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Abstract

Most smoothing‐based visual‐inertial simultaneous localization and mapping algo-

rithms (VI‐SLAM) rely on the Lie algebra processing of the inertial measurements.

This approach is limited in its decoupled update of the attitude by using SO3 and

velocity increments by SE3. In addition to limitations on only point transformation

between frames. We present a novel approach to handling inertial measurement unit

(IMU) measurements between two camera frames by the screw motion theory.

Where rigid body dynamics are concisely represented by the compact unit dual

quaternion. With this approach, the limitations of point transformation are mitigated

by the superior Plücker line transformation and the states update is achieved by a

single coupled operation. To harness this consistent framework for a smoothing‐

based VI‐SLAM, the screw motion twist parameter is based on the raw IMU

measurements. Then, a consistent residual cost function with the corresponding

Jacobian and covariance updates is derived for graph‐optimization algorithm

respecting the screw motion paradigm. A transition method is proposed to

overcome the issues of over‐parametrization by the unit dual quaternion. solving

all singularity threats while saving the advantages of adopting the twist operator.

Finally, the loftier performance of the proposed algorithms is attested by simulation

and real‐world experiments.
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1 | INTRODUCTION

In recent years, Simultaneous Localization and Mapping (SLAM) has

received considerable attention from researchers and developers.

The applications have expanded to most technological and industrial

fields because of their low cost and high robustness (Huang, Thrun,

et al., 2006). Visual‐Inertial SLAM (VI‐SLAM) is the most reliable and

efficient method for performing an automated task such as

exploration and/or navigation. This integrated navigation system

consists of two main sensors and a powerful computer to achieve

the best performance (Cadena et al., 2016; Huang &

Dissanayake, 2016). Cameras and inertial measurement units (IMUs)

have been best partners for their easy integration and compact

nature (Delmerico & Scaramuzza, 2018). Because the IMU is a high‐

frequency standalone sensor, it can bridge scenarios where cameras

are ineffective (Bessaad et al., 2021). On the other hand, its

deteriorating performance is improved by the superiority of the

camera's estimation of homography (F‐E matrices) and the camera

pose (Triggs et al., 2000). This superiority is due to the maturity of

the computer vision algorithms and the accumulation of errors in

the inertial algorithms. However, the traditional integration meth-

ods employ the Kalman filter or one of its descendants, which
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suffers from lower accuracy in comparison to the smoothing‐

based integration counterpart (Delmerico & Scaramuzza, 2018;

Huang, 2019; Thrun et al., 2006).

A graph‐based SLAM rectifies the weakness of the filtering‐

based algorithm by the re‐linearization of the trajectory's keyframe

poses (Grisetti et al., 2010). Hence, it keeps track of all the vehicle's

past states and measurements, thus consumes more memory and

CPU time. Nonetheless, modern algorithms reduce the frame count

to only those keyframes that have significant data while the

marginalization routine harnesses all the important information

(Kaess, 2008). Also, the IMU measurements are preintegrated to

form a single update by the rotation and the translation increment

(Forster et al., 2015). As mentioned earlier, there is a lack in the

preintegration theory of the inertial aspect of the graph‐based VI‐

SLAM compared with the more mature visual algorithms. Only

recently has a continuous form of the preintegration based on Lie

algebra emerged along with an analytic form (Eckenhoff et al., 2018).

This is considered a step in the right direction but still insufficient to

reach the level of computer vision algorithms. To that end, we

present in this paper a novel approach to combine the raw IMU

measurements and perform preintegration in the screw motion

framework. Utilizing the unit dual quaternion (UDQ) as the pose

representation for edges between keyframes. Building the corre-

sponding optimization problem with the right cost function, weights

update, Jacobians, and bias Jacobians in the Maximum A Posteriori

(MAP) estimation sense for the graph‐based SLAM. We derive all the

necessary parameters for the graph‐solver whilst making a smooth

transition from the screw motion paradigm to the minimum

representation of states. Achieving a novel method to propagate

the measurements in an overly‐parametrized representation and then

extract the covariances and Jacobians in a minimal representation for

the solver while keeping the screw motion consistency.

After reviewing recent related literature in Section 2, we

summarize the underlying theory behind the screw motion and the

UDQ representation of the twist parameter. Followed by the

derivations of the IMU preintegration and its Jacobians necessary

for the graph‐SLAM algorithm in Section 3. Then in Section 4, we

introduce the optimization in the screw motion framework. A residual

cost function and its variant are defined alongside the corresponding

Jacobians. We benchmark the proposed algorithm against the state‐

of‐the‐art preintegration on‐manifold by simulations in Section 5. We

also test the algorithm in a real‐world scenario by means of publicly

available data sets. We then conclude the paper with our intended

future direction in Section 6.

