua, Hybrid
multi-frequency attitude estimation based on vision/inertial integrated measure-
ment system, in: 2019 IEEE International Instrumentation and Measurement
Technology Conference (I2MTC), IEEE, 2019, pp. 1–6.

[48] Zhenhui Fan, Pengxiang Yang, Chunbo Mei, Qiju Zhu, Xiao Luo, Fast attitude
estimation system for unmanned ground vehicle based on vision/inertial fusion,
Machines 9 (10) (2021) 241.

[49] Dominique Rochefort, Jean De Lafontaine, Charles-Antoine Brunet, A new
satellite attitude state estimation algorithm using quaternion neural networks,
in: AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005, p.
6447.

[50] Evan Chang-Siu, Masayoshi Tomizuka, Kyoungchul Kong, Time-varying com-
plementary filtering for attitude estimation, in: 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE, 2011, pp. 2474–2480.

[51] Changhao Chen, Xiaoxuan Lu, Andrew Markham, Niki Trigoni, Ionet: Learning
to cure the curse of drift in inertial odometry, in: Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 32, 2018.

[52] Yuexin Zhang, A fusion methodology to bridge GPS outages for INS/GPS
integrated navigation system, IEEE Access 7 (2019) 61296–61306.

[53] Djamel Dhahbane, Abdelkrim Nemra, Samir Sakhi, Neural network-based
attitude estimation, in: International Conference in Artificial Intelligence in
Renewable Energetic Systems, Springer, 2020, pp. 500–511.

[54] Ching-Iang Li, Gwo-Dong Chen, Tze-Yun Sung, Huai-Fang Tsai, Novel adaptive
Kalman filter with fuzzy neural network for trajectory estimation system, Int.
J. Fuzzy Syst. 21 (6) (2019) 1649–1660.

[55] Scott Sun, Dennis Melamed, Kris Kitani, IDOL: Inertial deep orientation-
estimation and localization, in: Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 35, 2021, pp. 6128–6137.

[56] Guilherme Henrique Dos Santos, Laio Oriel Seman, Eduardo Augusto Bezerra,
Valderi Reis Quietinho Leithardt, André Sales Mendes, Stéfano Frizzo Stefenon,
Static attitude determination using convolutional neural networks, Sensors 21
(19) (2021) 6419.

[57] Alex Kendall, Matthew Grimes, Roberto Cipolla, Posenet: A convolutional
network for real-time 6-dof camera relocalization, in: Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 2938–2946.

[58] Ronald Clark, Sen Wang, Hongkai Wen, Andrew Markham, Niki Trigoni,
Vinet: Visual-inertial odometry as a sequence-to-sequence learning problem, in:
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31, 2017.

[59] Sen Wang, Ronald Clark, Hongkai Wen, Niki Trigoni, Deepvo: Towards end-
to-end visual odometry with deep recurrent convolutional neural networks, in:
2017 IEEE International Conference on Robotics and Automation, ICRA, IEEE,
2017, pp. 2043–2050.

[60] Ronald Clark, Sen Wang, Andrew Markham, Niki Trigoni, Hongkai Wen, Vidloc:
A deep spatio-temporal model for 6-dof video-clip relocalization, in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp.
6856–6864.

[61] Ruihao Li, Sen Wang, Zhiqiang Long, Dongbing Gu, Undeepvo: Monocular vi-
sual odometry through unsupervised deep learning, in: 2018 IEEE International
Conference on Robotics and Automation, ICRA, IEEE, 2018, pp. 7286–7291.

[62] Abhinav Valada, Noha Radwan, Wolfram Burgard, Deep auxiliary learning for
visual localization and odometry, in: 2018 IEEE International Conference on
Robotics and Automation, ICRA, IEEE, 2018, pp. 6939–6946.

[63] Hang Yan, Qi Shan, Yasutaka Furukawa, RIDI: Robust IMU double integration,
in: Proceedings of the European Conference on Computer Vision, ECCV, 2018,
pp. 621–636.

[64] Changhao Chen, Learning Methods for Robust Localization (Ph.D. thesis),
University of Oxford, 2020.

