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ABSTRACT With the development of mobile devices, low-cost inertial measurement unit (IMU)-based
research on inertial odometry for indoor localization is being actively conducted. Inertial odometry estimates
the amount of change in position and orientation relative to the initial value based on the data measured by the
IMUand creates a trajectory via amulti-integration process. However, existing approaches primarily focus on
estimating the position in a two-dimensional (2D) plane. Additionally, drift errors occur because the position
is estimated by integrating the position change and the orientation change. Herein, we propose a novel
six-degree of freedom inertial odometry framework that directly estimates the orientation to minimize drift
errors. The proposed framework is a direct-orientation inertial odometry network (DO IONet) that outputs
the velocity and orientation of the IMU by using linear acceleration, gyro data, gravitational acceleration, and
geomagnetic data as inputs to structurally eliminate drift errors that occur during orientation calculations.
DO IONet is composed of a convolutional neural network-based encoder to extract features from inertial
data and decoder to extract sequential features. Structurally, it does not require initial values and has no
cumulative error despite estimating orientation over tens of seconds.

INDEX TERMS 6 degrees of freedom, inertial measurement units, inertial odometry, neural network.

I. INTRODUCTION
Odometry has a wide range of applications in fields requiring
self-localization, such as human motion monitoring (health-
care, athletics, gaming) and navigation systems (drone, vehi-
cle, vessel). Odometry aims to realize self-localization by
allocating a pose, which contains a position and an orientation
over time, using data collected from various sensors [1], [2].
Depending on the type of sensor, the odometry methods are
classified into four types: visual odometry (VO) using a cam-
era, radar odometry (RO), lidar odometry (LO), and inertial
odometry (IO) using an inertial measurement unit (IMU) [1].
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VO is a technique used to estimate changes in the pose of
a platform by analyzing the variations using a sequence of
images collected by the camera, which can be an RGB-depth,
stereo, or monocular camera [3], [4], [5]. Although VO tech-
niques exhibit good localization performance, fundamental
problems are caused by using images, such as scale ambiguity
and computational complexity. RO is an approach for esti-
mating the relative motion of a platform by analyzing scans
obtained from a radar sensor using radio waves to determine
the range, angle, and velocity of the surrounding objects [6],
[7]. In particular, RO has attracted attention owing to its
robustness in poor weather conditions. LO estimates a local-
ization method by analyzing laser speckle patterns reflected
from surrounding objects [8], [9]. The laser is capable of
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providing a three-dimensional (3D) scan depending on the
system design. Therefore, it is possible to collect precise
information regarding surrounding objects. However, it is
difficult to apply RO and LO to resource-limited platforms,
such as smartphones and tablets, because the aforementioned
methods require high computational power owing to the
extremely large amount of input data that is necessary for
estimating the location of the platform using the surrounding
information. IO is an approach for estimating the pose of
a platform relative to a reference point by using an IMU
sensor. An IMU sensor is a micro-electro-mechanical system
(MEMS)-based device that measures three-axis acceleration,
three-axis gyro data, and three-axis geo-magnetic data [10],
[11], [12]. The volume of data measured every hour in the
IMU includes 3D motion information and is significantly
smaller than the volume of data stored in images and 2D
maps. Therefore, IO is an essential technology for the opera-
tion of real-time positioning systems.

Inertial odometry continuously estimates the amount of
relative pose change using the data measured by the com-
bination of inertial sensors (accelerometer, gyroscope, and
geomagnetic). This approach is used in environments where it
is difficult to use well-established infrastructure-based meth-
ods, such as the Global Positioning System (GPS), Wi-Fi,
and Bluetooth Low Energy (BLE), and can measure the
precise position within 1m [13], [14], [15]. However, these
techniques involve two inherent problems: drift error and
initial pose setting. Drift error is a phenomenon in which
the estimated pose continuously diverges because noise is
accumulated and integrated in the process of generating the
trajectory by using the angular and linear velocity obtained
from the initial pose. This problem can be resolved by low-
ering the dimension of the trajectory to be generated or by
setting a reference point for initialization; however, these are
not fundamental solutions. The initial pose setting problem
is that the initial orientation of the mobile device must be
specified to generate a trajectory in the reference coordinate
system. For example, if you generate a 3D trajectory that
travels straight on flat ground without a known orientation,
the angle of the travelling path is unknown. Therefore, it is
essential to solve the above two problems to significantly
improve the performance of IO.