2 | RELATED WORKS

Lupton in Lupton and Sukkarieh (2011) have proposed summing all the

IMU data between two consecutive frames into a single pose increment

to achieve computational tractability. Later work improved on it by

introducing the Lie algebra formulation of preintegration, which

overcomes Euler angle singularities (Forster et al., 2016). Since then,

the IMU preintegration theory has been dominated by this method,

adopting the direction cosine matrix and quaternion representation for

attitude and a three‐dimensional (3D) vector for the velocity

(Leutenegger et al., 2013). Understandably so for its suitable minimum

representation that can be modeled in the state space, avoiding

singularities in the Hessian and the covariance inversion. Later on,

continuous and closed‐form analytical solutions for the IMU measure-

ment propagation were presented (Eckenhoff et al., 2019, 2020; Le

Gentil & Vidal‐Calleja, 2021). Contributing to the completion of the

theory of the version based on Lie algebra. This formulation, however, is

still incoherent and ignores motion disturbances and irregularities such

as coning and sculling. Such batch‐based VI‐SLAM algorithms are

nonetheless successful and have been introduced to the industry with

great impact. One of the first implementations is the ORB‐SLAM2 (Mur‐

Artal & Tardos, 2017). This VI‐SLAM algorithm made use of Forster's

work and successfully provided an additional boost to the research. It

represents the poses with a homogenous matrix (direction cosine matrix

for attitude and a 3D vector for position). The algorithm was further

improved, especially for the map and IMU‐camera initialization, by an

optimized MAP initialization routine that accounts for IMU parameters

(Campos et al., 2019). However, this formulation does not account for

commutativity errors (Bessaad et al., 2018), still consumes memory and

CPU time to convert to minimal representation, and it is found to be

lacking in consistency. Another version of the preintegration on

manifold is by the quaternion update of the attitude and its optimization

by only the 3D vector part of the orientation error (Qin et al., 2018).

This method was proven faster and more robust, but it still updates the

pose by the direction cosine matrix in a decoupled manner. Aside from

these works, there are several successful VI‐SLAM algorithms that use

the same preintegration scheme. Please refer to (Delmerico &

Scaramuzza, 2018; Huang, 2019) for more details. All the above‐

mentioned methods are limited to only point transformations. However,

with screw motion theory, we can achieve line transformation between

frames (Adorno, 2017). This property can boost the research on scene

reconstruction by point clouds to a shape‐based scene understanding by

Plücker lines (Zhao et al., 2022). Figure 1 shows a comparison between

the SO3 + SE3 point‐only transformation and the proposed method.

In contrast to the Lie algebra formulation by SO3 + SE3, employ-

ing the screw motion theory for graph‐SLAM has not been

investigated thoroughly (Kim et al., 2015). In fact, the problem of

over‐parametrization and the induced singularity have discouraged

researchers from pursuing such a direction. On the other hand, the

IMU update by UDQ has been successfully implemented for simple

integrated navigation systems (YuanxinWu et al., 2005). Additionally,

the screw motion theory has been introduced to the robotics and

automation fields with great impact (Gouasmi, 2012). Where robot

arms and joints are modeled and controlled by the UDQ framework.

More details on formulating the kinematics of a planar parallel robot

have been published in Adorno (2017), Balmaceda‐Santamaría and

García‐Murillo (2019). Our work aligns with the general direction of

the robotics and SLAM communities to enrich the theory and

improve the performance by such notions. We introduce the full

graph‐based VI‐SLAM inertial aspect of the algorithm, that is, the
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preintegration and the optimization based on the screw motion

theory.

In the traditional Lie algebra formulation Figure 1a, each point P0

in the frame (O0, X0, Y0, Z0) endure a translation then rotation to the

new frame (O1, X1, Y1, Z1). In contrast, as shown in Figure 1b, a point

P0 in the frame (O0, X0, Y0, Z0) is part of a set of points defined by the

Plücker line l. where the entirety of line is transformed to the frame

(O1, X1, Y1, Z1).

3 | METHODOLOGY

3.1 | Basic theory on screw motion and unit dual
quaternion

The motion kinematics of a rigid body in free space is efficiently

represented by a rotation about an axis and a linear displacement

relative to that axis. This motion is analogous to the motion of a

screw moving on a solid plane before it finds equilibrium (Yuanxin

Wu et al., 2005). Thus, the name “screw motion” originated. The

screw motion axis and pitch are sufficient to model any motion in

free space. And to represent such behavior, the UDQ has been

found so far to be the most compact and efficient method. This

operator must be of unit magnitude and inherit the characteristics

of quaternions (Gouasmi, 2012), it actually consists of two

quaternions: q͡ q q′= ( , ).

⊗͡








sq = , v

q = q + t q ,

( ),

ε

2
( )

(1)

where s is the scalar part of a unit quaternion q, and v is the vector

part. ε is the nilpotent parameter with the following properties:

ε ≠ 0, ε = 02 . The UDQ q͡ is composed of two parts as mentioned

before. The rotation is encoded by unit quaternion q and the

translation t is embedded within q′ where ⊗q′ t q= . The special

operator ⊗ is the quaternion product operator.

F IGURE 1 SO3 + SE3 versus screw motion
for rigid body transformation. (a) Point
transformation by SO3 + SE3. (b) Plücker line
transformation by screw motion theory.
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One very important property for q͡ is the unity magnitude

constraint, henceforth, Equation (2) must be satisfied for every UDQ.

͡  q εq q εq q εq q εqq 1= ( + ′ ) + ( + ′ ) + ( + ′ ) + ( + ′ ) = ,1 1
2

2 2
2

3 3
2

4 4
2

(2)

where the subscripts represent the elements of a rotational q and

translation quaternion q′.

