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Stereo Visual-Inertial Odometry With Online
Initialization and Extrinsic Self-Calibration
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Abstract— Reliable extrinsic calibration is critical to fuse cam-
era and inertial measurement unit (IMU), which are usually used
in stereo visual-inertial odometry (VIO), however, it is difficult
to obtain extrinsic parameters in practice. This article proposes
a stereo VIO with the capability of calibrating the unknown
extrinsic parameters online. The initial values of IMU-camera
and camera–camera transformations are estimated during the
initial process, which fully leverages commonly observed features
between stereo cameras. The pose and velocity are estimated
and the extrinsic parameters are jointly refined. In addition,
the accelerometer and gyroscope biases, and gravity direction
are taken into account. The proposed VIO scheme has been
demonstrated to be effective without prior knowledge of extrinsic
parameters.

Index Terms— Self-calibration, sensor fusion, visual-inertial
odometry (VIO).

I. INTRODUCTION

STEREO visual-inertial odometry (VIO) solves the prob-
lem of simultaneously state estimation for a mobile plat-

form by fusing the measurements from two cameras and an
inertial measurement unit (IMU). It has been increasingly used
in various applications, such as AR/VR and drones. The fusion
of IMU preintegration [1] measurement and vision feature
tracking can boost the motion estimation performance [2].
The IMU measures linear acceleration and angular velocity
in high frequency, ensuring robustness for aggressive motion
and providing the true scale of translation. Although IMU has
high measurement accuracy in a short time, it has a large
cumulative error when used for a long time because of biases.
The integration of vision measurement can compensate for this
defect.

The extrinsic parameters of stereo VIO contain a coordinate
transformation of IMU-camera and camera–camera pairs,
they connect the IMU coordinate with every camera frame.
Imprecise extrinsic calibration and slight change of extrin-
sic parameters during long-time operation would reduce the
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accuracy of stereo VIO [3], [4]. Reliable offline extrinsic
calibration methods require an immobile visual marker and
ideal movement of the instrumentation suite. It is difficult to
guarantee the reliability of calibration in practical applications.
In addition, the performance of VIO is highly dependent on a
precise initialization, this process estimates accelerometer and
gyroscope biases, velocity, and gravity direction [3], [5], [6].

Traditionally, VIO algorithms [7], [8], [9], [10] assume the
extrinsic calibration is precise. In recent years, researchers
have shown an increased interest in online initialization
and extrinsic self-calibration for VIO [2], [3], [4], [5], [6],
[11], [12]. However, most of the researches focused on
monocular VIO, which are only available to estimate the
transformation of one IMU-camera pair. To the best of our
knowledge, there exist few studies on stereo VIO, which
can estimate the transformation of two IMU-camera pairs.
Fan et al. [4] focused on known but inaccurate calibration and
formulated camera–camera, IMU-camera extrinsic parameters
as state variables to be estimated. Huang et al. [3] presented
a self-calibration method for stereo VIO, which performs two
monocular visual front-end and constructs two maps with
unknown scales. In practice, however, only one map needs
to be retained. Besides, this method does not consider the
co-visibility of cameras.

In general, when a device is equipped with instrumentation,
including a stereo camera and IMU, there exist commonly
observed features between cameras. For this common situa-
tion, we propose an optimization-based stereo VIO method
that is capable of handling completely unknown extrinsic
parameters. This method can complete the initialization pro-
cedure and estimate all the necessary extrinsic parameter pairs
during the initial phase using the number of frames. The
feature positions in both left images are right images tracked
by Kanade–Lucas–Tomasi (KLT) optical flow algorithm [13].
We first perform monocular visual-inertial initialization and
extrinsic calibration [5], [6], [11] with the left IMU-camera
pair, providing the initial values of IMU biases, velocity, grav-
ity, IMU-camera extrinsic parameters, and translation scale
factor. And they are used as initial values for joint monoc-
ular visual-inertial bundle adjustment (VI-BA) to estimate
keyframe poses and position of 3-D landmarks. Since the
observations of 3-D landmarks in the right image are known,
the pose of the right camera can be estimated by minimizing
3-D–2-D reprojection error. According to the above-mentioned
steps, we achieve all initial values for stereo VIO, including
IMU-camera and camera–camera extrinsic parameters. How-
ever, the initial guesses of extrinsic parameters are not accurate
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enough to support the operation of stereo VIO. They are
further refined during the stereo VI-BA.

The main contributions of this article are highlighted as
follows.

1) We propose a stereo VIO, which utilizes a coarse-to-fine
strategy to handle the unknown extrinsic parameters.

2) The initial guesses of IMU-camera and camera–camera
transformations are estimated during the initial phase,
which fully leverages commonly observed features
between stereo cameras.

3) The extrinsic parameters are further optimized together
with pose, velocity, and IMU biases.

4) Comprehensive evaluations indicate that the proposed
stereo VIO works well even without prior extrinsic
calibration.

The rest of this article is structured as follows. In Section II,
we introduce the relevant works on VIO as well as their
initialization and extrinsic calibration. Section III briefly intro-
duces related concepts and the IMU measurement model.
In Section IV, our methodology is described in detail.
Section V presents the experiment results, including the eval-
uation for initialization, self-calibration, and the accuracy of
the whole stereo VIO. Section VI concludes this article.