Representative IO approaches include strapdown inertial
navigation system (SINS) and pedestrian dead reckoning
(PDR). SINS realizes 3D localization by integrating the
amount of pose change [16], [17], [18], [19], [20]. The current
orientation is calculated by continuous input of the gyroscope
value, which is the angular velocity. The position is calcu-
lated by integrating the linear acceleration with the gravi-
tational acceleration removed from the acceleration rotated
by the current orientation in the reference coordinate system.
Although this approach is the most intuitive and fundamental,
it is difficult to generate a long-duration trajectory owing to
the continuous drift error. PDR outputs the 2D position of
a pedestrian using step, string length, and heading calculated
via each algorithm [20], [21], [22], [23]. This system is almost

free from drift error and exhibits excellent trajectory esti-
mation performance because the orientation is continuously
initialized via zero velocity update (ZUPT). However, this
method requires precise sensor calibration and can only be
used for 2D odometry [24].

Recently, an inertial odometry network (IONet), which is
an IO using a low-cost IMU based on deep neural network,
has been proposed [25]. Most IONets output the changes in
pose by inputting the sequential data obtained from the IMU
sensor into a recurrent neural network. Finally, the integrated
value of change generates a trajectory. The outcome of IONet
is similar to the traditional method; however, it reduces the
drift error by inputting all sequential data. However, similar
to SINS, this method requires the reference value, and the
correct orientation of the sensor cannot be confirmed owing
to the drift error and structural problems with the continuous
integration process as the estimation time increases.

In this study, to constrain the orientation drift error of the
inertial system, we propose a novel framework—the direct-
orientation inertial odometry network (DO IO-Net)—that
estimates the position change and achieves continuous orien-
tation using end-to-end learning. Compared with the method
of integrating inertial data, the proposed approach does not
integrate the angular velocity and orientation output because
it uses the gravitational acceleration and geomagnetic data,
including the information regarding the inclination angle
and the azimuth, respectively. Therefore, the orientation drift
error does not occur. In addition, the proposed model does not
require the initial value of orientation in the reference coordi-
nate system and can continuously estimate the trajectory. The
DO IONet, which consists of two layers of a convolutional
neural network (CNN) and two layers of bidirectional long
short-term memory (LSTM), outputs the position change and
orientation using the raw data of a nine-axis IMU.

The major contributions of this work are summarized as
follows:

1. We propose a novel IONet framework, named DO
IONet, that estimates the position changes and orientation
using the data from a nine-axis IMU sensor.

2. The proposed framework directly estimates the ori-
entation to reduce drift errors that occur during trajectory
generation.

3. The proposed method can be easily applied to other
odometry within a reference coordinate system without a
reference orientation value.

II. RELATED WORK
A. 3-DOF INERTIAL ODOMETRY NETWORK
In the field of odometry, the degree of freedom (DOF) is
the number of axes used to represent the position. In a
3-DOF IO, the relative position change in the 2D plane is
expressed using the distance and azimuth (yaw angle). 3-DOF
IONet refers to inertial odometry using a neural network. The
results of 3-DOF odometry are integrated to generate a 2D
trajectory. The initial learning-based approach used a sup-
port vector machine (SVM), similar to PDR, to classify the
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location of the IMU [26]. Subsequently, the position change
and azimuth were estimated by using support vector regres-
sion (SVR) according to the IMU location. IONet has devel-
oped an Oxford Inertial Odometry Dataset (OxIOD) contain-
ing inertial data (linear acceleration, gravitational accelera-
tion, gyro data, and geomagnetic data) and is based on LSTM
for estimating 2D trajectory of the sensor unit [25]. These
methods can estimate the amount of general position change
using raw inertial data without requiring a periodic pattern.
The author of [27] improved the positioning performance
by directly calculating the position using raw sensor data
from a calibrated 9-axis IMU and 1D CNN-based velocity
estimation model. The author mentioned in [28] proposed a
new loss function based on the analysis of the IMU kinematic
equation to improve the performance variation of each device.
However, these methods can only be applied to 2D odometry,
which involves position sensing using the attached sensors
and additional assumptions similar to PDR.