[65] E. Jared Shamwell, Kyle Lindgren, Sarah Leung, William D. Nothwang, Unsu-
pervised deep visual-inertial odometry with online error correction for RGB-D

imagery, IEEE Trans. Pattern Anal. Mach. Intell. 42 (10) (2019) 2478–2493.

http://refhub.elsevier.com/S0263-2241(23)00669-3/sb17
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb17
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb17
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb17
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb17
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb18
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb18
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb18
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb19
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb19
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb19
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb19
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb19
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb20
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb20
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb20
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb20
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb20
http://arxiv.org/abs/1809.07491
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb22
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb22
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb22
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb22
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb22
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb23
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb23
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb23
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb23
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb23
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb24
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb24
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb24
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb24
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb24
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb24
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb24
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb25
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb25
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb25
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb26
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb26
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb26
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb26
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb26
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb27
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb27
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb27
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb27
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb27
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb28
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb28
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb28
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb28
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb28
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb28
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb28
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb29
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb29
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb29
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb30
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb30
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb30
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb30
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb30
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb30
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb30
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb31
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb31
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb31
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb31
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb31
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb32
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb32
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb32
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb32
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb32
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb32
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb32
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb32
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb32
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb33
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb33
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb33
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb33
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb33
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb34
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb34
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb34
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb34
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb34
http://arxiv.org/abs/2211.04517
http://arxiv.org/abs/2206.05937
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb37
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb37
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb37
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb37
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb37
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb38
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb38
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb38
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb38
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb38
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb39
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb39
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb39
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb39
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb39
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb40
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb40
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb40
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb40
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb40
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb41
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb41
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb41
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb41
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb41
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb42
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb42
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb42
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb42
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb42
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb43
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb43
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb43
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb43
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb43
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb43
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb43
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb44
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb44
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb44
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb44
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb44
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb45
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb45
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb45
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb45
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb45
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb45
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb45
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb46
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb46
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb46
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb46
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb46
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb47
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb47
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb47
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb47
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb47
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb47
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb47
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb48
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb48
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb48
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb48
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb48
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb49
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb49
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb49
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb49
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb49
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb49
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb49
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb50
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb50
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb50
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb50
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb50
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb51
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb51
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb51
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb51
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb51
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb52
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb52
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb52
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb53
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb53
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb53
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb53
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb53
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb54
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb54
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb54
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb54
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb54
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb55
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb55
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb55
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb55
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb55
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb56
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb56
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb56
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb56
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb56
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb56
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb56
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb57
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb57
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb57
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb57
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb57
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb58
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb58
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb58
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb58
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb58
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb59
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb59
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb59
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb59
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb59
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb59
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb59
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb60
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb60
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb60
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb60
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb60
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb60
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb60
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb61
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb61
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb61
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb61
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb61
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb62
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb62
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb62
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb62
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb62
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb63
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb63
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb63
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb63
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb63
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb64
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb64
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb64
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb65
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb65
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb65
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb65
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb65

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour
[66] Martin Brossard, Axel Barrau, Silvere Bonnabel, RINS-W: Robust inertial nav-
igation system on wheels, in: 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS, IEEE, 2019, pp. 2068–2075.

[67] Changhao Chen, Stefano Rosa, Chris Xiaoxuan Lu, Niki Trigoni, Andrew
Markham, Selectfusion: A generic framework to selectively learn multisensory
fusion, 2019, arXiv e-prints, pages arXiv–1912.

[68] Qing Li, Shaoyang Chen, Cheng Wang, Xin Li, Chenglu Wen, Ming Cheng,
Jonathan Li, Lo-net: Deep real-time lidar odometry, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp.
8473–8482.

[69] Weixin Lu, Yao Zhou, Guowei Wan, Shenhua Hou, Shiyu Song, L3-net: Towards
learning based lidar localization for autonomous driving, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp.
6389–6398.

[70] João Paulo Silva do Monte Lima, Hideaki Uchiyama, Rin-ichiro Taniguchi,
End-to-end learning framework for imu-based 6-dof odometry, Sensors 19 (17)
(2019) 3777.