The above equation is further expanded to formulate two

distinct constraints; the first is inherited from quaternions and the

second constraint is typical for the unit dual quaternion.

q q q q

q q q q q q q q

1,

0,

( ) + ( ) + ( ) + ( ) =

′ + ′ + ′ + ′ =

1
2

2
2

3
2

4
2

1 1 2 2 3 3 4 4

(3)

Knowing that there are 8 parameters in the unit dual quaternion,

the above constraints will result in a system with 6‐DOF which is

sufficient to model the rigid body motion in free space. Figure 2

illustrates the screw motion representation of keyframe displacement

in smoothing‐based SLAM. The point β is the projection of the origin

of frame O onto the screw axis d.



 










θ

β t S.d d t=
1

2
− + cot

2
× . (4)

The screw motion pitch S is determined by the projection of

translation vector t onto the screw axis d i.e., S = t d. . Hence, S is the

perpendicular distance between the axis of the projected point β and

the origin of body frame O’ and t is the distance traveled. θ is the

screw rotation angle.

Naturally, the unit dual quaternion inherits the properties of the

unit quaternion, including conjugate and inverse. The conjugate of a

quaternion is s q q q qq , ‐v* = ( ) = ( , − , − , − )s x y z while the inverse is

computed as

⊗ ⊗



  





  q q q q

q
1

q
q ,

q q q q q,

= *

= + + + = * = *s x y z

‐

2

2

1

2 2 2 2

(5)

To rotate a 3D vector v using a unit quaternion, the vector is

placed in the vector part of a quaternion with a vanishing scalar part

(Gouasmi, 2012).

v v v v v v vv q= ( , , ) → = ( , , , ).x y z s x y zv (6)

The resulting rotated vector v′ or v v v vq = ( ′, ′ , ′ , ′)s x y zv′ is obtained

by the transformation applying the quaternion product from left and

right.

⊗ ⊗ ⊗ ⊗q = q q q q q q*= .v′ v
‐

v
1 (7)

The unit quaternion q of the UDQ defines a rotation about an

axis d in the 3D frame while the rotation angle is θ. d is called the

screw axis and θ is the coupled screw dual angle as shown in

Figure 2. Then, a simplified nonlinear definition of the quaternion

is as follows:







θ θ

d d dq

q = −q.

= cos
2
, sin

2
( , , ) ,x y z (8)

The dual part in the screw motion operator is identified by the

dual nilpotent parameter ε, satisfying the constraint ε = 02 . It follows

that the standard notation for the unit dual quaternion in the

literature employs this parametrization in the following equation:

͡
ε

q = q q′+
2

. (9)

The UDQ product is achieved easily by the special operator⊗, it

is a composite of quaternion product and quaternion addition.

⊗

⊗ ⊗ ⊗

͡ ͡ ͡q q q

q q q q′ q′ q

= ,

= + ( + ).
ε

1 2

1 2 1 2 1 22

(10)

In contrast to the unit quaternion, the UDQ conjugate ⌢q and

UDQ inverse q͡−1 are distinct operators.

⌢

͡

ε

ε

q q q′,

q
q

q′

q

= −
2

=
1
−

2
.‐

2
1

(11)

In addition to the UDQ conjugate in Equation (11), there exists a

complementary operator q͡* and its expression is in Equation (12).

Where the unit quaternion inverse is employed.

͡
ε

q q q* = * +
2

* .′ (12)

This complementary conjugate is the element‐wise sign flip of

quaternions in the UDQ representation as follows:

͡ q q q q q q q qq* = ( , ‐ , ‐ , ‐ , ‐ ′ , ′ , ′ , ′ ).s x y z s x y z

As seen from Equation (1), the rigid body translation is embedded

within the dual quaternion. However, it can be easily extracted from

F IGURE 2 Screw motion representation of camera trajectory.
[Color figure can be viewed at wileyonlinelibrary.com]
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the UDQ by Equation (13). This property is essential for our solution

to overcome the parametrization issue for the optimization scheme.

⊗t q′ q= 2 *. (13)

From all of the above, the rigid body transformation following

the screw motion paradigm can easily be represented by the unit dual

quaternion. Nevertheless, this representation is also dependent on

the nature of body motion. Consider the body frame before and after

applying a displacement (rotation plus translation), the frames are

related by the dual quaternion where the order of motion types

(rotation then translation vice versa) decides the order of the dual

part product with the attitude quaternion.

⊗ ⊗͡
ε ε ε

q q q′ q t q q q t= +
2

= +
2

= +
2

,1 2 (14)

where ⊗t q1 is for translation followed by rotation and ⊗q t2 is a

rotation followed by a translation. It is then evident that to extract

the translation vector by Equation (13) depends on the order of

operations defined by Equation (14). Then, Equation (13) is further

expanded to include a dependency on the order of motions.

⊗

⊗

t q′ q ,

t q q′,

= 2 *

= 2 *

1

2

(15)

A primordial advantage of using the UDQ is that the Lie

algebra methods by rotation matrix or quaternions performs point

transformations. However, UDQ performs Plücker line transfor-

mations. Thus, any line represented by means of the Plücker lines

is transformed between 3D frames. This property is not really

explored for VI‐SLAM.