B. 6-DOF INERTIAL ODOMETRY NETWORK
6-DOF IO represents the relative pose change in 3D space
using the position (x-axis, y-axis, z-axis) and orientation (roll
angle, pitch angle, and yaw angle) of the object. Because
transformation from the body frame to the reference coordi-
nate system is required for each sequence, considerable drift
errors occur compared with 3-DOF inertial odometry. The
initial 6-DOF IONet estimated the 3D pose change of the
sensor unit using linear acceleration and a gyro data [29].
The result of the model generated the orientation and 3D
trajectory via integration. However, it is difficult to esti-
mate long-term trajectory and orientation using this method
because it additionally estimates the position change and ori-
entation, which was not considered in the traditional inertial
odometry framework. Extended IONet additionally inputted
gravitational acceleration and geomagnetic data that can be
directly used for the orientation calculation and used a model
for estimating orientation to only improve the accuracy [30].
As a result, the performance of the trajectory generation was
significantly improved, and the drift error was decreased due
to the reduction in the orientation error. However, this method
diverges as the estimation time increases, and it cannot be
corrected. One solution to improve orientation accuracy is to
utilize pre-processed inertial data as input to a neural network
to estimate position and orientation change, and use a 2D
lidar to correct orientation [31]. However, this method only
targets limited systems and was tested using simulated data.
Despite numerous attempts to improve orientation quality,
it is difficult to eliminate errors that arise during the com-
putation of orientation. Therefore, a novel inertial odometry
framework is required to minimize the cumulative error by
directly estimating the orientation.

III. DIRECT-ORIENTATION INERTIAL
ODOMETRY FRAMEWORK
We propose a novel 6-DOF inertial odometry framework,
DO IONet, to eliminate the drift in orientation estimations.

FIGURE 1. Overview of the proposed framework.

The proposed framework is depicted in Fig. 1, and it com-
prises a 9-axis IMU representing input data, DO IONet
processing data, and trajectory generation. DO IONet is
composed of an encoding step separated for each data and
a decoding step in which the features are concatenated to
output the position change and orientation. The trajectory is
generated by integrating the values output from the neural
network. The proposed framework estimates the orientation
directly; therefore, it does not structurally cause orientation
drift and does not require an initial value in the reference
coordinate system.

A. NETWORK ARCHITECTURE
Fig. 2 illustrates the architecture of the proposed network that
inputs the time-series data and outputs the position change
and orientation. The input IMU data are linear acceleration a,
angular velocity w, gravitational acceleration g, and geomag-
netic value m. One set of input data comprises 200 frames
of consecutive IMU data every 10 strides, and the position
difference1p with sensor orientation is removed between the
95th and 105th data points and the 95th orientation q. The
estimated orientation uses quaternions for the convenience
of learning instead of Euler angles with circular features.
The structure of the proposed network consists of 1D CNN
layers, Bi-LSTM layers, and fully connected layers. Two 1D
convolutional layers encode features extracted from the input
IMU data, respectively.

Subsequently, the features output from the CNN are com-
pressed using Max pooling to reduce the complexity of the
features and prevent overfitting. Each compressed feature
is concatenated and input to the Bi-LSTM layer used for
sequential data processing. The Bi-LSTM layer extracts over-
all patterns by endowing temporal dependencies into the fea-
tures. Specifically, it acts as a decoder that connects each time
step’s feature to regress to a relative position. In addition, the
bidirectional model mitigates the vanishing gradient problem
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FIGURE 2. Structure of DO IONet.

and enables the model to learn more patterns compared to a
conventional recurrent neural networkmodel. Finally,1p and
q are estimated through the fully connected layer, where 1p
represents the 3D translation vector in the body-frame, and q
denotes the orientation in the reference coordinate system.