[71] Liming Han, Yimin Lin, Guoguang Du, Shiguo Lian, Deepvio: Self-supervised
deep learning of monocular visual inertial odometry using 3d geometric
constraints, in: 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS, IEEE, 2019, pp. 6906–6913.

[72] Michael Sorg, Deep Learning based Sensor Fusion for 6-DoF Pose
Estimation (Master’s Thesis), TUM, 2020.

[73] Ricardo Carrillo Mendoza, Bingyi Cao, Daniel Goehring, Raúl Rojas, GALNet:
An end-to-end deep neural network for ground localization of autonomous cars,
in: ROBOVIS, 2020, pp. 39–50.

[74] Omri Asraf, Firas Shama, Itzik Klein, PDRNet: A deep-learning pedestrian dead
reckoning framework, IEEE Sens. J. 22 (6) (2021) 4932–4939.

[75] Won-Yeol Kim, Hong-Il Seo, Dong-Hoan Seo, Nine-Axis IMU-based extended
inertial odometry neural network, Expert Syst. Appl. 178 (2021) 115075.

[76] Bingbing Rao, Ehsan Kazemi, Yifan Ding, Devu M. Shila, Frank M. Tucker,
Liqiang Wang, CTIN: Robust contextual transformer network for inertial navi-
gation, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol.
36, 2022, pp. 5413–5421.

[77] Di Xia, Yeqing Zhu, Heng Zhang, Faster deep inertial pose estimation with six
inertial sensors, Sensors 22 (19) (2022) 7144.

[78] Ahmad Bani Younes, James Turner, Daniele Mortari, John Junkins, A sur-
vey of attitude error representations, in: AIAA/AAS Astrodynamics Specialist
Conference, 2012, p. 4422.

[79] Daniel Laidig, Marco Caruso, Andrea Cereatti, Thomas Seel, BROAD—A
benchmark for robust inertial orientation estimation, Data 6 (7) (2021) 72.

[80] Daniel Weber, Clemens Gühmann, Thomas Seel, Neural networks versus con-
ventional filters for inertial-sensor-based attitude estimation, in: 2020 IEEE 23rd
International Conference on Information Fusion, FUSION, IEEE, 2020, pp. 1–8.

[81] Arman Asgharpoor Golroudbari, Design and simulation of attitude and heading
estimation algorithm, Education 2020 (2019).

[82] Li Liu, Ge Li, Thomas H. Li, ATVIO: Attention guided visual-inertial odometry,
in: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP, IEEE, 2021, pp. 4125–4129.

[83] Thaweerath Phisannupawong, Patcharin Kamsing, Peerapong Tortceka, Soemsak
Yooyen, Vision-based attitude estimation for spacecraft docking operation
through deep learning algorithm, in: 2020 22nd International Conference on
Advanced Communication Technology, ICACT, IEEE, 2020, pp. 280–284.

[84] Sachini Herath, Hang Yan, Yasutaka Furukawa, Ronin: Robust neural inertial
navigation in the wild: Benchmark, evaluations, & new methods, in: 2020 IEEE
International Conference on Robotics and Automation, ICRA, IEEE, 2020, pp.
3146–3152.

[85] Changhao Chen, Chris Xiaoxuan Lu, Johan Wahlström, Andrew Markham, Niki
Trigoni, Deep neural network based inertial odometry using low-cost inertial
measurement units, IEEE Trans. Mob. Comput. 20 (4) (2019) 1351–1364.

[86] Michele Donini, Luca Franceschi, Orchid Majumder, Massimiliano Pontil, Paolo
Frasconi, Scheduling the learning rate via hypergradients: new insights and a
new algorithm, 2019, arXiv preprint arXiv:1910.08525.

[87] Leonid G. Khachiyan, Polynomial algorithms in linear programming, USSR
Comput. Math. Math. Phys. 20 (1) (1980) 53–72.

[88] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, Ruslan R.
Salakhutdinov, Improving neural networks by preventing co-adaptation of
feature detectors, 2012, arXiv preprint arXiv:1207.0580.

[89] Leslie N. Smith, Cyclical learning rates for training neural networks, in: 2017
IEEE Winter Conference on Applications of Computer Vision, WACV, IEEE,
2017, pp. 464–472.