3.2 | IMU algorithm by dual quaternion

The idea behind the IMU preintegration is to express the pose‐graph

constraints with inertial measurements in the local frame. This

accomplishes three goals: optimization is applied directly to the

preintegrated IMU measurements, frame transformation error is

reduced, and computations are minimized. However, the representa-

tion using quaternions for attitude, vectors for position, and velocity

suffers from a form of loosely coupled integration. The attitude is

processed separately while the specific force is integrated into a

velocity and position displacement first. Then, a transformation to the

current frame is introduced by the updated attitude. Hence, the dual

quaternion formulation of the preintegration offers compact and

concise motion constraints with an efficient coupled update scheme.

It is critical to note that there are no conflicts or assumptions on the

motion constraints that contradict the traditional quaternion‐vector

representation. Thus, the dual quaternion only improves and enriches

the pose‐graph constraints by introducing the screw motion theory.

The basic continuous IMU preintegration for position and velocity in

the SO3 + SE3 formulation is expressed in the camera and body

frames as follows:

∫ ∫

∫

∫

dτds

dτ

dτ

p R a b n

v R a b n

R ω b n

R R R .

= ( − − ) ,

= ( − − ) ,

= ( − − ) ,

=

k
c

t

t

t

s c
τ m a a

k
c

t

t c
τ m a a

b
b t

t
m g g

c
b

c
b

Tb
b

+1

+1

+1

+1

k

k

k

k

k

k

k

+1

+1

+1

(16)

where Rcτ is the rotation matrix from current accelerometer

measurement to the camera local frame for the VI‐SLAM and Rb
b

+1

is the rotation update. Rcb is the fixed transformation from the IMU

body to camera frame obtained by the calibration step. am andωm are

the accelerometers and gyros measurements, ba and bg are bias and

the drift, na and ng are the accompanying sensor noise.

In IMU mechanization with screw motion theory, the pre‐

processed measurements are forth integrated to obtain pose and

velocity in the local frame. The quaternion formulation of the attitude

integration is straight forward by using the exponential map of

the rotation angles. Then, the attitude is used to transform

the acceleration or velocity increment to the global or navigation

frame depending on the application. However, the update of both

states (attitude, translation) is achieved in a single operation with the

UDQ product as seen in Equation (10). By applying the screw motion

rule to update the twist parameter⌢ωib
b in Equation (17), we can derive

the dual quaternion update of the IMU kinematics. Notice that since

the displacement vector is the velocity vector, the original equation is

updated considering for velocity and its first derivative.

⊗⌢ Exp
ε

Expω ω a ω v ω= ( ) +
2
( + × ) ( ),ib

b
ib
b b

ib
b b

ib
b (17)

where the superscripts define the update frame and the operator × is

the cross product. It is clear that the twist ⌢ωib
b is in the UDQ form.

This makes it simpler to update the IMU kinematics in a concise and

compact manner as shown in Equation (18). As it can be seen, both

IMU ideal measurements are coupled in a single update under the

screw motion generality.

⌢ ⊗ ⌢͡q̇ q ω2 = .ib ib ib
b (18)

The attitude update by rotation vector is analogous to the screw

update to be used for the unit dual quaternion. While the rotation

vector update by direction cosines requires the two‐speed approach to

account for the noncommutativity error, the quaternion update does

not require such explicit error correction. Because any quaternion

product performs a cross product of the vector parts implicitly.

Finally, we can formulate the preintegrated twist increment

update σ͡Δ ij of the duration tΔ ij between two consecutive keyframes

by Equation (19). The update by UDQ increment is analogous to the

mapping inherited from the quaternions as shown in Equation (20). In

the following equations, any variable state notated with “Δ” refers to

a state increment during the time period. Similarly, the notation with

“δ” refers to the error in the state.

⊗͡






( )( ) ( )∑ t

ε
tσ ω b η a b η qΔ = − − Δ +

2
− − Δ ,ij

k i

j

ib
b

k
g

k
g

ik k
b

k
a

k
a

ik ik
=

−1

k

(19)
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͡
͡

͡

͡͡

























σ

σ

σ
tq

σ
(Δ ) = cos

‖Δ ‖

2
,
Δ

‖Δ ‖
sin

‖Δ ‖

2
,ik

ik ik

ik

ik (20)

where ωib
b
k
, ak

b are the kth gyroscopes and accelerometer measure-

ments, bi
g , bk

a are the piecewise drift and bias between two frames

(i‐j), ηk
g , ηk

a are the associate noise terms. qik is the attitude variation

(from kth to ith keyframe).

The introduced twist increment summarizes the IMU measure-

ments within the current preintegration interval in the local frame. Here,

we only focus on the velocity and attitude computations and leave the

integration of position aside. Although it may seem convenient to sum

all gyroscopes measurements as they arrive, it is necessary to update

the rotation quaternion at every time step to transform the acceleration

to the current frame as it is the case with on‐manifold formulation.

From previous equations, it is clear that the twist increment update is

dependent on biases and noise terms. Therefore, we first isolate the noise

terms in the dual quaternion update to simplify the covariance update.

Considering that the bias and drift should be stable during the current

preintegration interval and considering the piecewise is discretized. We

assume piecewise constant gyroscopes and acceleration measurements

to simplify the integration process in the navigation computer. This step is

important to build the nonlinear optimization system.

3.3 | Noise covariance

It is evident that the formulation of the noise propagation by

quaternion is not very convenient for the covariance factorization.