B. 6-DOF RELATIVE POSE REPRESENTATION
In the neural network-based inertial odometry approach, the
unit quaternion is used because the network cannot learn
when using Euler angles. Similar to [30], we used a 3D
translation vector, previous position, current position, and
previous orientation in the reference coordinate system to
represent pose changes, as expressed in (1),

pt = pt−1 + R (qt−1) 1p, (1)

where pt denotes the current position calculated between
the previous position pt−1 and the rotation matrix R(q) for
the previous orientation. Accordingly, DO IONet structurally
reduces the drift compared with traditional inertial odometry
because the integration process of orientation is omitted.

C. LOSS FUNCTION
6-DOF IONet designs loss functions for both position and
orientation. However, as position and orientation have differ-
ent scales, the homoscedastic uncertainty of each task needs
to be considered. Therefore, we used multi-task loss to learn
various quantities on different scales [32],

Ltotal =

∑n

i=1
e−logσ

2
i Li + logσ 2

i , (2)

where σi and Li denote the variance and loss function of
the ith, respectively. As explained in [30], the exponential
mapping unconstraint the scalar values, and the log variance
increases the stability of the network.

There are two detailed loss functions, as expressed in (3),

[L1,L2] =
[
LDPMAE ,LQME

]
. (3)

LDPMAE represents the delta position mean absolute error,
and LQME denotes the quaternion multiplicative error,

LDPMAE =
∥∥1p− 1p̂

∥∥
1, (4)

LQME = 2 ∗ ∥imag(q̂⊗ q∗)∥1. (5)

LDPMAE and LQME represent the loss functions for the
velocity of sensor unit without orientation and the orientation
in the reference coordinate system, respectively. The imag(q)
returns a complex number as a real number, and⊗ symbolizes
the Hamilton product operator for the sum of two angles. q∗

indicates the conjugate complex number of q.

IV. EXPERIMENTS
A. DATASET
For our experiment, we utilized the highly precise OxIOD,
which provides four types of inertial data: linear accelera-
tion, gyro data, gravitational acceleration, and geomagnetic
data. The inertial data collected from OxIOD was predom-
inantly captured using an iPhone 7, while the ground truth
was recorded through a Vicon motion capture system [33].
Among the datasets measured indoors, handheld data was
used, which had the largest number of the data and recorded
the largest change in orientation. To remove the error in the
Vicon motion capture system, the initial 12 s and last 3 s of
each sequence were discarded. Furthermore, in the OxIOD,
an error of approximately 1%, which occurs when the normal
value of the difference between the adjacent frames and ori-
entation is 20◦ or more, was removed during training. During
testing, the data containing errors were input for comparison
with other models. The total number of training samples used
was 54,885.

B. TRAINING
Tensorflow 1.13.1, Keras 2.3.1, and tfquaternion 0.1.6 were
used in the training framework. Nvidia RTX 6000 was used
as the graphics processing unit (GPU). An Adam optimizer
was used with a learning rate of 0.0001. The batch size was
32, and the validation data was set to 10% of the training data.
The network was trained for 500 epochs.

C. EVALUATIONS
As listed in Table 1, we divided the data into 17 training data
and 6 testing data. For qualitative and quantitative evaluation
of the trajectory, similar to other IONet, data from 0 to 20 s
and 100 to 120 s were used to verify the performance at
various instances. For quantitative evaluation of orientation,
short-term data from 0 to 20 s and 100 to 120 s and long-term
data from 0 to 100 s and 100 to 200 s were used to confirm
the drift error in orientation. For the quantitative evaluation
of position changes in the reference coordinate system, short-
term data from 0 to 20 s and 100 to 120 s and long-term data
from 0 to 100 s and 100 to 200 s were used to confirm the
drift error for position change per unit time and the possibility
of continuous localization. The evaluation was conducted on
three models: 6-Axis IONet, 9-Axis IONet, and DO IONet.
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TABLE 1. Training and testing splits.

The parameter count of 6-Axis IONet is 1,161,735. The
parameter count of 9-Axis IONet and DO IONet is 1,793,287,
which requires more time for both training and evaluation.

