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Abstract: The length of the standing long jump (SLJ) is widely recognized as an indicator of de-
velopmental motor competence or sports conditional performance. This work aims at defining a
methodology to allow athletes/coaches to easily measure it using the inertial measurement units
embedded on a smartphone. A sample group of 114 trained young participants was recruited and
asked to perform the instrumented SLJ task. A set of features was identified based on biomechanical
knowledge, then Lasso regression allowed the identification of a subset of predictors of the SLJ
length that was used as input of different optimized machine learning architectures. Results obtained
from the use of the proposed configuration allow an estimate of the SLJ length with a Gaussian
Process Regression model with a RMSE of 0.122 m in the test phase, Kendall’s τ < 0.1. The proposed
models give homoscedastic results, meaning that the error of the models does not depend on the
estimated quantity. This study proved the feasibility of using low-cost smartphone sensors to provide
an automatic and objective estimate of SLJ performance in ecological settings.

Keywords: SLJ; IMU; accelerometer; prediction; in-field test

1. Introduction

The standing long jump (SLJ) is a sports-related movement that requires complex
motor coordination of both upper and lower body segments. It is a task used to evaluate
both children’s motor competence [1], upper and lower body muscular fitness [2,3], and
lower limbs muscular strength in sports-related field. In this last domain, the SLJ is often
part of athletic training since it represents an explosive type of motor task. As a recognized
functional test, it allows the analysis of the coordinated development of lower-body forces
in the horizontal direction as a proxy for sprint performance in runners [4,5], which is
also crucial in team sports such as football [6] or rugby [7–9]. The SLJ test is also used for
several other aims: talent identification [7], prediction of player performance at different
player positions [6], assessment of the efficacy of a training intervention [8,9], and anaerobic
power prediction [10,11]. Its role as screening tool for athletes with increased injury risk
was also investigated [12] together with its use to determine muscle imbalance [13]. Despite
the wide potential for SLJ to evaluate performance, all these studies were limited to the
meter-based assessment of the jumped distance as main parameter due to its simple and
ecological evaluation. Only a few studies characterized the power expressed during the
jump through direct measures with force platforms, having the aim of estimating anaerobic
performance [10,11] or as biomechanical analyses to enhance the SLJ performance [14–18].

Several instrumented biomechanical analyses of the SLJ were performed to gain
insight into motor behavior and coordination of both lower and upper body parts using
force plates [14–16], optoelectronic motion capture [17,18], or inertial measurement units
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(IMUs) [1,19]. Of relevance is the analysis of the contribution of the arms to the motor
behavior of the whole body, which determines an improvement in the jumped SLJ distance
with respect to jumping without moving the arms [20,21]. Models developed in 2D and
3D suggest modeling the motion as planar when the interest is related only to lower body
movement, while a 3D model can be useful when upper body motion is included [18].

While force plates and optoelectronic motion capture are expensive and constrained
to the laboratory environment, IMUs are less expensive and can be used in an open field,
eventually supervised by a tester. However, their cost still does not allow a large-scale
democratic application of on-the-field instrumented tests [22,23]. A low-cost alternative
seems to be the use of a smartphone (SP), which natively embodies IMUs. If hand-held,
an SP could allow a fast biomechanical analysis of the lower limb movement independent
of the presence of external testers. Although such embedded sensors were not developed
specifically for biomechanical analysis, and therefore do not necessarily satisfy some
required specifications such as high sampling frequency or appropriate full-scale range, the
broad use of SP devices constitutes a beneficial alternative and could allow an evaluation
in both laboratory and open-field environments from a biomechanical point of view [23].

Distance estimation based on magneto-inertial measurement units (MIMUs) can cer-
tainly rely on laws of motion and biomechanical models, as completed for height of
countermovement jumps [24,25], but the poor quality of the available signals [23] has led
to exploiting biomechanical features obtained from MIMUs as input to ad-hoc machine
learning (ML) models in several sport applications [26–28]. Few ML approaches used SP
data to assess jump-related variables only for the countermovement jump (CMJ): jump
height [29], jump power [30,31], and fatigue [32]. To the best of our knowledge, only
two studies contributed to developing ML approaches for SLJ: (i) the work of [16], which
identified through Lasso regularization biomechanical variables measured with force plates
as predictors for SLJ length; and (ii) the work of [2], which estimated the SLJ length using
categorical and not categorical variables linked mainly to the anthropometric characteristics
of the jumpers as input of generalized regression neural networks. The former model can
have a limited diffusion due to the use of force platforms, while the latter, using only the
jumper anthropometric characteristics, cannot explain the biomechanical variability of the
jumper when performing more than one SLJ. To the best of our knowledge, no attempts
have been performed exploiting either IMUs or SP-IMUs which could enable an ecological
collection of informative biomechanical quantities both in laboratory and on-field.