II. RELATED WORK

A. Visual-Inertial Odometry

In recent years, a variety of VIO algorithms have been
developed, they are used to estimate the motion of instru-
mentation by fusing the measurements from the camera and
IMU. They can be categorized into filter-based methods
and nonlinear optimization-based methods. Filter-based VIO
methods mainly use multistate Kalman filter (MSCKF), IMU
integration is used for state prediction and visual measurement
is used for state correction. Li and Mourikis [14] analyzed
the observability of MSCKF-based VIO, and used the first
estimate Jacobian (FEJ) [15] method to solve the inconsistency
problem. S-MSCKF [8] is a classical stereo VIO framework
that can run in real time on a low-cost embedded platform.
Geneva et al. [16] proposed OpenVINS based on MSCKF,
providing a platform for researchers engaged in visual-inertial
navigation. Huai and Huang [17] presented filter-based VIO
in a robot-centered local coordinate system, avoiding the
observability inconsistency problem in the world coordinate.
Nonlinear optimization-based VIO uses VI-BA for state esti-
mation by jointly minimizing the feature reprojection error
and IMU preintegration [1] error. The nonlinear optimization is
solved by Gauss–Newton’s method or Levenburg–Marquardt’s
method. This method has higher accuracy than filter-based
VIO but lower efficiency because of the iterative solution.
The early optimization-based VIO is OKVIS [7], the IMU
error is introduced in the cost function, and the form of the
backend is the sliding window. Qin et al. [2], [5] proposed
a robust monocular VIO with online biases correction and
IMU-camera extrinsic calibration. Campos et al. proposed
ORB-SLAM3 [10], a complete visual-inertial simultaneous
localization and mapping (SLAM) system. Xia et al. proposed

UniVIO [18], a VIO method for low-texture and varying illu-
mination underwater sense which jointly optimizes projection
errors and photometric errors. Xia et al. [19] improved the
accuracy of VIO structural man-made environments by fusing
point-line feature extraction. Because of the scale uncertainty
for monocular motion estimation, monocular VIO needs to
estimate the scale factor every time, which requires adequate
movement excitation and ideal feature tracking during the
initial phase. However, scale factor estimation is not required
for stereo VIO because the positions of landmarks can be
calculated by stereo vision when the extrinsic parameter of
the stereo camera is known.

B. Online Initialization

Recently, researchers have noticed it is of great significance
to estimate some parameters in the beginning phase, includ-
ing IMU biases, velocity, and gravity direction. Besides, the
monocular VIO needs to estimate the scale factor because
the metric scale is unavailable for monocular structure from
motion (SFM). This process is called initialization. The early
initialization methods [20], [21] rely on short-term gyroscope
integration, but they did not take IMU biases into account.
Kaiser et al. [22] proposed a closed-form solution to estimate
the initial values of IMU biases. Qin and Shen [5] proposed an
online initialization method for monocular VIO on microaerial
vehicle (MAV) which can run on-the-fly. It has been success-
fully integrated into a monocular VIO [2]. Campos et al. [6]
formulated VIO initialization as a nonlinear optimization
problem, which had shown to be more accurate than state-
of-the-art. This method has been integrated into a versatile
visual-inertial SLAM [10]. Wang and Cheng [23] proposed
an IMU self-calibration method, the IMU intrinsic parameters
are adaptively optimized according to the intensity of motion.

C. Extrinsic Self-Calibration

Imprecise extrinsic calibration would lead to poor perfor-
mance for VIO. The common approach to achieving accurate
extrinsic parameters is to employ offline methods, which
require an immobile visual marker and ideal movement of
the instrumentation suite. But this process is inaccessible in
some cases. The solution is online extrinsic self-calibration.
Recently, several online self-calibration approaches for monoc-
ular VIO have been developed. Li and Mourikis [14] proposed
a modified MSCKF algorithm for VIO, the transformation
between the camera and IMU is considered as a state param-
eter to be estimated. Yang and Shen [21] addressed the
calibration problem of monocular VIO and a methodology
that is available for calibrating IMU-camera extrinsic param-
eter is proposed. It had been integrated into a completed
visual-inertial estimator in their later works [2], [24].

There have been extensive works focusing on handling
the imprecise extrinsic parameters for multicamera VIO and
stereo VIO methods. Jaekel et al. [25] accounted for the
uncertainty of extrinsic parameters in their multistereo VIO
framework, they modeled the uncertainty in outlier rejection
and graph-based optimization. In order to limit the compu-
tational burden for the MSCKF-based multicamera method,
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Eckenhoff et al. [26] only clone the IMU pose to a single
camera. Meanwhile, the spatial and temporal extrinsic param-
eters between all sensors are also estimated online. This work
was extended to a multi-IMU multicamera system named
MIMC-VINS [27]. Fan et al. [4] proposed an MSCKF-based
stereo VIO, the extrinsic parameters are formulated into
state variables. This method can successfully estimate precise
extrinsic parameters when inaccurate calibration is given.
A self-calibration method for stereo VIO with unknown
extrinsic parameters was proposed by Huang et al. [3], they
performed two monocular VIO initialization and calibration
in parallel. Two sparse maps are created by two cameras,
respectively, the extrinsic parameters are then estimated by
aligning two maps. But only one map needs to be retained
in practice. The main difficulty for self-calibration is to
handling the unknown transformation of the cameras in the
instrumentation suite. Besides, the existing research studies
divided the instrumentation suite into several camera-IMU
pairs, and the transformation between cameras is solved indi-
rectly, which may bring in potential error. The camera–camera
transformation is an important parameter for stereo VIO
because the position of landmarks is computed by stereo
vision. In our work, monocular visual-inertial initialization
and extrinsic calibration are first performed using the left
camera and IMU, keyframe poses, 3-D landmark positions,
and IMU-camera transformation are estimated. The pose of
the right camera is then directly solved by minimizing 3-D–
2-D reprojection error using the observations of the landmark
with the right camera, which will avoid potential error. The
resultant extrinsic parameters are saved and reused for the next
time we run the stereo VIO system.

III. PRELIMINARIES

This section presents necessary mathematical notations and
geometry concepts. In addition, IMU preintegration measure-
ment model is also briefly reviewed.