V. RESULTS AND DISCUSSION
A. QUALITATIVE EVALUATION OF TRAJECTORY
In the trajectory evaluation, data from 0 to 20 s and data
from 100 to 120 s of each sequence were used. Figs. 3 and
4 show the estimated trajectories by 6-axis IONet (a), 9-axis
IONet (b), and DO IONet (c). In Fig. 3, the data between
0 and 20 s of the ‘‘data1/seq2’’ were used, and the data
between 100 and 120 s of the ‘‘data5/seq1’’ were used in
Fig. 4. In Fig. 3, it can be observed that the 6-axis IONet
estimates the azimuth correctly; however, the error on the
z-axis is extremely large. In contrast, the 9-axis IONet and
DO IONet can precisely estimate the real trajectory. In Fig. 4,
the trajectory of the 6-axis IONet is shifted to the top because
of the drift in the pitch angle. The 9-axis IONet estimates
the last point of the trajectory accurately; however, the shape
is distorted. In contrast, it can be observed that DO IONet
precisely estimates the shape of the real trajectory. Fig. 5
shows the norm of orientation error that occurs during the
trajectory estimation of ‘‘data1/seq2’’ (a) and ‘‘data5/seq1’’
(b). In Fig. 5 (a), it can be observed that 6-Axis IONet
diverges, while the error of 9-Axis IONet is generally less
than 20 degrees. On the other hand, in (b), the 6-Axis IONet
performs better. It can be confirmed that DO IONet generally
estimates accurate poses and does not diverge even when
errors occur.

B. QUANTITATIVE EVALUATION OF TRAJECTORY
To evaluate the proposed framework, we performed quan-
titative evaluation of each IONet using data between 0 and
20 s and 100 and 120 s of seven sets of testing data. Table 2
presents the root mean squared error (RMSE) of the trajectory
estimated by each model. Of the 14 sequences, 6-axis IONet
exhibited the lowest RMSE in 4, 9-axis IONet in 6, and
DO IONet in 4 cases. The mean RMSE was lowest for the
9-axis IONet. The evaluation of the trajectory is a crucial
indicator for evaluating IONet. However, as the process con-
tinuously calculates the difference between the estimated and
real positions at each time, a detailed analysis is required to

TABLE 2. Trajectory quantitative evaluation.

TABLE 3. Short-term quantitative evaluation of orientation.

resolve the drift. Therefore, we conducted an additional eval-
uation of the orientation and position change in the reference
coordinate system.

C. QUANTITATIVE EVALUATION OF THE ORIENTATION
AND 3D TRANSLATION VECTOR IN THE REFERENCE
COORDINATE SYSTEM
For a detailed evaluation of IONet, we performed a short-term
quantitative evaluation using data from 0 to 20 s and 100 to
120 s and the long-term quantitative evaluation using data
from 0 to 100 s and 100 to 200 s. Table 3 presents the RMSE
of orientation for short-term evaluation. 6-axis IONet shows
the lowest RMSE at 3, 9-axis IONet at 5, and DO IONet at
5. DO IONet has the highest performance in most sequences.
The mean RMSE was the lowest in the proposed method.

Table 4, which lists the RMSE of the orientation for long-
term evaluation, indicates that [29] and [30] are difficult to
use as the estimated time increases. DO IONet exhibited
the best performance in almost all sequences, and the mean
RMSE was also the lowest. Furthermore, it did not diverge
compared to the short-term orientation estimation.
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FIGURE 3. Top and side view of ground truth (blue) and predicted (red) trajectories of ‘data1/seq2’ dataset
from 0sec to 20sec.

Tables 5 and 6 list the RMSE of the 3D translation vec-
tor in the reference coordinate system for short- and long-
term, respectively. The 3D translation vector is the product

of the rotation matrix and delta p, which is obtained using
(5). It is an indicator that can confirm the drift by a vector
that moves per unit time in the reference coordinate system.
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FIGURE 4. Top and side view of ground truth (blue) and predicted (red) trajectories of ‘data5/seq1’ dataset
from 100sec to 120sec.