Also, the matrix becomes large during the coding process, for each

quaternion is represented by 4× 4 matrix. Nevertheless, the

simplicity of conversion between quaternion and rotation matrix for

attitude can be an advantage to formulate the minimal representation

of the errors. Additionally, we propose a flexible mapping between

the formulation by the screw motion in the UDQ paradigm to the SE3

minimal formula. This mapping discussed in the next section proves

the duality between the Lie algebra and the screw motion theory.

Where a simple quaternion product by Equation (15) performs the

transition smoothly, allowing to harness the advantages of UDQ

without singularity issues.

The resulting linearized system of the covariance is simplified in

Equation (21), to be implemented in the minimum representation.

Therefore, no over‐parametrization issues occur by the quaternion

representation of the rotation and the translation.

where δ δ δφ v p, , are the attitude, velocity and position errors,

respectively. I is the identity matrix, Jr is the right Jacobian that maps

from parameter space to the tangent of the space manifold, RΔ is the

direction matrix andQR
(0:2,0:2) is the 3 × 3 right quaternion matrix that

can be extracted from a unit quaternion. Similarly, the left quaternion

matrix is extracted from the quaternion as follows.
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(22)

3.4 | Solving for over‐parametrization

The derivation of the optimization problem is similar to that based on SO3

but with an extra step that is necessary to overcome the over‐

parametrization by unit dual quaternion. Eventually, this is the first work

to formulate a full optimization problem based on unit dual quaternion

but also avoid the singularity induced by it. The steps are the following:

1. Propagate the inertial measurements using the screw motion

theory by Equations (19) and (20).

2. Isolate the quaternion in question (any factor to error terms in the

residual function) and simplify it to basic quaternion products.

3. The resulting translation should be a rotation quaternion product

with a translation 3D vector, that is, ⊗q′ t q= .

4. Transform the dual part to SE3 by using Equations (13) or (15).

5. Extract the parameters by the conventional derivative rule of

quaternion.

The noise covariance and bias Jacobians, in addition to the

residual Jacobians, were derived by respecting the above steps.

3.5 | Bias correction

The first order expansion is employed to update the pose information

after the bias value is optimized. Since gyro bias correction is an

additional rotation and the acceleration bias is a translation correction

obtained by the least‐squares method, it is more convenient to be

applied separately. As a result, their individual Jacobians are critical for

carrying out the first‐order bias update. Note that at the end of the
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derivation we obtain a rotation matrix because the Jacobian of a

quaternion with respect to a vector is always a rotation matrix.

Fortunately, it is more suitable to use such notion to achieve the update

by conversion fR qΔ = ( )ij ij . Additionally, utilizing the classic rotation

metric is more concise to the classic control theory. Making the update

of the covariance and the Jacobians a straightforward operation. The

resulting bias Jacobians are introduced in the following.

This derivation is comparable to the work of Forster in (Forster

et al., 2016) but with richer information coded within the gyros bias

Jacobians that accounts for the screwmotions’ nature. (Making it clearer

that there is a duality between the dual quaternion formulation and the

classical homogenous form). However, some terms can be safely

ignored to reduce the computational cost of the update.

4 | OPTIMIZATION IN THE SCREW
MOTION THEORY FRAMEWORK

The SLAM system is divided into two ends: front‐end and back‐end.

The front‐end is responsible for constructing a graph using the

sensors’ raw measurements and is also responsible for estimating the

data association. The backend determines the most likely configura-

tion of nodes, edges, and vertices of the constructed graph through

the optimization algorithm (nonlinear least square, bundle adjust-

ment) as shown in Figure 3. However, the Gaussian assumption of

the measurement model does not hold because of the multimodality,

that is, the observation can be fitted to multiple edges connecting

different poses. Thus, the resulting intractable multi‐modal estimation

is restricted to a basis for the data association problem solved by the

front end (Grisetti et al., 2010). The goal of the graph‐SLAM is to

obtain a mean for the Gaussian that represents the posterior of the

robot's trajectory, represented in our case by the screw motion

constraints. Where the mean is the maximum likelihood configuration

of nodes that is concise with the constructed edges. Hence, the graph‐

SLAM solves a minimization problem of the log‐likelihood that a

measurement Zij relates two frames or nodes xi and xj which is equal

to the transformation of their origin by the twist.

In a probabilistic fashion, we set the function Eij as the difference

between the observation and the expected measurement.
͡E Z Z x x= − ( , )ij ij ij i j . Then, the maximum likelihood approach aims to

minimize this cost function's negative log format. Therefore, it should

obtain a concise optimal configuration of the nodes in the graph.

F IGURE 3 Graph of the camera trajectory by keyframes and inertial measurement unit constraints. [Color figure can be viewed at
wileyonlinelibrary.com]
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∑x̃ E Λ E= argmin ,
δ i

j

ij
T

ij ij
φ φ v v p p( , , , , , )

−1

i j i j i j

(24)

where Λij is the information matrix that weighs the residual vector Eij.

The solution of this nonlinear cost function using the least squares

algorithm is computed by linearizing the error function around the

current guess. Subsequently, the residual to be minimized becomes a

function of the Jacobian, the Hessian, and the information matrix.