A. Notations and Geometry Concepts

We start with defining mathematical symbols. In this article,
vectors and matrixes are shown in bold. IMU frame is treated
as the body frame, and bi is the body frame taken from the i th
camera. The observation of the camera is represented with the
coordinate on the normalized image plane x = [x y 1]T , which
can be directly computed with camera intrinsic parameters
when the pixel location is known. (·)w is considered as the
world frame, gw is the gravity vector in the world frame.
We use vw

i to denote the velocity of the i th frame. The
measurement value of instrumentation is expressed as (·̂),
which may be influenced by biases and noise. 3-D vector p
denotes translation. Rotation is represented by quaternion q or
rotation matrix R ∈ SO(3) [28]. (·)wb is the transformation of
the body frame with respect to the world frame, for example,
qwbi denotes the rotation from the world frame to the i th body
frame.

Quaternion is a 4-D complex number that represents 3-D
rotation without singularity

q = [s x i yj zk] = [s v]. (1)

The multiplication of two quaternions is represented with ⊗,
which is the superposition of two rotations. For example, given
two quaternions qab and qbc, their superposition can be defined
by

qac = qab ⊗ qbc

= L(qab) · qbc = R(qbc) · qab (2)

where L(qab) and R(qbc) represent left and right multiplica-
tion, respectively

L(q) =

[
s −vT

vv sI3×3 + [v]×

]
R(q) =

[
s −vT

vv sI3×3 − [v]×

]
. (3)

Here, [v]× is the skew-symmetric matrix of a vector v.

B. IMU Preintegration

An IMU provides a discrete-time sample of linear acceler-
ation and angular velocity between two consecutive camera
frames. Preintegration [1], [2] constrain the states of two
camera frames using IMU measurement information, which
can participate in the nonlinear optimization. Moreover, the
measurement of IMU contains gravity, which makes the abso-
lute pose of the system observable.

Given two consecutive camera frames i and j , the sampling
interval of IMU is δt , and the transformation of position,
velocity, and orientation can be written as

pwb j = pwbi+vw
i 1t−

1
2

gw1t2
+qwbi

∫∫
t∈[i, j]

(
qbi bt a

bt
)
δt2

vw
j = vw

i −gw1t + qwbi

∫
t∈[i, j]

(
qbi bt a

bt
)
δt

qwb j = qwbi

∫
t∈[i, j]

qbi bt ⊗

[
0

1
2
ωbt

]
δt (4)

in which

αbi b j =

∫∫
t∈[i, j]

(
qbi bt a

bt
)
δt2

βbi b j
=

∫
t∈[i, j]

(
qbi bt a

bt
)
δt

qbi b j =

∫
t∈[i, j]

qbi bt ⊗

[
0

1
2
ωbt

]
δt. (5)

Equation (5) is known as preintegration terms, which are
only related to IMU measurements between camera frames.
Because the acceleration and angular velocity are affected by
IMU biases, and biases are the states we need to estimate,
we assume that the variation of preintegration is linear with
biases. Therefore, αbi b j , βbi b j

, and qbi b j are the function of
IMU biases and they can be adjusted by first-order Taylor
expansion approximations [1]

αbi b j ≈ α̂bi b j + Jα
ba

δbai + Jα
bg

δbgi

βbi b j
≈ β̂bi b j + Jβ

ba
δbai + Jβ

bg
δbgi

qbi b j ≈ q̂bi b j ⊗

[
1

1
2

Jγ

bg
δbgi

]
. (6)
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Fig. 1. Pipeline of the proposed stereo VIO method.

The residual of IMU measurement preintegration within two
consecutive camera frames is defined as [1], [2]


rp

rq

rv

rba

rbg

=


qbi w

(
pbi b j−vw

i 1t+
1
2

gw1t2
)
−αbi b j

2
[
qb j bi ⊗

(
qbi w ⊗ qwb j

)]
xyz

qbi w

(
vw

i j + gw1t
)
− βbi b j

ba
j − ba

i

bg
j − bg

i


(7)

where pbi b j = pwb j − pwbi , vw
i j = vw

j − vw
i , and [·]xyz is the

real component of the quaternion.

IV. METHODOLOGY

This section presents the proposed stereo VIO in detail,
especially, the initialization and extrinsic self-calibration pro-
cess. Fig. 1 shows the pipeline of the proposed stereo VIO,
which contains three main modules: 1) the measurement pre-
processing module; 2) the initialization and extrinsic calibra-
tion module; and 3) the backend solver module. This system
starts with preprocessing the measurements of instrumentation,
which takes charge of feature tracking and IMU preintegra-
tion [1] calculation, providing constrain between two camera
frames. The features are extracted with good features to track
(GFTT) detector. The image is divided into several blocks
according to its size, and new feature points are detected
from the empty blocks with the highest Shi-Tomasi core [29].
The features are tracked with KLT optical flow [13], [30]
algorithm. The initialization and extrinsic calibration module is
the main contribution of our work, which will be presented in
detail from Sections IV-A– IV-C. We focus on the uninitialized
situation, in which the IMU biases and extrinsic parameters
are unknown. The symbol of the parameters that need to
be estimated in the initialization and extrinsic parameters
calibration module are shown in Table I. This module provided
initial guesses of IMU biases and extrinsic parameters for the
backend solver (Section IV-D). The backend solver not only
estimates the 3-D landmark positions, keyframe poses, and
velocities but also further optimize the extrinsic parameters
and IMU biases. To limit the computational complexity of the
backend solver, we apply the same marginalization strategy as
VINS-Mono [2].

TABLE I
PARAMETERS THAT NEED TO BE ESTIMATED IN THE INITIALIZATION AND

EXTRINSIC CALIBRATION MODULE

Fig. 2. Transformation from the world coordinate system to two consecutive
frames i and j . The stereo camera places two cameras on the left (Cam1)
and the right (Cam2). Because monocular inertial initialization only uses the
IMU-Cam1 pair, the Cam2 is shown in gray.