In Table 5, the 9-axis IONet is superior in nine sequences
and mean RMSE among three models. However, DO IONet
showed the best performance in most sequences, as indicated

in Table 6, with a long estimation time. Moreover, DO IONet
did not cause drift even if the estimation time was longer.
The proposed framework does not excel in the trajectory
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FIGURE 5. Norm of difference between ground truth and predicted
orientation.

TABLE 4. Long-term quantitative evaluation of orientation.

TABLE 5. Short-term quantitative evaluation of 3D translation vector.

estimation performance compared with the existing IONet,
which estimates pose change; however, the drift error can be
prevented in the pose change by appropriately using gravita-
tional acceleration and geomagnetic sensor data.

TABLE 6. Long-term quantitative evaluation of 3D translation vector.

VI. CONCLUSION
A novel 6-DOF initial odometry framework is proposed
to address the need to set the reference orientation values
when using IMU and the drift that diverges as the estimation
time increases. The proposed approach estimates the position
change and orientation of the sensor unit without constraints
by inputting the linear acceleration, gyro data, gravitational
acceleration, and geomagnetic data into the neural network
in the reference coordinate system. The performance of the
proposed method is evaluated in terms of the 3D trajectory,
orientation, and position change using the OxIOD handheld
sequence. The framework evaluation shows that compared
with the existing IONet, the drift is minimized as the trajec-
tory performance and estimation time are longer. Therefore,
DO IONet can be applied to all types of odometry in which
inertial odometry is used, such as visual inertial odometry,
radar inertial odometry, and lidar inertial odometry, to set the
initial orientation, which serves as the reference data for this
method.

In the future, signal-based location recognition accuracy
can be improved for both indoor and outdoor applications.
We believe that the demand for odometry, which includes
information on the user’s trajectory, field of view, and posi-
tion and orientation, will inevitably increase to improve the
utilization of location information. However, most data used
for inertial odometry are 2D and the existing 3D inertial data
do not include 3D motion. Therefore, future research should
focus on developing a stable and massive 3D inertial dataset.

REFERENCES
[1] S. A. S. Mohamed, M. Haghbayan, T. Westerlund, J. Heikkonen,

H. Tenhunen, and J. Plosila, ‘‘A survey on odometry for autonomous
navigation systems,’’ IEEE Access, vol. 7, pp. 97466–97486, 2019.

[2] E. J. Alqahtani, F. H. Alshamrani, H. F. Syed, and F. A. Alhaidari, ‘‘Survey
on algorithms and techniques for indoor navigation systems,’’ in Proc. 21st
Saudi Comput. Soc. Nat. Comput. Conf. (NCC), Apr. 2018, pp. 1–9.

[3] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza,
‘‘SVO: Semidirect visual odometry for monocular and multicamera sys-
tems,’’ IEEE Trans. Robot., vol. 33, no. 2, pp. 249–265, Apr. 2017.

[4] S. Wang, R. Clark, H. Wen, and N. Trigoni, ‘‘DeepVO: Towards end-to-
end visual odometry with deep recurrent convolutional neural networks,’’
in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2017, pp. 2043–2050.

VOLUME 11, 2023 55387



H.-I. Seo et al.: DO IONet: 9-Axis IMU-Based 6-DOF Odometry Framework

[5] N. Yang, L. von Stumberg, R. Wang, and D. Cremers, ‘‘D3VO: Deep
depth, deep pose and deep uncertainty for monocular visual odometry,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 1278–1289.

[6] Y. S. Park, Y. Shin, and A. Kim, ‘‘PhaRaO: Direct radar odometry
using phase correlation,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2020, pp. 2617–2623.

[7] D. Adolfsson, M. Magnusson, A. Alhashimi, A. J. Lilienthal, and
H. Andreasson, ‘‘CFEAR radarodometry–conservative filtering for effi-
cient and accurate radar odometry,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Sep. 2021, pp. 5462–5469.

[8] J. Zhang and S. Singh, ‘‘Low-drift and real-time LiDAR odometry and
mapping,’’ Auton. Robots, vol. 41, no. 2, pp. 401–416, Feb. 2017.