4.1 | Error function

The unit dual quaternion formulation of the residual error between

two vertices of the constraint can be extracted by basic dual

quaternion algebra. Equation (25) extracts the residual of the coupled

attitude and velocity. The residual of the position is also derived using

the Newtonian algebra to optimize the computation cost. It is worth

noting that the residual parameter Eij only contains the vector part of

the quaternions, which reduces the size of the matrices and enables

linear control reasoning. Another advantage of discarding the scalar

part is the consistency with the covariance matrix, which if over

parametrized will be singular.
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q
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ij i j
ε

j j i ij j

ij ij ij

2 (25)

where Eij
q is the attitude residual error and E′ij is the dual residual

error.

The gravity contribution must be accounted for before the

residual extraction. Also, the corrections to the screw motion

constraint increment are applied beforehand in Equation (26). The

bias estimation is updated using the bias Jacobians, which should be a

3 3 matrix. Hence, the rotation quaternion correction is actually a lift

of the bias error to the exponential map. While the update of velocity

and position is a simple vector addition.
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4.2 | Jacobians of the residuals

The Jacobian matrices enable the use of optimization methods to

achieve an optimal correction. To obtain the correct Jacobians for the

unit dual quaternion cost function, first, a perturbation of the

parameters by an added error is required. Where we introduce an

error term to the parameter space we want to optimize.

4.2.1 | Quaternion error

Before we proceed to the derivation of the residual Jacobians, we

must clarify the notation for the quaternion error. Similar to that of

the rotation matrix, the quaternion error uses an exponential

mapping. Ideally, the quaternion is a product of an ideal state q̃ and

an error term δq which consist of the mapping of the infinitesimal 3

directional error dependent on δφ: ⊗ δq q̃ q= or ⊗ eq q̃= δφ.

Henceforth, quaternion error is expressed as follows.
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Following Equation (27), the error in the quaternion is simplified

to an identity quaternion with only scalar part added to the half angle

rotation of the misalignment. This property is proven useful for the

optimization of UDQ graph‐based SLAM as shall be proven in the

following section.

4.2.2 | Perturbations of attitude

As previously discussed, the attitude represented by the unit

quaternion is dependent only on the bias change. Note that the bias

is considered constant or piecewise constant during the IMU

preintegration. The corresponding residual Jacobians are presented

next, where we get a sparse matrix block.
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(28)

4.2.3 | Perturbation of the translation

The perturbation of translation takes the unit dual quaternion where

the SE3 translation vector is transformed to be the dual by the half

rotation quaternion product. Thereafter, it is simpler to perturb the

original local frame translation vector and do the derivations in the

screw motion paradigm.

⊗
ε

q′ t δt q↔
2
(( + ) ).i i i (29)
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Adopting this derivation makes it easier to define the retraction

then update the estimates of vertices by a simple addition in the

minimal representation by SE3. The following perturbations are

introduced to Equation (25) or Equation (32): δE v v′ ( + )ij i i , δE v v′ ( + )ij j j ,

⊗ eE q′ ( )ij i
δφi , ⊗ eE q′ ( )ij j

δφj , δE b b′ ( + )ij i
a

i
a , δE b b′ ( + )ij i

g
i
g . The translation

is dependent on the orientation states, bias and drift. Hence, the

Jacobians with respect to i‐th and j‐th frames are both present.

͡

͡

δ

δ

δ δ

δ

δ

δδ

δδ

E

φ
R v ,

E

φ
E

E

p
0

E

p
0,

E

v
R ,

E

v
R ,

E

b
R

q

b
,

E

b
R

q

b
.

∂ ′

∂
= Δ [Δ ]

∂ ′

∂
= [ ′ ] ,

∂ ′

∂
= ,

∂ ′

∂
=

∂ ′

∂
= −

∂ ′

∂
=

∂ ′

∂
= −Δ

1

2

∂ ′

∂

∂ ′

∂
= −Δ

1

2

∂ ′

∂

ij
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ij
T

ij

ij

j
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ij

j

ij

i
j
T

ij

j
j
T

ij

g ij
T ij

g

ij

a ij
T ij

a

×

×

(30)

4.2.4 | Perturbation of the position

Similar to the translation perturbation, the perturbation of the

position takes the dual quaternion where the constraint p′*ij is the

position increment in dual form. In fact, the position formulation is

the integrated velocity during the period of the preintegration and

this is evident from the Newton formula.

δ
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δ
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ij

j
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T ij

a

×

×

(31)

4.3 | Formulation in an optimized frame

The derived Jacobians are comparable to the derivation based on Lie

algebra. This is due to choices regarding truncation and optimization

frame. However, the screw motion paradigm has additional terms of

cross products that account for translational‐rotational relativity.

These terms add computation throughput but enhance the percep-

tion of the real‐world motion. It is also noticeable that the residual

function in the case of unit dual quaternion formulation transforms

the states to the jth frame, contrary to other implementations that

use the ith frame to reduce computation. Additionally, the sparsity of

the residual Jacobians and Hessian is affected by this extra step. This,

however, can be mitigated by using an alternative residual function

shown in the following equation:

⊗ ⊗

⊗ ⊗ ⊗ ⊗

͡ ͡ ͡









( )
( )t

E q q q E E

q q q q v v g q v

= 2 * * = + ′ ,

≈ 2 * * + * ( − − Δ ) − Δ .

ij i j ij ij
q

ij

i j ij
ε

i j i ij i ij2

(32)

The above equation is similar to that based on SO3 + SE3, which

means that the Jacobians of the residual will be closely related,

proving even more the duality. We chose to do our testing with the

first cost function to evaluate its convergence properties.