A. Monocular Inertial Initialization

1) IMU-Camera Orientation Calibration and Gyroscope
Bias Correction: Fig. 2 presents the transformation from the
world coordinate system to two consecutive frames i and j .
In the case of the left camera (Cam1 in Fig. 2), rotation from bi

to cl
j can be calculated in two ways (red arrows and blue arrow

in Fig. 2), and they are theoretically equal. The equivalent
relations are expressed as

qbi b j ⊗ qbcl = qbcl ⊗ qcl
i c

l
j

(8)

in which qbi b j is the rotation from i th IMU to j th IMU, and
qcl

i c
l
j

is the rotation from i th left camera to j th left camera, qbcl

is the IMU-camera rotation we need to estimate. According to
(2) and (3), (8) can be written as the following linear equation:(

L
(
qbi b j

)
−R

(
qcl

i c
l
j

))
qbcl = Qi

j · qbcl = 0 (9)

where qbi b j can be computed by integrating the IMU mea-
surement, and qcl

i c
l
j

can be computed by the eight-point
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algorithm [31]. In practice, there exist N frames and corre-
sponding geometry constraints, according to (9), they can be
used to construct an overdetermined linear equation

w0
1 ·Q

0
1

w1
2 ·Q

1
2

...

wN−1
N ·QN−1

N

qbcl = QN · qbcl = 0. (10)

Because the calculation of qcl
i c

l
j

highly relies on the quality
of feature tracking, we use weight w to remove outliers

wi
j =


1, r i

j < threshold
threshold

r i
j

, otherwise. (11)

According to the relationship between the rotation matrix
and axis angle, the residual r i

j can be computed by the
following equation:

r i
j = acos

((
tr
(

R̂−1
bcl R̂−1

bi b j
R̂bcl R̂cl

i c
l
j

)
− 1

)/
2
)
. (12)

Theoretically, residual r i
j tends to be zero. The weight

in (10) is smaller when the residual becomes larger. After
solving (10), the gyroscope bias can be estimated by the
following equation:

b∗g = arg min
bg

∑
i, j∈B

∥∥∥∥2
[
q−1

cl
0b j
⊗ qcl

0bi
⊗ qbi b j

]
xyz

∥∥∥∥2

(13)

in which B is the set of camera frames, qcl
0b j

and qcl
0bi

can be
computed with the accumulation of camera rotation and the
estimated IMU-camera rotation qbcl . According to (6), qbi b j is
the function of bg .

We only consider the transformation from IMU to the left
camera in this step. The camera–camera extrinsic parameters
will be estimated in the later steps, this will be presented in
detail in Section IV-C.

2) Bias, Gravity, Scale Factor, and IMU-Camera Trans-
lation Estimation: In this step, we first perform monocular
SFM [32] to compute the poses of the camera Rc0ck , p̂c0ck ,
in which k denotes kth frame and p̂c0ck is the translation
without metric scale. Then we estimate the necessary parame-
ters by aligning visual measurement with IMU preintegration.
They are defined as

X I = [vb0 , vb1 , . . . , vbN , pbcl , ba, bg, Rwg, pbcl , s] (14)

where vbk (k ∈ N ) is the velocity under kth frame, N is the
number of camera frames, and N = 15 in our implementation.
ba and bg denote IMU biases, which are assumed to be
invariable in this step because it takes just 1–2 s to perform
initialization. Although gyroscope bias bg has been estimated
in Section IV-A, it is further optimized in this step. Rwg is the
gravity direction parameterized by two angles [6], [11], [33].
Gravity in the world coordinate is expressed as gw

= RwggI ,
where gI = [0 0 G]T with G = −9.81. Let i and j be
the consecutive camera frames, and the first camera c0 frame

is the world coordinate, the transformation between camera
frame c0 and the i th IMU body frame is

Rc0bi = Rc0ci R
−1
bc

sp̂c0bi = sp̂c0ci − Rc0bi pbcl . (15)

According to (6), (7), and (15), we can define the following
IMU measurement residuals [6], [11]:

ri j
p = αbi b j (ba, bg)− sRbi c0

(
p̂c0c j − p̂c0ci

)
−Rbi b j pbcl + pbcl +

1
2

Rbi c0 Rc0ggI 1t2
k − vbi 1tk

ri j
v = βbi b j

(ba, bg)

−Rbi c0

(
Rc0b j vb j + Rc0ggI 1tk − Rc0bi vbi

)
(16)

where 1tk is the time interval between frames. Given N
cameras and IMU measurement residuals between them, the
optimal estimation can be obtained by minimizing the sum of
residuals

X ∗I = arg min
X I

∑
i, j∈N

∥∥ri j
p + ri j

v

∥∥
2

. (17)

We optimize the gravity on-manifold [6], [33]

Rc0g ← Rc0g Exp(ω1, ω2, 0) (18)

where Exp(·) is the exponential map from SO(3) to se(3) [28],
ω1 and ω2 are two angles used to parameterize the gravity
direction.

B. Monocular VI-BA

After monocular inertial initialization, we go ahead with
monocular VI-BA for high accuracy state estimation. The full
state variables are defined as

X = [ξ 1, ξ 2, . . . , ξ N , ρ0, ρ1, . . . , ρM ]

ξ k = [pwbk , vwbk , qwbk , ba, bg] (19)

in which ξ k is the state of IMU at the same instant as the kth
image frame, including position, velocity, and orientation in
the world frame pwbk , vwbk , qwbk and IMU bias ba, bg . And
ρi is the inverse depth [34] of the i th landmark from its first
observation. The estimation of the scale factor provides initial
values for pwbk . We minimize the sum of residuals to obtain
a maximum posterior estimation. The cost function is written
as

X ∗ = arg min
X

∑
k∈N

∥∥rk
b(X )

∥∥
2 +

∑
i, j∈N

∥∥ri, j
c (X , xi, j )

∥∥
2

 (20)

where rk
b(X ) is the residual for IMU measurement [1], [2] (7).

ri, j
c (X , xi, j ) is the residual for monocular visual measurement,

which is defined as the reprojection error on the normalized
image plane in the current frame [2], [5]

ri, j
c (X , xi, j ) =

∥∥∥∥∥
(Pc j

Zc j

− x j

)
xy

∥∥∥∥∥
2

(21)

in which Pc j = [Xc j Yc j Zc j ]
T is the estimated position of the

landmark in the j th frame, and xk is the observation of the
same landmark in the j th frame. And (·)xy represents the first
two dimensions of the vector.
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Fig. 3. One landmark and its projection in three consecutive frames. Cam1
and Cam2 represent left and right camera, respectively. The position of
landmark P and the pose of the left camera are known after monocular inertial
initialization. The observations of landmarks in both left and right cameras
(xl and xr ) have been achieved from the measurement preprocessing module.