[9] Q. Li, S. Chen, C. Wang, X. Li, C. Wen, M. Cheng, and J. Li, ‘‘LO-Net:
Deep real-time LiDAR odometry,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 8465–8474.

[10] S. Y. Cho and C. G. Park, ‘‘A calibration technique for a two-axis magnetic
compass in telematics devices,’’ ETRI J., vol. 27, no. 3, pp. 280–288,
Jun. 2005.

[11] A. A. A. Rahni and I. Yahya, ‘‘Obtaining translation from a 6-DOFMEMS
IMU—An overview,’’ in Proc. Asia–Pacific Conf. Appl. Electromagn.,
Dec. 2007, pp. 1–5.

[12] N. Ahmad, R. A. R. Ghazilla, N. M. Khairi, and V. Kasi, ‘‘Reviews
on various inertial measurement unit (IMU) sensor applications,’’ Int. J.
Signal Process. Syst., vol. 1, no. 2, pp. 256–262, 2013.

[13] S.-H. Lee, W.-Y. Kim, and D.-H. Seo, ‘‘Automatic self-reconstruction
model for radio map in Wi-Fi fingerprinting,’’ Expert Syst. Appl., vol. 192,
Apr. 2022, Art. no. 116455.

[14] J. H. Seong and D. H. Seo, ‘‘Selective unsupervised learning-based Wi-Fi
fingerprint system using autoencoder and GAN,’’ IEEE Internet Things J.,
vol. 7, no. 3, pp. 1898–1909, Mar. 2020.

[15] J.-H. Seong and D.-H. Seo, ‘‘Environment adaptive localization method
using Wi-Fi and Bluetooth low energy,’’Wireless Pers. Commun., vol. 99,
no. 2, pp. 765–778, Mar. 2018.

[16] P. G. Savage, ‘‘Strapdown inertial navigation integration algorithm design
Part 1: Attitude algorithms,’’ J. Guid., Control, Dyn., vol. 21, no. 1,
pp. 19–28, Jan. 1998.

[17] P. G. Savage, ‘‘Strapdown inertial navigation integration algorithm design
Part 2: Velocity and position algorithms,’’ J. Guid., Control, Dyn., vol. 21,
no. 2, pp. 208–221, Mar. 1998.

[18] Y. Wu, X. Hu, D. Hu, T. Li, and J. Lian, ‘‘Strapdown inertial navigation
system algorithms based on dual quaternions,’’ IEEE Trans. Aerosp. Elec-
tron. Syst., vol. 41, no. 1, pp. 110–132, Jan. 2005.

[19] X. Chen, C. Shen, W.-B. Zhang, M. Tomizuka, Y. Xu, and K. Chiu,
‘‘Novel hybrid of strong tracking Kalman filter and wavelet neural net-
work for GPS/INS during GPS outages,’’ Measurement, vol. 46, no. 10,
pp. 3847–3854, Dec. 2013.

[20] B. Cui, X. Chen, and X. Tang, ‘‘Improved cubature Kalman filter for
GNSS/INS based on transformation of posterior sigma-points error,’’ IEEE
Trans. Signal Process., vol. 65, no. 11, pp. 2975–2987, Jun. 2017.

[21] A. R. Jimenez, F. Seco, C. Prieto, and J. Guevara, ‘‘A comparison of pedes-
trian dead-reckoning algorithms using a low-cost MEMS IMU,’’ in Proc.
IEEE Int. Symp. Intell. Signal Process. (WISP), Aug. 2009, pp. 37–42.

[22] W. Kang and Y. Han, ‘‘SmartPDR: Smartphone-based pedestrian dead
reckoning for indoor localization,’’ IEEE Sensors J., vol. 15, no. 5,
pp. 2906–2916, May 2015.

[23] F. Li, C. Zhao, G. Ding, J. Gong, C. Liu, and F. Zhao, ‘‘A reliable and
accurate indoor localization method using phone inertial sensors,’’ in Proc.
ACM Conf. Ubiquitous Comput., Sep. 2012, pp. 421–430.