The aim of this work is to use IMUs embedded in smartphones to estimate the SLJ
length starting from non-categorical biomechanical features related to the jump technique
and from the intrinsic anthropometric characteristics of the user. Biomechanical variables
were selected based on two assumptions: (i) in the preparation phase, the SLJ is similar to
the CMJ, presenting an eccentric and a concentric phase, thus sharing a similar behavior
along the vertical acceleration; (ii) in the flight phase, the origin of the sensor coordinate
system follows a parabolic trajectory. Six ML models dedicated to regression analysis were
trained, optimized, and tested to this aim.

2. Materials and Methods
2.1. Experimental Setup

One hundred fourteen healthy sports science students were recruited as participants (79M,
35F; mean± SD: age = 21.4± 5.1 years; stature = 1.8± 0.1 m; mass = 70.9± 10.3 kg). Only phys-
ically active healthy young sport science students were included, while individuals who
underwent either lower limb surgery or injury in the six months prior to the experimental
session were excluded from the study. All participants signed an informed consent prior to
the experimental session. The study was approved by the local Internal Review Board.

Participants were equipped with an SP held in their right hand, as in Figure 1 (Samsung
Galaxy S9+, Samsung Group, Seoul, South Korea; sampling frequency = 500 samples/s;
full scale range: accelerometer = ±8 g; gyroscope = ±500 deg/s). All SP-IMU data were
collected using the app Phyphox [33], which was remotely controlled through the laboratory
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PC. Sensor calibration tests were performed on the SP-IMU before each experimental
session, as detailed in the “Data Processing” section. Afterwards, each participant was
instructed on how to properly perform a SLJ and then performed 3 trials following the
instructions of the operator. Jumps were executed with the left hand on the hip and the
right one near to the hip while holding the SP horizontally (Figure 1). Holding the arms
still permits the keeping of the SP in a stable position near to the hip, which is crucial
to segment the jump in the three listed phases: (i) a static phase of a few seconds with
the participant being with hands on the hips, feet in parallel stance position, and heels
positioned at the zero of a meter tape; (ii) the jumping trial triggered by a vocal command;
(iii) an after-landing second static phase. The jump was considered correct if the participant
succeeded in maintaining the equilibrium after landing without realizing an additional
step, keeping the feet in the parallel stance position and the arms still. The heel-to-heel
distance, measured using the meter tape, was considered as the reference jump length to
be estimated.
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Figure 1. Experimental setup. The participant is in the static phase before jumping, following akimbo
style, and holding the SP in the right hand and kept fixed with the hip (small black ellipse). The tape
meter (big black ellipse) is located with the zero (highlighted with a black sign and a white arrow)
near to the right heel, corresponding to the initial position.

2.2. Data Processing

First, the SP-IMUs were calibrated before each experimental session for computing and
eventually correcting their offset and cross-axis sensitivity according to [34]. Namely, the
gyroscope static bias was obtained from a 60 s static trial with the SP still on a flat surface,
subsequently removed from each successive jump measure. Concerning the accelerometer,
three ad hoc 60 s static acquisitions were performed; each consisted in aligning one of the
three accelerometer axes with the gravity vector direction [34]. To allow for a consistent
gravity removal, acceleration measures were expressed into the global coordinate system
under the hypothesis that the smartphone was kept parallel to the plane of movement
and therefore not requiring an accurate estimate of its yaw [24]. The vertical (aV) and
anteroposterior (aAP) components were then considered for further computations.