[90] Agnieszka Szczesna, Przemysaw Skurowski, Przemysaw Pruszowski, Damian
Peszor, Marcin Paszkuta, Konrad Wojciechowski, Reference data set for ac-
curacy evaluation of orientation estimation algorithms for inertial motion
capture systems, in: International Conference on Computer Vision and Graphics,
23

Springer, 2016, pp. 509–520.
[91] Marco Caruso, Angelo Maria Sabatini, Marco Knaflitz, Marco Gazzoni, Ugo
Della Croce, Andrea Cereatti, Orientation estimation through magneto-inertial
sensor fusion: A heuristic approach for suboptimal parameters tuning, IEEE
Sens. J. 21 (3) (2020) 3408–3419.

[92] Gim Hee Lee, Markus Achtelik, Friedrich Fraundorfer, Marc Pollefeys, Roland
Siegwart, A benchmarking tool for MAV visual pose estimation, in: 2010 11th
International Conference on Control Automation Robotics & Vision, IEEE, 2010,
pp. 1541–1546.

[93] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Rehder,
Sammy Omari, Markus W. Achtelik, Roland Siegwart, The EuRoC micro aerial
vehicle datasets, Int. J. Robot. Res. 35 (10) (2016) 1157–1163.

[94] David Schubert, Thore Goll, Nikolaus Demmel, Vladyslav Usenko, Jörg Stückler,
Daniel Cremers, The TUM VI benchmark for evaluating visual-inertial odometry,
in: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS, IEEE, 2018, pp. 1680–1687.

[95] Andreas Geiger, Philip Lenz, Raquel Urtasun, Are we ready for autonomous
driving? the kitti vision benchmark suite, in: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) 2012, IEEE, 2012, pp. 3354–3361.

[96] Arman Asgharpoor Golroudbari, Mohammad Hossein Sabour, End-to-end-deep-
learning-framework-for-real-time-inertial-attitude-estimation-using-6DoF-IMU,
2023, URL https://github.com/Armanasq/End-to-End-Deep-Learning-
Framework-for-Real-Time-Inertial-Attitude-Estimation-using-6DoF-IMU.

[97] Rial A. Rajagukguk, Raden A.A. Ramadhan, Hyun-Jin Lee, A review on
deep learning models for forecasting time series data of solar irradiance and
photovoltaic power, Energies 13 (24) (2020) 6623.

[98] Alex Graves, Abdel-rahman Mohamed, Geoffrey Hinton, Speech recognition
with deep recurrent neural networks, in: 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, Ieee, 2013, pp. 6645–6649.

[99] Annika M. Schoene, Ioannis Basinas, Martie van Tongeren, Sophia Ananiadou,
A narrative literature review of natural language processing applied to the
occupational exposome, Int. J. Environ. Res. Public Health 19 (14) (2022) 8544.

[100] Alexandru-Ion Marinescu, Bach 2.0-generating classical music using recurrent
neural networks, Procedia Comput. Sci. 159 (2019) 117–124.

[101] Zhen Shen, Wenzheng Bao, De-Shuang Huang, Recurrent neural network for
predicting transcription factor binding sites, Sci. Rep. 8 (1) (2018) 1–10.

[102] Xiaojie Li, Chaoran Cui, Guangle Song, Yaxi Su, Tianze Wu, Chunyun Zhang,
Stock trend prediction method based on temporal hypergraph convolutional
neural network, J. Comput. Appl. 42 (3) (2022) 797.

[103] Pei-Wen Chiang, Shi-Jinn Horng, Hybrid time-series framework for daily-based
PM 2.5 forecasting, IEEE Access 9 (2021) 104162–104176.

[104] Xinyuan Fan, Weige Zhang, Caiping Zhang, Anci Chen, Fulai An, SOC estimation
of Li-ion battery using convolutional neural network with U-Net architecture,
Energy 256 (2022) 124612.

[105] Jayanth Koushik, Understanding convolutional neural networks, 2016, arXiv
preprint arXiv:1605.09081.

[106] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Spatial pyramid pooling
in deep convolutional networks for visual recognition, IEEE Trans. Pattern Anal.
Mach. Intell. 37 (9) (2015) 1904–1916.