[24] X. Chen, X. Zhang,M. Zhu, C. Lv, Y. Xu, and H. Guo, ‘‘A novel calibration
method for tri-axial magnetometers based on an expanded error model and
a two-step total least square algorithm,’’Mobile Netw. Appl., vol. 27, no. 2,
pp. 794–805, Apr. 2022.

[25] C. Chen, C. X. Lu, J. Wahlström, A. Markham, and N. Trigoni, ‘‘Deep
neural network based inertial odometry using low-cost inertial measure-
ment units,’’ IEEE Trans. Mobile Comput., vol. 20, no. 4, pp. 1351–1364,
Apr. 2021.

[26] H. Yan, Q. Shan, and Y. Furukawa, ‘‘RIDI: Robust IMU double integra-
tion,’’ in Proc. Eur. Comput. Vis. (ECCV), Sep. 2018, pp. 641–656.

[27] S. U. Kim, J. Lee, J. Yoon, S. Ko, and J. Kim, ‘‘Robust methods for
estimating the orientation and position of IMU and MARG sensors,’’
Electron. Lett., vol. 57, no. 21, pp. 816–818, Oct. 2021.

[28] M. Zhang,M. Zhang, Y. Chen, andM. Li, ‘‘IMUdata processing for inertial
aided navigation: A recurrent neural network based approach,’’ in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2021, pp. 3992–3998.

[29] J. P. S. do Monte Lima, H. Uchiyama, and R.-I. Taniguchi, ‘‘End-to-end
learning framework for IMU-based 6-DOF odometry,’’ Sensors, vol. 19,
no. 17, p. 3777, Aug. 2019.

[30] W.-Y. Kim, H.-I. Seo, and D.-H. Seo, ‘‘Nine-axis IMU-based extended
inertial odometry neural network,’’ Expert Syst. Appl., vol. 178, Sep. 2021,
Art. no. 115075.

[31] M. U. Hassan and J. Miura, ‘‘Neural network-based real-time odometry
using IMU for crane system and its application to large-scale 3D map-
ping,’’ in Proc. IEEE Int. Conf. Mechatronics Autom. (ICMA), Aug. 2022,
pp. 1062–1068.

[32] R. Cipolla, Y. Gal, and A. Kendall, ‘‘Multi-task learning using uncertainty
to weigh losses for scene geometry and semantics,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2018, pp. 7482–7491.

[33] C. Chen, P. Zhao, C. Xiaoxuan Lu, W. Wang, A. Markham, and
N. Trigoni, ‘‘OxIOD: The dataset for deep inertial odometry,’’ 2018,
arXiv:1809.07491.

HONG-IL SEO received the B.S. and M.S.
degrees in electrical and electronics engineer-
ing from Korea Maritime and Ocean University,
South Korea, in 2018 and 2020, respectively,
where he is currently pursuing the Ph.D. degree
in electrical and electronics engineering. His
research interests include inertial odometry, com-
puter vision, and signal processing.

JU-WON BAE received the B.S. degree in ocean
engineering and the M.S. degree in electrical and
electronics engineering from Korea Maritime and
Ocean University, South Korea, in 2019 and 2021,
respectively, where he is currently pursuing the
Ph.D. degree in electrical and electronics engineer-
ing. His research interests include image caption-
ing, computer vision, and anomaly detection.

WON-YEOL KIM received the B.S., M.S., and
Ph.D. degrees in electrical and electronics engi-
neering from Korea Maritime and Ocean Uni-
versity, South Korea, in 2014, 2016, and 2021,
respectively. He was with the Artificial Intelli-
gence Convergence Research Center for Regional
Innovation, KoreaMaritime and Ocean University.
His research interests include positioning systems,
sense networks, and embedded signal processing.

DONG-HOAN SEO received the B.S., M.S.,
and Ph.D. degrees in electronic engineering from
Kyungpook National University, South Korea,
in 1996, 1999, and 2003, respectively. Since 2004,
he has been with Korea Maritime and Ocean Uni-
versity, where he is currently a Professor with the
Division of Electronics and Electrical Information
Engineering. His research interests include sense
networks, signal processing, and computer vision.

55388 VOLUME 11, 2023


