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A B S T R A C T   

This study aims to investigate two simple algorithms for extracting gait features from an inertial measurement 
unit (IMU) based canine gait analysis system. The first algorithm was developed to determine the hip/shoulder 
extension/flexion range of motion. The second algorithm automatically determines the stance and swing phase 
per leg. To investigate the accuracy of the algorithms, two dogs were walked on a treadmill and measured 
simultaneously with an IMU system, an optical tracking system and two cameras. The range of motion estimation 
was compared to the optical tracking systems, with a total of 280 steps recorded. To test the stance and swing 
phase detection, a total of 63 steps were manually annotated in the video recordings and compared with the 
output of the algorithm. 

The IMU’s-based estimation of the range of motion showed an average deviation of 1.4◦ to 5.6◦ from the 
optical reference, while the average deviation in the detection of the beginning and end of the stance and swing 
phases ranged from -0.01 to 0.09 s. This study shows that even simple algorithms can extract relevant infor
mation from inertial measurements that are comparable to results from more complex approaches. However, 
additional studies including a wider subject pool need to be conducted to investigate the significance of the 
presented findings.   

Introduction 

Objective gait analysis can provide clinicians with important infor
mation for therapeutic decision-making. It can be used not only to 
quantify and differentiate gait for diagnosis, but also to monitor reha
bilitation and treatment efficacy (Sandberg et al., 2020). In addition, 
objectively collected data can provide important information for 
breeding decisions. 

Gait analysis systems currently used in veterinary medicine to collect 
kinematic and kinetic data are either camera-based systems (Foss et al., 
2013), force plate systems (Duerr, 2020), accelerometer-based systems 
(Ladha et al., 2017), surface electromyography measurement systems 
(Deban et al., 2012) or instrumented treadmills (Gillette & Angle, 2008; 
Volstad et al., 2016). Camera-based systems that track optical, active, or 
passive markers (Foss et al., 2013) attached to the dog’s body are 
commonly used in research facilities (Fu et al., 2010) but rarely in 
veterinary clinics because they are very expensive (Gillette & Angle, 
2008) and require a dedicated space to set up the system. Ground 

reaction force measurement systems, such as force plates, have been 
shown to be accurate indicators of irregular gait patterns or lameness, 
especially when combined with camera-based motion tracking devices, 
but require a long acclimatization period and training of the dog to the 
walking surface (Fanchon & Grandjean, 2007). 

All of the above systems have limitations for daily use in veterinary 
practice, either because a special room for measurement or acclimati
zation of the dog (Clark et al., 2014; Lopez et al., 2006) is required, or 
repetition of measurements is necessary to capture the whole-body 
movement during gait (Barthélémy et al., 2009). In addition, the capi
tal cost of the mentioned systems, as well as the time required to set up 
the measurement is very high. Several studies indicate that inertial 
measurement unit systems provide valuable information for the analysis 
of the canine gait (Duerr et al., 2016; Gillette & Angle, 2008; Lane et al., 
2015; Lopez et al., 2006). In a study by Clark et al. (Clark et al., 2014) 
the peak vertical forces (PVF) measured with a force platform were 
compared with measurements from a triaxial accelerometer placed 
dorsally over the thoracic or lumbar region. There was positive and 
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significant agreement between the PVF of the accelerometer and the 
force platform for the forelimbs and positive and low agreement for the 
hindlimbs. Barthélémy et al. (Barthélémy et al., 2009) described the use 
and reliability of accelerometers in gait assessment of healthy dogs and 
dogs with a diagnosis of muscular dystrophy. Duerr et al. (Duerr et al., 
2016) reported that kinematics recorded with an inertial measurement 
unit (IMU) in the sagittal plane in dogs, showed good correlation with 
optically recorded kinematics, so the use of IMU sensors could provide 
an alternative to optical kinematic gait analysis while allowing data 
collection outside the laboratory. Ladha et al. (Ladha et al., 2017) pre
sented an IMU sensor-based gait measurement system for dogs that 
demonstrated good sensitivity and repeatability with a precision likely 
sufficient to detect clinically relevant gait abnormalities in dogs. They 
concluded that, with further development, the system could have a wide 
range of applications in both research and clinical practice. Recently, 
Zhang et al. (Zhang et al., 2022) also achieved promising results with a 
very similar approach. Comparable IMU systems (IMUS) are used in 
human medicine and, to some extent, in equine practice for diagnosis, 
rehabilitation, and research on the efficacy of interventions. The results 
of the present study suggest that similar benefits could be achieved if the 
evaluated detection methods were developed into an end-to-end solu
tion for veterinary practice in dogs (Ladha et al., 2017). 