5 | EXPERIMENTAL RESULTS

5.1 | Simulations

The method based on unit dual quaternion should have an effect on the

convergence of the smoothing‐based SLAM, the execution time, the

memory cost, and the accuracy of the final solution. We test the efficacy

of the proposed method by simulation in the MATLAB environment,

where an unmanned aerial vehicle (UAV) flies to a high altitude. The

simulation executes the preintegration based on the proposed screw

update and the method based on Lie algebra for comparison.

The first metric that we investigate is the memory cost, where

the homogenous matrix is replaced by the UDQ representation of the

screw motion. Figure 4 shows that the memory requirement is

F IGURE 4 Memory cost of the homogenous matrix and the unit
dual quaternion. [Color figure can be viewed at
wileyonlinelibrary.com]
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reduced by 33% when saving the 8 pose parameters instead of the

12 parameters of the homogenous matrix. This aspect is useful when

the path of the robot is long, such as in a large city scenario. Next, we

compare the integration by screw vector to the existing method by

Forster et al. (2015). Figure 5 shows that the integration of the IMU

data during the flight test is comparable by the two methods. The

position error is reduced by the UDQ formulation by an order of ~3%

compared to the SO3 + SE3 algorithm. While the attitude error is

reduced by ~5% due to the commutativity advantage of the

quaternions. However, as shall be seen next, the computation cost

is heavier for the UDQ algorithm because of additional terms in the

integration of measurements, covariance, and Jacobian updates. The

average computational cost is about 25% increase over that of the Lie

algebra algorithm.

5.2 | Real‐world experiment

The real‐world experiment using the publicly available EuRoC MAV

data sets (Burri et al., 2016) validates the proposed algorithm. The

data sets use two Aptina MT9V034 global shutter cameras at 20 FPS

with an image resolution of 752 480 pixels and a MEMS ADIS16448

IMU at 200Hz rate. Images and IMU are synchronized properly, so

we can ignore their time offset. Additionally, a suitable spatial

calibration is provided from left‐to‐right camera and IMU to camera.

The implementation of the proposed SLAM algorithm is based on

ORB‐SLAM3, which uses the g2o optimization algorithm and ORB

feature extractor. Another implementation is based on VINS‐FUSION

(Qin et al., 2018), where ceres optimization library and Shi‐Tomasi

features with KLT‐tracking are employed. This method of testing

allows a fair comparison of the algorithm based on screw motion to

the other versions. Where the algorithm optimization library and

features extractors and all bells and whistles are mutual and no longer

influential.

The UDQ formulation rectifies the original smoothing‐based

SLAM algorithm in the IMU preintegration routine, Jacobians, and

optimization graph for initialization and bundle adjustment (BA).

While keeping the back‐end structure based on g2o/ceres graph‐

solver and the visual aspect of the front‐end. The optimization of

inertial edges in the sliding window executes 200 iterations in the

ORB‐SLAM3, but in the case of the UDQ formulation it is set

between 20 and 40 iterations only. A comparison of both algorithms’

metrics, including accuracy, and execution times, is provided for the

Stereo‐Inertial case of the SLAM algorithm.

Table 1 is the comparison of the algorithm based on UDQ and

the method based on (Forster et al., 2016) of ORB‐SLAM3. The

results are for the Stereo‐Inertial case, where all the metrics are

provided. The performance is comparable for both methods, where

F IGURE 5 Inertial measurement unit preintegration by unit dual
quaternion versus preintegration by SO3 during a simulated
unmanned aerial vehicle flight to high altitude. [Color figure can be
viewed at wileyonlinelibrary.com]

TABLE 1 Error comparison of ORB‐SLAM (SO3 + SE3) and proposed method.

Data set
SO3 + SE3 (cm) UDQ (cm)
RMSE Mean Median Std Max RMSE Mean Median Std Max

MH01 6.629 5.844 5.477 3.128 14.58 5.85 5.146 4.833 2.783 13.88

MH02 4.250 3.738 3.286 2.022 9.570 3.946 3.570 3.234 1.682 9.144

MH03 4.863 4.319 3.874 2.235 10.69 5.688 4.997 4.422 2.716 12.28

MH04 6.584 6.063 6.127 2.565 17.18 7.153 7.420 7.109 3.065 15.83

MH05 8.357 7.429 7.196 3.826 18.68 6.307 5.745 5.313 2.601 14.18

V101 2.906 2.615 2.637 1.266 5.940 3.244 2.943 2.895 1.365 6.852

V102 6.008 5.752 5.754 1.736 9.441 7.349 7.074 7.042 1.991 13.39

V103 5.072 4.377 3.476 2.562 11.31 8.088 7.158 6.813 3.766 24.43

V201 6.436 6.114 6.699 2.010 9.637 7.125 6.773 7.364 2.211 10.17

V202 5.823 5.330 4.971 2.344 11.03 5.596 5.187 4.915 2.261 10.79

V203 6.409 6.047 5.558 2.121 17.53 6.300 6.000 5.625 1.920 11.68

Note: The best performance results are in bold.