C. Right Camera Pose Estimation

The monocular VI-BA procedure has estimated the inverse
depth for a set of landmarks and the pose of several body
frames, therefore, we can compute the 3-D landmark positions
in each left camera frame. Fig. 3 shows the position of
one landmark and its projection in three consecutive frames.
There exist hundreds of such landmarks. In addition, the
observation of landmark in the right camera (xr in Cam2,
see Fig. 3) have been achieved from the measurement pre-
processing module. Here, in each camera coordinate, we have
a set of 3-D landmark positions in the left camera frame and
corresponding observations in the right camera. Therefore, the
camera–camera transformation can be estimated by minimiz-
ing 3-D–2-D reprojection error, let takes landmarks project to
the kth frame as an example

R∗lr , p∗lr = arg min
Rlr ,tlr

∑
k∈N

∥∥∥(π(RT
lr Pl

ck
− RT

lr plr
)
− xr

k

)
xy

∥∥∥
2

(22)

in which π(·) denotes the projection of a 3-D point to the
normalized image plane.

D. Stereo VI-BA and Marginalization

The online initialization and extrinsic calibration module
provides an initial guess of necessary parameters during the
initial phase. But some of them need to be further optimized
in the subsequent backend solver module. The whole state
variables are defined as

X = [ξ 1, ξ 2, . . . , ξ N , ξ bc, ρ0, ρ1, . . . , ρM ]

ξ k = [pwbk , vwbk , qwbk , ba, bg]

ξ bc =
[
pl

bc, ql
bc, plr , qlr

]
. (23)

Different from monocular VI-BA, our stereo VI-BA method
takes extrinsic parameters ξ bc into account, including left
IMU-camera and camera–camera transformation. The residual
of visual measurement contains the reprojection error on both
left and right camera. The projection of the landmark to the
right camera is related to camera–camera transformation plr

and qlr . Consider a landmark is first observed in the i th
frame, the residual of visual measurement in the j th frame

is defined as

ri, j
c (X , xk) = f (ξ k, ξ bc, ρi )

=

∥∥∥∥∥∥
(

Pl
c j

Z l
c j

− xl
k

)
xy

+

(
Pr

c j

Z r
c j

− xr
k

)
xy

∥∥∥∥∥∥
2

(24)

in which Pl
c j

can be computed by pose transformation from
i th to j th frame

Pl
c j
= R⊤bcR⊤wb j

Rwbi RbcPl
ci

+R⊤bc

(
R⊤wb j

((
Rwbi pbc + pwbi

)
− pwb j

)
− pbc

)
(25)

where Pl
ci

can be computed by the normalized image coordi-
nate and the inverse depth under j th frame: Pci = xi/ρi . Pr

c j
is

computed by camera–camera transformation

Pr
c j
= R⊤lr Pl

c j
− R⊤lr tlr . (26)

The whole stereo VI-BA is formulated as a cost function

X ∗ = arg min
X

{∥∥rp −HpX
∥∥

2 +
∑
k∈N

∥∥rk
b(X )

∥∥
2

+

∑
k∈N

∥∥ri, j
c (X , xk)

∥∥
2

}
(27)

including prior constrain ∥rp −HpX∥2, IMU measurement
residual [1], [2] (7), and visual measurement residual (24).
In order to bound the computational complexity, a slid-
ing window optimization strategy is applied to selectively
marginalize landmark and keyframe, in a manner inspired
by [2]. If the average parallax between the incoming frame
and the latest keyframe is larger than a certain threshold,
or the amount of tracked features below a certain threshold,
the incoming frame is treated as a new keyframe. If the
incoming frame is keyframe, the oldest frame and the observed
landmarks are marginalized. Otherwise, we marginalize the
latest keyframe in the sliding window. The prior constrain
is constructed by the marginalized state variables and Schur
Complement [35], [36].

V. EXPERIMENTS

We evaluate our stereo VIO system on the widely used
benchmarking dataset EuRoC MAV [37]. It was collected with
an on-board Micro Aerial Vehicle, containing synchronized
stereo images with 20 Hz and IMU with 200 Hz. The accurate
ground truth pose is achieved from the Leica MS50 laser
tracker. The ground truth of extrinsic parameters and IMU
biases are also provided. The dataset is collected from the
Industrial Machine Hall and the Vicon Room without dynamic
objects. The EuRoC MAV dataset has been a standard for
VIO performance evaluation. All the experiments are carried
out on a low-cost laptop with Ubuntu 16.04, Intel i5-4200
four-core 2.5 GHz CPU, and 8 GB of RAM. For each
sequence in the EuRoC dataset, the average processing time
of each step in Section IV are shown in Fig. 4. It takes less
than 300 milliseconds to achieve initial guess of extrinsic
parameters.
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Fig. 4. Average processing time of each step in Section IV for each sequence
in EuRoC dataset. Each sequence is performed 15 tests with different start
time.

Fig. 5. IMU-camera and camera–camera calibration error using different
start times in the V1-02 sequence.

A. Extrinsic Calibration Results

In this section, the performances of self-calibration are
shown using the V1-02 sequence in the EuRoC dataset. We use
rotation error and translation error to evaluate the extrinsic
parameters’ self-calibration result. The evaluation parameters
are defined as the following formula:

δθerr = arccos

(
tr(RestmRT

gt)− 1

2

)
δterr =

∥∥testm − tgt
∥∥

2 (28)

where the rotation error is δθerr (radian) represents as axis
angle of RestmRT

gt, and the translation error δterr (m) is the
norm of the difference between the two vectors. The subscript
estm denotes our estimation result and gt denotes ground truth.