[107] Changchun Cai, Yuan Tao, Tianqi Zhu, Zhixiang Deng, Short-term load fore-
casting based on deep learning bidirectional LSTM neural network, Appl. Sci.
11 (17) (2021) 8129.

[108] Sepp Hochreiter, Jürgen Schmidhuber, Long short-term memory, Neural
Comput. 9 (8) (1997) 1735–1780.

[109] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, Yoshua Bengio,
On the properties of neural machine translation: Encoder-decoder approaches,
2014, arXiv preprint arXiv:1409.1259.

[110] Shuai Gao, Yuefei Huang, Shuo Zhang, Jingcheng Han, Guangqian Wang,
Meixin Zhang, Qingsheng Lin, Short-term runoff prediction with GRU and LSTM
networks without requiring time step optimization during sample generation,
J. Hydrol. 589 (2020) 125188.

[111] Chuang Wang, Wenbo Du, Zhixiang Zhu, Zhifeng Yue, The real-time big data
processing method based on LSTM or GRU for the smart job shop production
process, J. Algorithms Comput. Technol. 14 (2020) 1748302620962390.

[112] Nicole Gruber, Alfred Jockisch, Are GRU cells more specific and LSTM cells
more sensitive in motive classification of text? Front. Artif. Intell. 3 (2020) 40.

[113] Colin Lea, Michael D. Flynn, Rene Vidal, Austin Reiter, Gregory D. Hager,
Temporal convolutional networks for action segmentation and detection,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 156–165.

[114] Michael Moor, Max Horn, Bastian Rieck, Damian Roqueiro, Karsten Borgwardt,
Early recognition of sepsis with Gaussian process temporal convolutional
networks and dynamic time warping, in: Machine Learning for Healthcare
Conference, PMLR, 2019, pp. 2–26.

[115] Mike Schuster, Kuldip K. Paliwal, Bidirectional recurrent neural networks, IEEE
Trans. Signal Process. 45 (11) (1997) 2673–2681.

[116] Arman Asgharpoor Golroudbari, Mohammad Hossein Sabour, Recent advance-
ments in deep learning applications and methods for autonomous navigation–a

comprehensive review, 2023, arXiv preprint arXiv:2302.11089.

http://refhub.elsevier.com/S0263-2241(23)00669-3/sb66
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb66
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb66
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb66
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb66
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb67
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb67
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb67
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb67
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb67
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb68
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb68
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb68
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb68
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb68
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb68
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb68
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb69
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb69
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb69
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb69
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb69
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb69
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb69
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb70
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb70
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb70
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb70
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb70
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb71
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb71
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb71
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb71
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb71
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb71
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb71
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb72
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb72
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb72
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb73
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb73
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb73
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb73
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb73
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb74
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb74
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb74
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb75
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb75
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb75
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb76
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb76
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb76
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb76
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb76
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb76
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb76
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb77
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb77
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb77
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb78
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb78
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb78
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb78
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb78
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb79
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb79
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb79
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb80
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb80
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb80
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb80
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb80
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb81
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb81
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb81
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb82
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb82
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb82
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb82
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb82
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb83
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb83
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb83
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb83
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb83
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb83
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb83
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb84
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb84
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb84
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb84
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb84
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb84
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb84
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb85
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb85
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb85
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb85
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb85
http://arxiv.org/abs/1910.08525
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb87
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb87
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb87
http://arxiv.org/abs/1207.0580
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb89
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb89
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb89
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb89
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb89
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb90
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb90
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb90
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb90
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb90
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb90
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb90
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb90
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb90
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb91
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb91
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb91
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb91
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb91
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb91
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb91
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb92
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb92
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb92
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb92
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb92
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb92
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb92
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb93
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb93
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb93
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb93
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb93
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb94
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb94
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb94
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb94
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb94
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb94
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb94
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb95
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb95
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb95
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb95
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb95
https://github.com/Armanasq/End-to-End-Deep-Learning-Framework-for-Real-Time-Inertial-Attitude-Estimation-using-6DoF-IMU
https://github.com/Armanasq/End-to-End-Deep-Learning-Framework-for-Real-Time-Inertial-Attitude-Estimation-using-6DoF-IMU
https://github.com/Armanasq/End-to-End-Deep-Learning-Framework-for-Real-Time-Inertial-Attitude-Estimation-using-6DoF-IMU
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb97
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb97
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb97
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb97
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb97
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb98
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb98
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb98
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb98
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb98
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb99
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb99
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb99
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb99
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb99
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb100
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb100
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb100
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb101
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb101
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb101
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb102
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb102
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb102
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb102
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb102
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb103
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb103
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb103
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb104
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb104
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb104
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb104
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb104
http://arxiv.org/abs/1605.09081
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb106
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb106
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb106
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb106
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb106
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb107
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb107
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb107
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb107
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb107
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb108
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb108
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb108
http://arxiv.org/abs/1409.1259
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb110
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb110
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb110
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb110
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb110
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb110
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb110
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb111
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb111
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb111
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb111
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb111
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb112
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb112
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb112
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb113
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb113
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb113
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb113
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb113
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb113
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb113
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb114
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb114
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb114
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb114
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb114
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb114
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb114
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb115
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb115
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb115
http://arxiv.org/abs/2302.11089