The preparation phase of the SLJ, similarly to the CMJ [35], can be subdivided in two
phases: the eccentric and the concentric one. Further subphases were also considered in
accordance with [16] (Figure 2): the unloading phase starts from the jump onset (t0) and
arrives to the minimum of the vertical acceleration (tUL); the eccentric yielding phase is
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the time between the local minimum of the vertical acceleration and the minimum vertical
velocity (tUB); the eccentric braking phase is defined as the time between the minimum
vertical velocity and when that velocity crosses 0 (tBP); and concentric propulsive phase
starts when the vertical velocity crosses 0 until take-off (tTO).
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Figure 2. Vertical acceleration and velocity with highlighted transition timings and phases: unloading
(between t0 and tUL), eccentric yielding (between tUL and tUB), eccentric braking (between tUL and
tBP), and concentric propulsive phase (between tBP and tTO). Legend for time instants: t0 = jump
onset; ta_min = minimum acceleration; ta_max = maximum acceleration; tv_min = minimum velocity;
tP_min = minimum power; tP_max = maximum.

The vertical velocity, vV, was computed through numerical integration of the corre-
sponding acceleration from the SLJ onset (t0) to take-off (tTO). The integration interval was
kept to a minimum to limit the noise contribution due to integration drift. The delimiting
time frames were computed as follows: the onset, t0, as the time sample occurring 30 ms
prior the first one deviating by 8 times the standard deviation of the static phase, similarly
to [36]; the take-off, tTO, as the first frame such that aV ≤ −g. All data processing was
performed using MATLAB R2022a (The MathWorks Inc., Natick, MA, USA).

2.3. Feature Selection

A total of F = 61 features, defined in Table 1, were extracted. Three were related to
the anthropometric characteristics of the subject ((·)anthro subscript): stature, body mass,
and age. Four features were calculated from the acquired acceleration signals under the
assumption that the trajectory of the origin of the sensor coordinate system during a
SLJ can be approximated to a ballistic motion. Namely, the raw estimate of SLJ length
(bjump), SLJ height (hjump), time of flight (tflight), and velocity angle at the take-off (α) were
included. These values can be obtained from the vertical and antero-posterior velocities
at take-off. Computing these velocity values requires only the identification of onset and
take-off instants and the computation of the velocity time history in this time interval.
The remaining 54 features were computed from either aV, aAP, or both, as they similarly
contribute to the SLJ distance estimate. Namely, 42 jump-related variables (features from A
to R and ν, calculated twice where needed because they were evaluated for both V and AP
components—(·)V and (·)AP, respectively) were inspired by [37]; 6 (u, W, and z) enriched
the biomechanical description of power-related variables as presented in [29]. The last
six were time-frequency features obtained by processing aV and aAP via variational mode
decomposition (VMD) [38]; this technique subdivides the signal into N intrinsic mode
functions, each having a frequency spectrum centered around a central frequency. The
number of intrinsic mode functions was set to 3, with the high- and mid-central frequencies
(f1 and f2, respectively) assumed to be potential descriptors of wobbling or involuntary
arm swing artifacts and the low-central frequency (f3) associated with the jump itself [29].
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Table 1. List of the selected features reported with their acronym (ID), measurement unit and
brief description. V and AP subscripts are relative to vertical and anteroposterior components of
velocity/acceleration. The superscript * is used when the features are extracted from both AP and
V components. Anthropometric features are reported with (·)anthro subscript. Capital letters are
for time intervals, small letters for the other features. Features are grouped by type and ordered
following the alphabet. Legend: a.u. = arbitrary units; instants of: t0 = jump onset; ta_min = minimum
acceleration; ta_max = maximum acceleration; tv_min = minimum velocity; tP_min = minimum power;
tP_max = maximum power; tTO = jump take off, tUL = jump unloading, tBP = jump braking.

ID Feature Measurement Unit Description

A
nt

hr
o hanthro Stature of the participant m -

wanthro Body mass of the participant kg -

yanthro Age of the participant y -

B
al

li
st

ic

α Velocity angle at take off deg α = arctg
(

vV(tTO)
vAP(tTO)

)
bjump Ballistic SLJ length m bjump =

(
2 vV(tTO) ∗ vAP(tTO)

g

)
hjump Ballistic SLJ height m hjump = (vV(tTO))2

2 ∗ g

tflight Ballistic time of flight s tflight =
2 ∗ vv(tTO)

g

B
io

m
ec

ha
ni

ca
l

A V Unweighting phase duration s [t0 , tUB]

b * Minimum acceleration m/s2 aV(ta
V

_min)

C * Time from minimum to
maximum acceleration s [ta*_min , ta*_max]