The aim of our work is the evaluation of simple IMUS-based 
approach for estimating the range of motion and stance/swing phases 
in the canine gait. 

Materials and methods 

To investigate the possibility of extracting range of motion of hip/ 
shoulder extension/flexion and stance and swing phase based on inertial 
measurement units, dogs were simultaneously measured with an inertial 
measurement unit system (IMUS), optical tracking system (OTS) and 
optical cameras while walking at constant speed on a treadmill (Fig. 1). 

Data were collected from two dogs, a Labrador retriever, male, age 7 
years, and an Altdeutscher Tiger, male, age 11 years. In this document, 
they are referred to as "dog A" and "dog B." There were no known pa
thologies in either dog, which was confirmed by a certified clinician 
prior to the measurements. The measurements were conducted in 

context of research with dogs (animal experimentation permit (Form B) 
BL499 29,080; animal experimentation application BL499 29,080; na
tional ethical standards in Switzerland). 

Setup of IMU system 

An IMU gait analysis system (LupoGait, 4Dvets, Interlaken, 
Switzerland) consisting of six IMU sensors (MTw Awinda, Xsens Tech
nologies B.V., Enschede, The Netherlands) attached to the dog’s body 
with a special sensor fixation vest was used for the study (Fig. 2). Of the 
six sensors, two are attached to the humeri (sensor positions HumL - 
humerus left - and HumR - humerus right), with the x-axes of the sensors 
aligned with the humerus and pointing upward. The z-axes of the sen
sors are aligned perpendicular to the sagittal plane and point away from 
it. Two additional sensors are analogously attached to the femora 
(sensor positions FemL - left femur - and FemR - right femur). In addition 
to the four leg sensors, another pair of sensors is attached to the spine. 
The first sensor is located on the thoracic segment (sensor position Thor) 
and the second on the lumbar segment of the spine (sensor position 
Lumb). The orientations of the spine sensors are identical. The z-axis 
points upward and the x-axis is aligned with the spine and points in the 
direction of travel. The IMU sensors provide synchronized acceleration, 
angular velocity and magnetometer data acquired at a sampling rate of 
100 Hz. 

Setup of optical tracking system 

Besides using an IMUS, the dog’s walk was recorded on a treadmill 
using an optical tracking (OTS) system (Vantage (six cameras), Vicon 
Motion Systems Ltd UK) and two optical cameras (Bonita 720C, Vicon 
Motion Systems Ltd UK), positioned left and right perpendicular to the 
sagittal plane of the dog (Fig. 3, left). The OTS markers were fixed with 
defined orientation in relation to the IMU sensor to allow definition of 
OTS marker coordinate systems aligned with the corresponding IMU 
sensor coordinate systems during the data processing (Fig. 3, right). The 
OTS origin of coordinates was defined to be the left corner of the 
treadmill behind the dog (Fig. 3, left). 

Fig. 1. Data acquisition and system synchronization: During the measurements, three separate systems were used simultaneously to acquire information. A syn
chronization movement enabled synchronization between the different measurement systems. As a result, the data set consists of the acceleration and angular 
velocity signals measured by the IMU system, the time-dependent positions of the Optical Tracking System (OTS) reflectors, and the manual annotation of the gait 
cycles of ten steps per leg and measurement using video cameras. 
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Recording procedure 

At least three measurements per dog of one minute duration were 
performed. After a brief familiarization period (approximately 20 to 30 
s) on the treadmill, the dogs were walked at a speed between 3.5 and 4.0 
km/h. The speed of the treadmill was adjusted so that the dogs remained 
walking during the measurements. 

Data collected for the IMUS included linear acceleration and angular 
velocity at a sampling rate of 100 Hz. With the OTS, data were collected 
from each OTS marker with respect to the global OTS coordinate system 
attached to the treadmill at a rate of 200 Hz. The sampling rate (frame 
rate) of the video cameras used was 100 Hz. To enable synchronization 
of data from all three measurement systems, a special routine (rapid, 
jerky movement of an OTS marker attached to an IMU sensor) was used 
at the beginning of each measurement. 

Extracting joint angles 

In optical gait analysis, flexion and extension angles as well as range 
of motion (ROM) can be calculated based on the measured marker po
sitions (Foss et al., 2013). In IMUS, the sensor positions cannot be 
calculated exactly because the starting positions for the required inte
gration are not known without error accumulation. Nevertheless, in the 
next section we show an approach for extracting joint angles. 