Measurement 217 (2023) 113105A. Asgharpoor Golroudbari and M.H. Sabour
[117] Martin Heusel, Djork-Arné Clevert, Günter Klambauer, Andreas Mayr, Karin
Schwarzbauer, Thomas Unterthiner, Sepp Hochreiter, ELU-networks: fast and
accurate CNN learning on imagenet, NiN 8 (2015) 35–68.

[118] Prajit Ramachandran, Barret Zoph, Quoc V. Le, Searching for activation
functions, 2017, arXiv preprint arXiv:1710.05941.

[119] Bing Xu, Naiyan Wang, Tianqi Chen, Mu Li, Empirical evaluation of rectified
activations in convolutional network, 2015, arXiv preprint arXiv:1505.00853.

[120] Diganta Misra, Mish: A self regularized non-monotonic neural activation
function, 4 (2) (2019) 10–48550. arXiv preprint arXiv:1908.08681.
24
[121] Matthew Mithra Noel, Shubham Bharadwaj, Venkataraman Muthiah-Nakarajan,
Praneet Dutta, Geraldine Bessie Amali, Biologically inspired oscillating activa-
tion functions can bridge the performance gap between biological and artificial
neurons, 2021, arXiv preprint arXiv:2111.04020.

[122] Shiv Ram Dubey, Satish Kumar Singh, Bidyut Baran Chaudhuri, Activa-
tion functions in deep learning: A comprehensive survey and benchmark,
Neurocomputing (2022).

http://refhub.elsevier.com/S0263-2241(23)00669-3/sb117
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb117
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb117
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb117
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb117
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1908.08681
http://arxiv.org/abs/2111.04020
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb122
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb122
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb122
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb122
http://refhub.elsevier.com/S0263-2241(23)00669-3/sb122

	Generalizable end-to-end deep learning frameworks for real-time attitude estimation using 6DoF inertial measurement units
	Introduction
	Literature Review
	Problem definition
	Methodology
	Error Matrices
	Proposed Network Architecture
	Model A
	Model B
	Model C

	Learning Rate Finder

	Experiment
	Dataset
	Introduction
	RepoIMU T-stic
	RepoIMU T-pendulum
	Sassari
	The Oxford Inertial Odometry Dataset
	MAV Dataset
	EuRoC MAV
	TUM-VI
	KITTI
	RIDI
	RoNIN
	BROAD

	Training
	Evaluation

	Results
	Limitations and Future Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A. IMU Dynamics Model
	Appendix B. Orientation
	Appendix C. Sequential Modeling
	Convolutional Neural Network
	Recurrent Neural Network
	Long–Short-Term Memory
	Gated Recurrent Unit
	Temporal Convolutional Network
	Bidirectional Layer

	Appendix D. Activation Function
	Sigmoid Function
	Rectified Linear Unit
	Hyperbolic Tangent
	Leaky ReLU
	Exponential Linear Unit
	Swish
	Randomized Rectified Linear Unit
	Randomized Rectified Linear Unit
	Mish

	References