Fig. 5 shows the IMU-camera and camera–camera calibra-
tion error with ten different start times in the V1-02 sequence.

Fig. 6. Convergence performance of extrinsic parameters refinement in the
backend solver. It takes less than 60 frames (3 s) for the errors to reach
convergence.

The rotation errors of the IMU-camera are less than 0.1 radians
(5.73 degrees) and the camera–camera rotation errors are even
smaller. The norm of IMU-camera translation ground truth is
∥pbcl∥ = 0.069 m and the norm of camera–camera translation
ground truth is ∥plr∥ = 0.11 m. The camera–camera trans-
lation estimation has higher accuracy with a relative error of
less than 20%, but the relative error of IMU-camera translation
estimation is even larger than 50% in several start times.
The precision of scale factor estimation is reflected in the
camera–camera transformation result because the initial values
of 3-D landmark positions in (22) are computed by the camera
poses. Note that these are the calibration results during the
initial phase. The extrinsic parameters are further refined in the
subsequent nonlinear optimization, which is performed by the
backend solver module. The extrinsic parameters estimation
error change with the frame count can be seen in Fig. 6. Less
than 60 frames (3 s) are enough for the errors to converge to
a minimum. This experiment indicates that the initialization
and extrinsic calibration module is available to provide reliable
initial guesses of extrinsic parameters, and the backend solver
can effectively further optimize the extrinsic parameters.

B. Bias Estimation Results

We use the V1-02 sequence to evaluate and analyze the
performance of biases estimation results. In these experiments,
the proposed online biases correlation method is compared
with VINS-Fusion [24], which is the state-of-the-art stereo
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Fig. 7. IMU bias correction results during the initial procedure with different
methods. The data contains the results of ten start times.

VIO algorithm with online biases correlation. Fig. 7 compares
the IMU biases correction performance between our method
and VINS-Fusion during the initial procedure, which contains
ten tests with different start times. If the points are closer to the
dotted line, it indicates that the IMU biases correction results
have higher accuracy. The result shows that the proposed
method performs worse than VINS-Fusion on IMU biases esti-
mation during the initial procedure. Compared with gyroscope
bias, however, the accelerometer bias estimation results are
closer to those of VINS-Fusion. It should be noted that the
proposed biases correction method operates with completely
unknown extrinsic parameters, but VINS-Fusion has accurate
extrinsic parameters. The IMU biases estimation results are
still acceptable under such hostile conditions.

Moreover, the IMU biases are further optimized in the
backend solver module. The IMU biases estimation results
change with frame number using our method and VINS-Fusion
are shown in Fig. 8. In addition to motion estimation, the
backend solver of the proposed stereo VIO not only opti-
mizes the IMU biases but also further refines the extrinsic
parameters. But VINS-Fusion only takes IMU biases into
account. The gyroscope biases estimation during the initial
procedure is easily affected by the imprecise extrinsic param-
eters. Therefore during the first 100 frames (5 s), the biases
estimation of VINS-Fusion is much closer to the ground
truth. Afterward, however, the proposed method can also make
the estimated IMU biases close enough to the ground truth
gradually along with the frame number. The aforementioned
experimental results indicate that the proposed method is capa-

Fig. 8. IMU biases estimation results change with frame number using
different methods.

ble of estimating IMU biases with unknown extrinsic parame-
ters. Although the convergence performance in the beginning
is unsatisfactory, compared with VINS-Fusion which has pre-
cise extrinsic parameters, it can still converge to the ground
truth in a similar time.

C. Trajectory Accuracy Comparison

The root mean square error (RMSE) of the absolute tra-
jectory error (ATE) metric is used to evaluate the trajectory
accuracy of the proposed stereo VIO. In this experiment,
we compare our VIO method with the state-of-the-art VIO
that work with a stereo camera, including VINS-Fusion [24]
and S-MSCKF [8]. We turn off the loop closure mode of
VINS-Fusion for fairness. It is worth noting that the proposed
method operates with completely unknown extrinsic parame-
ters, specifically, the rotation is set to 3 × 3 identity matrix,
and the translation vector is set to zero. However, the state-of-
the-art methods have precise extrinsic parameters provided by
the EuRoC dataset. Table II shows the accuracy comparison
results and trajectory length of the EuRoC dataset, S-MSCKF
has the highest accuracy, and our method has a similar perfor-
mance to VINS-Fusion. The accuracy performance indicates
the proposed backend solver has a capacity for eliminating the
impact of imprecise extrinsic parameters.

In addition, we make a qualitative comparison between
VINS-Fusion with inaccurate initial extrinsic parameters,
which are provided by the proposed initialization and extrinsic
calibration module. The calibration error for each sequence
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TABLE II
EXTRINSIC CALIBRATION ERROR AND TRAJECTORY ACCURACY COMPARISON IN EUROC DATASET. THE EXTRINSIC CALIBRATION RESULTS ARE

PROVIDED BY INITIALIZATION AND EXTRINSIC CALIBRATION MODULE, WHICH ARE USED TO COMPUTE CALIBRATION ERROR. THE BEST
RESULTS OF TRAJECTORY ACCURACY ARE SHOWN IN BOLD

Fig. 9. Estimated trajectories comparison of MH-01 sequence. VINS-Fusion
operates with inaccurate extrinsic parameters, but our method does not depend
on any prior knowledge.