IMUS based joint angles 
The z-axis of the IMU sensor of the leg sensors represents 

approximately the main axis of rotation of the leg in the sagittal plane 
during regular gait. The hip or shoulder flexion and extension angles 
were estimated by cumulative integration of the z-signals of the gyro
scope of each leg sensor. To normalize the signals, the z-axis direction of 
the sensor for the left side was mirrored to the sagittal plane. The offset 
and drift underlying this integrated signal were filtered with a high-pass 
filter (Chebyshev 3rd order, 1.2 Hz cut-off frequency) to obtain an angle 
estimation signal for each leg. More sophisticated angle estimation al
gorithms, similar to works of Seel et al. (Seel et al., 2014) were tested. 
However, those approaches were not considered robust enough for the 
application at hand. 

OTS based joint angles 
To calculate ROM from optical tracking, the angle of the OTS marker 

between the x-axes of the leg sensors and the x-axes of the corresponding 
back sensors (e.g., the angle between the x-axis of the left humerus and 
the x-axis of the thoracic sensor) was calculated over time. 

Evaluation 
Synchronization between the OTS and IMUS angle signals was fine- 

tuned by eliminating phase shifts using cross-correlation. The OTS and 
IMUS angle signals were divided into segments based on the positive 
peaks in the IMUS angle signals. This segmentation corresponds to a 
subdivision into step cycles per leg. From each OTS signal segment, the 
offset of the segment itself was subtracted to eliminate the offset be
tween the IMUS angle estimates and the OTS reference angles. 

Sequences with 40 steps per leg and measurement were selected for 

Fig. 2. Left: sensor positions and coordinate systems; Right: Sensor fixation vest.  

Fig. 3. Left: Measurement set up: Dog with optical markers and IMUS on treadmill. The arrows indicate placement and orientation of the reference system for the 
OTS; Right: OTS marker on IMU sensor: The OTS marker coordinate system and IMU sensor coordinate system are identical. 

M. Altermatt et al.                                                                                                                                                                                                                              



Veterinary and Animal Science 21 (2023) 100301

4

analysis from the synchronized angle signals. The analysis includes the 
calculation of the IMUS- and OTS-based ROM, the difference between 
them, and the root-mean-square-error (RMSE) between the IMUS- and 
OTS-based angle signals. All four metrics were calculated per step before 
being combined into an average value and standard deviation across all 
measurements per leg and dog. In addition, the correlation between the 
IMUS and OTS-based angle signals was calculated for all steps per leg 
position and dog. 

Stance and swing phase determination 

An IMUS-based method for identifying the swing and stance phase 
was to be evaluated. For this purpose, the approach was compared with 
manual video annotation. 

To detect stance and swing phases with an IMUS, minima and 
maxima were determined in the cumulative integrated gyroscope z-axis 
signal of each leg sensor. The signals from the right side (right femur/ 
humerus) were mirrored on the sagittal plane to achieve normalization 
for maxima/minima detection. The minima peaks in each cumulative 
integrated gyroscope sensor z-axis signal should de-scribe the initial 
contact points (IC points) where the swing phases end and the stance 
phases begin. The maxima peaks describe the final contact points (FC 
points) where the corresponding paw has left the ground and the swing 
phase begins. 

The reference consists of nine annotated IC-/FC-points per leg per 
measurement which were compared to the corresponding detection. To 
evaluate the time differences, the absolute time differences relative to 
the step duration based on the annotation were calculated for each IC-/ 
FC-point. The differences were averaged for each dog’s leg. The average 
values for dog A are based on 27 steps (three measurements, each with 
nine video-annotated steps). For dog B the values are derived from 36 
steps. Additionally, the standard deviations were calculated. 

Results 

Joint angles 

Comparing inertial measurements-based angle signals to the ones 
based on optical measurements results in mean RMSE per step in the 
range of 1.8◦ up to 3.9◦ and Pearson’s correlation coefficients between 
0.94 and 0.98 (Table 1). Table 2 describes the ROM of the two systems 
and the difference between them. The error of the inertial measurement 
system to the optical system reaches mean values of 5.6◦ The ROM errors 

for dog A are higher than for dog B. This is true for all sensor positions. In 
addition to the difference in error, the ROM values of dog A show an 
imbalance between the femora. The forelegs of both dogs also show 
asymmetries, although to a lesser extent. 

Swing and stance phases 

Table 3 shows the time differences between the IMUS determined 
initial and final contact points and the video labeling. The differences 
are in the range of − 0.01–0.04 s for the detection of the initial contact 
and values of 0.01–0.06 s for the detection of the final contact point. 
Since both IC and FC detection show predominantly positive differences, 
the duration errors of the stance and swing phases are even lower. In 
relation to the annotated step duration, the difference of IC and FC 
detection to video labeling is between 2 and 9%. 