Abbreviations: RMSE, root mean square error; UDQ, unit dual quaternion.
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UDQ outperforms the SO3 + SE3 method in some cases in which the

motion is initially rich and the initialization of the IMU is straight‐

forward. The Lie algebra method still outperforms the UDQ method in

some cases by an order of millimeters. Nevertheless, the computa-

tional advantage and convergence properties in Table 2 is in favor of

the latter.

Similar pattern is observed by VINS‐FUSION experiments with

EuRoC MAV data sets. The algorithm employs different optimization

and feature extraction packages than ORB‐SLAM3. Table 3 witnesses

that the screw motion paradigm can be effectively introduced to any

smoothing‐based VI‐SLAM and have a positive effect in general. The

convergence properties by the proposed algorithm are superior and

the memory cost is reduced.

Table 2 approves that the computational cost mean of the

proposed preintegration is heavier than the method based on

Lie algebra. It is evident from the formulation that additional

terms account for the types of motion, where both linear and

angular velocity have an interchangeable effect on the pose

(position, orientation). However, the prediction cost by the

SLAM algorithm is reduced, and the overall tracking cost is also

reduced for the entire EuRoC MAV datasets. This improvement is

mainly due to the efficiency of the motion model based on

the UDQ.

Figure 6 validates the formulation of the inertial algorithm by the

screw motion. It has successfully reduced the error while suppressing

the computation cost. Even though the inertial optimization in the VI‐

SLAM backend performs fewer optimization iterations in the

proposed method, it has surpassed the algorithm on‐manifold. The

estimated trajectory in the EuRoC MAV MH01 data set is depicted in

Figure 7. Both methods have a good estimation of the body poses, but

UDQ aligns closer to the ground truth trajectory than its counterpart

based on SO3 + SE3 of ORB‐SLAM3.

TABLE 2 Execution time cost comparison of (SO3 + SE3) and UDQ algorithms.

Data set
SO3 + SE3 (ms) UDQ (ms)
Integration Pred. Tracking Integration Pred. Tracking

MH01 0.579 0.099 30.89 0.703 0.094 30.63

MH02 0.568 0.091 30.55 0.702 0.088 29.84

MH03 0.555 0.258 29.90 0.686 0.224 29.38

MH04 0.571 0.250 29.79 0.718 0.109 28.74

MH05 0.570 0.242 29.86 0.722 0.184 29.34

V101 0.592 0.138 31.13 0.731 0.140 30.40

V102 0.559 0.182 29.03 0.697 0.181 28.80

V103 0.551 0.149 27.54 0.687 0.141 26.60

V201 0.590 0.197 30.71 0.742 0.196 30.44

V202 0.576 0.167 29.27 0.712 0.165 28.69

V203 0.634 0.144 26.53 0.803 0.143 25.63

Note: The best performance results are in bold.

Abbreviation: UDQ, unit dual quaternion.

TABLE 3 Error comparison of VINS‐FUSION (SO3 + SE3) and proposed method.

Data set
VINS‐FUSION (cm) VINS‐UDQ (cm)
RMSE Mean Median std max RMSE Mean Median Std Max

MH01 26.68 25.45 26.16 7.99 38.43 30.92 29.1 31.63 10.45 55.85

MH02 21.5 19.85 19.5 8.27 46 29.04 27.1 27.63 10.3 61

MH03 29.27 25.98 22.24 13.48 49.75 25.67 22.40 20.43 12.54 59.8

MH04 42.54 39.37 37.05 16.13 70.54 42.11 39.15 36.23 16.06 70.4

MH05 30.47 27.93 22.97 12.05 57.93 15.86 14.21 14.52 7.05 31.33

V101 11.28 10.53 9.96 40.51 18.87 13.9 12.44 11.09 6.22 31.13

V201 12.36 9.86 6.96 7.45 26.14 20.86 15.73 10.27 13.7 55.5

Note: The best performance results are in bold.

Abbreviation: UDQ, unit dual quaternion.
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6 | CONCLUSIONS AND FUTURE WORK

Introducing the screw motion theory to the VI‐SLAM improves the

consistency and compactness of the rigid body dynamics. The

memory cost is reduced and the performance is enhanced due to

fewer parameters and faster convergence. This work has proved that

such VI‐SLAM can be futuristic and robust. Firstly, we formulated the

new preintegration scheme. Unit dual quaternions are employed to

construct the graphs’ inertial edges and the states are updated by the

screw motion framework. Secondly, the optimization problem for the

SLAM back‐end is assured to be singularity‐free in all scenarios while

maintaining all the desired advantages of such framework. Thirdly,

experiments based on popular smoothing‐based SLAM on EuRoC

MAV datasets validate this claim. The algorithms convergence

property is improved. An optimal solution is reached within 20% of

the iterations (25‐40 iterations suffice). Additionally, the memory

requirement is reduced by 33% and the preintegration algorithm cost

is approximately 25% higher due to richer kinematics. However, the

tracking by the new motion model is more efficient and compensates

for this increase. Lastly, we intend to incorporate this new algorithm

to a project for an Unmanned Surface Vehicle (USV) that explores its

environment based on the VI‐SLAM. Where the Plücker line

transformation is employed to reconstruct 3D scenes.
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