is shown in Table II. All stereo VIO methods suffer from
the inaccurate extrinsic parameter condition. Regardless of
the off-line extrinsic calibration method used, there may exist
error. The possible sources of calibration errors include the
inaccuracy of the sensors, the low quality of visual markers,
and the imprecision of the calibration algorithm. It is difficult
to determine the calibration error in practical applications.
Therefore, it is possible for stereo VIO to suffer from such
an inaccurate extrinsic parameter condition. In view of this
situation, VINS-Fusion provides a function that estimates
transformation between IMU and each camera online, which
computes camera–camera transformation indirectly. It is easily
influenced by one of the IMU-camera transformation estima-
tion results, especially, when the initial value is inaccurate.
The motion estimation of a stereo camera highly depends
on camera–camera extrinsic parameter, because it is directly
used to compute the landmark positions. But our method
avoids this disadvantage by estimating camera–camera trans-
formation directly. As can be seen in Table II, the trajectory

accuracy of our method is slightly higher than VINS-Fusion
in inaccurate extrinsic parameters situation. Fig. 9 shows the
output trajectory comparison of the MH-01 sequence, in which
VINS-Fusion with inaccurate extrinsic parameters drifts obvi-
ously, but our method can make the trajectory well-aligned
with the ground truth. The above experiments show that the
advantage of the proposed method is the capability of handling
unknown extrinsic parameters, and the better performance in
online extrinsic calibration in comparison with VINS-Fusion.

VI. CONCLUSION

In this article, we have presented a stereo VIO with
online initialization and extrinsic self-calibration. This system
contains three main modules: the measurement preprocess-
ing module, the initialization and extrinsic calibration mod-
ule, and the backend solver module. The initialization and
extrinsic calibration module not only computes IMU biases,
velocity, and gravity direction but also creatively estimates
the IMU-camera and camera–camera transformation without
prior knowledge. In addition, the proposed backend solver
is able to further refine the IMU-camera and camera–camera
extrinsic parameters. The experimental results indicate that the
proposed method can accurately estimate the extrinsic param-
eters without initial value in seconds. In the meantime, IMU
biases are also successfully estimated. The trajectory accuracy
has a similar performance to VINS-Fusion and S-MSCKF
with precise extrinsic parameters. In addition, the trajectory
accuracy is slightly higher than VINS-Fusion in inaccurate
extrinsic parameters situation. The proposed stereo VIO allows
the device to realize “power-on-and-go” without tedious offline
extrinsic calibration.

REFERENCES

[1] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold
preintegration for real-time visual-inertial odometry,” IEEE Trans.
Robot., vol. 33, no. 1, pp. 1–21, Feb. 2017.

[2] T. Qin, P. Li, and S. Shen, “VINS-mono: A robust and versatile
monocular visual-inertial state estimator,” IEEE Trans. Robot., vol. 34,
no. 4, pp. 1004–1020, Aug. 2018.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 05,2023 at 09:11:31 UTC from IEEE Xplore.  Restrictions apply. 



9508210 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023

[3] W. Huang, H. Liu, and W. Wan, “An online initialization and self-
calibration method for stereo visual-inertial odometry,” IEEE Trans.
Robot., vol. 36, no. 4, pp. 1153–1170, Aug. 2020.

[4] Y. Fan, R. Wang, and Y. Mao, “Stereo visual inertial odometry with
online baseline calibration,” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2020, pp. 1084–1090.

[5] T. Qin and S. Shen, “Robust initialization of monocular visual-inertial
estimation on aerial robots,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Sep. 2017, pp. 4225–4232.

[6] C. Campos, J. M. M. Montiel, and J. D. Tardós, “Inertial-only optimiza-
tion for visual-inertial initialization,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2020, pp. 51–57.

[7] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual-inertial odometry using nonlinear optimization,”
Int. J. Robot. Res., vol. 34, no. 3, pp. 314–334, 2015.

[8] K. Sun et al., “Robust stereo visual inertial odometry for fast autonomous
flight,” IEEE Robot. Autom. Lett., vol. 3, no. 2, pp. 965–972, Apr. 2018.

[9] R. Mur-Artal and J. D. Tardós, “Visual-inertial monocular SLAM with
map reuse,” IEEE Robot. Autom. Lett., vol. 2, no. 2, pp. 796–803,
Apr. 2017.

[10] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel, and
J. D. Tardós, “ORB-SLAM3: An accurate open-source library for visual,
visual–inertial, and multimap SLAM,” IEEE Trans. Robot., vol. 37,
no. 6, pp. 1874–1890, Dec. 2021.

[11] W. Huang and H. Liu, “Online initialization and automatic camera-IMU
extrinsic calibration for monocular visual-inertial SLAM,” in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 5182–5189.

[12] Y. Yang, P. Geneva, X. Zuo, and G. Huang, “Online self-calibration
for visual-inertial navigation systems: Models, analysis and degeneracy,”
2022, arXiv:2201.09170.

[13] S. Baker and I. Matthews, “Lucas–Kanade 20 years on: A unifying
framework,” Int. J. Comput. Vis., vol. 56, no. 3, pp. 221–255, Feb. 2004.

[14] M. Li and A. I. Mourikis, “High-precision, consistent EKF-based visual-
inertial odometry,” Int. J. Robot. Res., vol. 32, no. 6, pp. 690–711,
May 2013, doi: 10.1177/0278364913481251.

[15] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “A first-estimates
Jacobian EKF for improving SLAM consistency,” in Experimental
Robotics. Berlin, Germany: Springer, 2009, pp. 373–382.

[16] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “OpenVINS:
A research platform for visual-inertial estimation,” in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), May 2020, pp. 4666–4672.

[17] Z. Huai and G. Huang, “Robocentric visual–inertial odometry,”
Int. J. Robot. Res., vol. 41, no. 7, pp. 667–689, Jun. 2022, doi:
10.1177/0278364919853361.

[18] R. Miao, J. Qian, Y. Song, R. Ying, and P. Liu, “UniVIO: Unified
direct and feature-based underwater stereo visual-inertial odometry,”
IEEE Trans. Instrum. Meas., vol. 71, pp. 1–14, 2022.