Discussion 

The angle estimation based on the IMUS with mean RMSE per step in 
the range of 1.8◦ to 3.9◦ to the optical reference is comparable to the 
result of Duerr et al. who conducted a similar investigation (Duerr et al., 
2016). The IMUS algorithm generally underestimates the peak angle 
values. This could be due to the IMU’s built-in filtering, which smooths 
the peak angular velocity values at a given movement speed and sam
pling frequency. Another reason could be a slight deviation in the 
orientation of the sensor’s z-axis. Such deviations lead to a shift of the 
angular velocity to other axes during extension and flexion. Therefore, 
using an integrated angular velocity signal around the z-axis for angle 
estimation results in a lower ROM estimate. 

The results of stance and swing phase detection show small temporal 
differences between IMU-based detection and video annotation. The 
differences are near the limits of the sampling frequency. The reasons for 
the observed offset may be a discrepancy between the selected target 
signal attributes (peaks in the z-axis cumulative integrated gyroscope 
signal) and the actual ground contact events. The step detection algo
rithm basically identifies the peaks in the IMUS angle signal as initial or 
final contact points. The step information obtained from the inertial 
measurements is very indirect because there are two joints between the 
sensors and the ground. Both joints dampen the paw impacts and 
obscure corresponding signal characteristics. Exploiting the peaks in the 
angular signal is the most robust method we found for step detection 
with this sensor setup. Another reason for the temporal offset could be 
the annotation itself. The manual annotation of step events could 
possibly cause a systematic time shift. A more objective method would 
be to use a treadmill with pressure sensors as Zhang et al. did (Zhang 
et al., 2022). 

Overall, the present study shows that the extraction of relevant gait 
features is possible with inertial measurement devices and simple al
gorithms. Although the results for both algorithms are promising from a 
technical point of view, their accuracy could vary for a wider subject 

Table 1 
Results of comparison between time-dependent joint angles of all steps per leg 
(including 120 gait cycles for dog A and 160 for dog B). The middle column 
describes the Pearson’s correlation between IMUS and OTS angle signal. The 
right column lists the average root-mean-square errors per gait cycle.  

Sensor 
position 

Subject correlation of joint angle over time 
between OTS and IMUS 

RMSE per 
Step [◦] 
mean ± SD 

HumL dog A 0.98 2.0 ±

0.46  
dog B 0.96 2.5 ±

0.35 
HumR dog A 0.98 1.8 ±

0.64  
dog B 0.95 2.1 ±

0.61 
FemL dog A 0.94 3.9 ±

0.50  
dog B 0.95 2.9 ±

0.40 
FemR dog A 0.96 2.6 ±

0.37  
dog B 0.96 2.5 ±

0.38  

Table 2 
Results for range of motion of hip/shoulder flexion/extension based on IMUS or 
OTS averaged over all gait cycles of the same dog (included: 120 gait cycles for 
dog A and 160 for dog B).  

Sensor 
Position 

Subject ROM IMUS [◦] ROM OTS [◦] Error ROM [◦]   

mean ± SD mean ± SD mean ± SD 

HumL dog A 25 ± 1.5 28 ± 1.6 3.4 ± 1.51  
dog B 22 ± 1.2 26 ± 1.2 2.6 ± 1.27 

HumR dog A 24 ± 1.8 26 ± 1.4 2.5 ± 1.25  
dog B 21 ± 1.1 23 ± 1.3 1.4 ± 1.07 

FemL dog A 34 ± 2.2 37 ± 2.7 4.4 ± 2.41  
dog B 26 ± 1.3 31 ± 1.6 2.6 ± 1.42 

FemR dog A 28 ± 1.5 33 ± 1.7 5.6 ± 1.93  
dog B 27 ± 1.3 29 ± 1.6 1.7 ± 1.24  
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pool. Important factors causing possible variation could be breed, size, 
weight, body shape, pathology and gait pattern. Several additional 
studies need to be conducted to investigate such factors. 

Conclusions 

This study shows that even simple algorithms can extract relevant 
gait features such as range of motion, stance phase and swing phase from 
inertial measurements. The results are comparable to other, more so
phisticated approaches. However, for diagnostics, the presented ap
proaches need further studies with a larger number of subjects, different 
gait patterns and pathologies. Furthermore, the reproducibility of sensor 
placement needs to be validated. 
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