[19] L. Xia, D. Meng, J. Zhang, D. Zhang, and Z. Hu, “Visual-inertial
simultaneous localization and mapping: Dynamically fused point-line
feature extraction and engineered robotic applications,” IEEE Trans.
Instrum. Meas., vol. 71, pp. 1–11, 2022.

[20] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, Initialization-
Free Monocular Visual-Inertial State Estimation with Application to
Autonomous MAVs. Cham, Switzerland: Springer, 2016, pp. 211–227.

[21] Z. Yang and S. Shen, “Monocular visual–inertial state estimation with
online initialization and camera–IMU extrinsic calibration,” IEEE Trans.
Autom. Sci. Eng., vol. 14, no. 1, pp. 39–51, Jan. 2017.

[22] J. Kaiser, A. Martinelli, F. Fontana, and D. Scaramuzza, “Simultaneous
state initialization and gyroscope bias calibration in visual inertial
aided navigation,” IEEE Robot. Autom. Lett., vol. 2, no. 1, pp. 18–25,
Jan. 2017.

[23] Z. Wang and X. Cheng, “Adaptive optimization online IMU self-
calibration method for visual-inertial navigation systems,” Measurement,
vol. 180, Aug. 2021, Art. no. 109478.

[24] T. Qin, S. Cao, J. Pan, and S. Shen, “A general optimization-based
framework for global pose estimation with multiple sensors,” 2019,
arXiv:1901.03642.

[25] J. Jaekel, J. G. Mangelson, S. Scherer, and M. Kaess, “A robust multi-
stereo visual-inertial odometry pipeline,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Oct. 2020, pp. 4623–4630.

[26] K. Eckenhoff, P. Geneva, J. Bloecker, and G. Huang, “Multi-camera
visual-inertial navigation with online intrinsic and extrinsic calibration,”
in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019, pp. 3158–3164.

[27] K. Eckenhoff, P. Geneva, and G. Huang, “MIMC-VINS: A versatile
and resilient multi-IMU multi-camera visual-inertial navigation system,”
IEEE Trans. Robot., vol. 37, no. 5, pp. 1360–1380, Oct. 2021.

[28] T. D. Barfoot, State Estimation for Robotics. Cambridge, U.K.: Cam-
bridge Univ. Press, 2017.

[29] J. Shi, “Good features to track,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 1994, pp. 593–600.

[30] J. Y. Bouguet, Pyramidal Implementation of the Lucas–Kanade Fea-
ture Tracker Description of the Algorithm. San Jose, CA, USA: Intel
Corporation, Microprocessor Research Labs, 2000.

[31] R. I. Hartley, “In defense of the eight-point algorithm,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 19, no. 6, pp. 580–593, Jun. 1997.

[32] J. L. Schönberger and J. Frahm, “Structure-from-motion revisited,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 4104–4113.

[33] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “IMU prein-
tegration on manifold for efficient visual-inertial maximum-a-Posteriori
estimation,” in Proc. Robot., Sci. Syst., 2015.

[34] J. Civera, A. J. Davison, and J. Montiel, “Inverse depth parametrization
for monocular SLAM,” IEEE Trans. Robot., vol. 24, no. 5, pp. 932–945,
Oct. 2008.

[35] K. Eckenhoff, L. Paull, and G. Huang, “Decoupled, consistent
node removal and edge sparsification for graph-based SLAM,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016,
pp. 3275–3282.

[36] G. Sibley, L. Matthies, and G. Sukhatme, “Sliding window filter with
application to planetary landing,” J. Field Robot., vol. 27, no. 5,
pp. 587–608, Sep. 2010.

[37] M. Burri et al., “The EuRoC micro aerial vehicle datasets,” Int. J. Robot.
Res., vol. 35, no. 10, pp. 1157–1163, Sep. 2016.

Hongpei Yin received the B.S. degree in mechan-
ical engineering and automation from the North
China University of Technology, Beijing, China,
in 2018. He is currently pursuing the Ph.D. degree
in mechatronics with the Beijing Jiaotong University,
Beijing.

His current research interests include visual SLAM
and state estimation.

Peter Xiaoping Liu (Fellow, IEEE) received the
B.Sc. degree in mechanical engineering and the
M.Sc. degree in instrumentation and control engi-
neering from Northern Jiaotong University, Beijing,
China, in 1992 and 1995, respectively, and the
Ph.D. degree in electrical and control engineering
from the University of Alberta, Edmonton, AB,
Canada, in 2002. He has been with the Department
of Systems and Computer Engineering, Carleton
University, Ottawa, ON, Canada, since July 2002,
where he is currently a Professor. His is also with

Beijing Jiaotong University, Beijing, as an Adjunct Professor. His research
interests include interactive networked systems and teleoperation, haptics,
surgical simulation, and control and intelligent systems. Dr. Liu has served
as an Associate Editor for several journals, including IEEE/ASME TRANS-
ACTIONS ON MECHATRONICS, IEEE TRANSACTIONS ON CYBERNETICS,
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING,
IEEE/CAA JOURNAL OF AUTOMATICA SINICA, and IEEE TRANSACTIONS
ON INSTRUMENTATION AND MEASUREMENT. He is a licensed member of
the Professional Engineers of Ontario (P.Eng), a Fellow of the Engineering
Institute of Canada (FEIC), and a Fellow of Canadian Academy of Engineer-
ing (FCAE).

Minhua Zheng (Member, IEEE) received the B.Sc.
degree in measurement control and information tech-
nology from Beihang University, Beijing, China,
in 2010, and the Ph.D. degree in electronic engi-
neering from the Chinese University of Hong Kong,
Hong Kong, in 2015. She is currently an Associate
Professor with the School of Mechanical, Electronic
and Control Engineering, Beijing Jiaotong Univer-
sity, Beijing. Her research interests include robotics
and intelligent systems, human–robot interaction,
social robotics, and virtual surgery systems.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 05,2023 at 09:11:31 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1177/0278364913481251
http://dx.doi.org/10.1177/0278364919853361