∆a *
Range between min-to-max

acceleration in the time between
t0 and tTO

m/s2 ∆a∗ = max(a∗(t0 ÷ tTO))−min(a∗(t0 ÷ tTO))

∆v *
Range between min-to-max

acceleration in the time between
t0 and tTO

m/s ∆v∗ = max(v∗((t0 ÷ tTO))−min(v∗(t0 ÷ tTO))

D * Main positive impulse time s Time duration of positive acceleration in a* signal
in the time interval [t0 , tTO]

e * Maximum acceleration m/s2 aV(ta
V

_max)

F * Time from acceleration positive
peak to the take off s [ta*_min , tTO]

GV Ground contact duration s [t0 , tTO]

H *
Time from minimum

acceleration to the end of the
eccentric braking phase

s [tUL , tBP]

iV Maximum positive slope of aV m/s2 iV = max
(

d(aV(t))
dt

)
t ∈ [t0 , tBP]

J *
Time from the negative peak

velocity to the end of the
eccentric braking phase

s [tv*_min , tBP]

k * Acceleration at the end of the
eccentric breaking phase m/s2 a*(tBP)

l * Negative peak power W/kg P(tP*_max)

LAP
Power peaks delta time found in

the range [t0 ÷ tTO] s [tP
AP

_min , tP
AP

_max]

M * Positive power duration in the V
component s -

n * Positive peak power W/kg P(tP*_min)

B
io

m
ec

ha
ni

ca
l

O * Time distance between positive
peak power and take-off s [tP*_max , tTO]

p * Mean slope between
acceleration peaks a.u. p∗ = e∗−b∗

C∗

q * Shape factor a.u.
Ratio between the area under the curve from tUB
to the last positive sample prior tTO (lasting D*)

and the one of a rectangle of sides D* and e*

QV

Time duration between the
eccentric braking phase and the

take off
s [tBP , tTO]

r * Impulse ratio a.u. r∗ = b∗
e∗

RAP
Entire positive power duration

in the AP component s -

u * Mean concentric power W/kg Average value of P*(t), t ∈ [tBP , tTO]

ν * Minimum negative velocity m/s v*(tv*_min)

W * Power peaks delta time s [tP*_min , tP_max]

z * Mean eccentric power W/kg Average value of P*(t), t ∈ [t0 , tBP]
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Table 1. Cont.

ID Feature Measurement Unit Description

Ti
m

e-
fr

eq
ue

nc
y f1 * High central frequency Hz Highest VMD central frequency, associated with

wobbling and noise

f2 * Middle central frequency Hz Middle VMD central frequency, associated with
wobbling tissues

f3 * Low central frequency Hz Lower VMD central frequency, associated with the
jump proper

2.4. Model Creation and Evaluation

After data cleaning, 286 out of 342 jumps were available for the definition of the
final dataset. The discarded jumps were affected by one of these two issues: lack of
synchronization between signals coming from gyroscope and accelerometer or abnormal
drift amplitude in the acceleration signal, eventually occurring in a single testing session
with many participants due to SP overuse.

The final dataset of 286 jumps was made available, each leading to a record including
the abovementioned 61 features computed from aV and aAP, as well as the SLJ length,
lmeter, taken from the meter tape and considered as the dependent variable. Once data
were arranged for all the jumps, the dataset was separated into two subsets: 80% of the
jumps (229 examples) was used as training set, and the remaining 20% (57 examples)
was used as test set. This separation was entrusted to a randomization algorithm. Be-
fore training, z-score was used to normalize each feature of the training set [39]. The
test set was normalized with normalizing factors taken from the training set. Lasso reg-
ularization was used on the training set to perform a feature reduction in order to avoid
possible multicollinearity among features [40], choosing α = 0.1 to set the regularization
strength. The features that were excluded by such a shrinkage were not used to develop the
ML models.

The following regression models were trained using the MATLAB Regression Learner
app (MATLAB and Statistics and Machine Learning Toolbox™ R2022a, The MathWorks,
Inc., Natick, MA, USA): linear regression (LR) and stepwise regression (SR); optimized
support vector machines (SVMs); optimized ensemble; optimized gaussian process re-
gression (GPR) models; optimized neural networks (NNs). The optimized models were
obtained using Bayesian optimization criterion [41] limiting the number of iterations to
30. The models were trained using a 10-fold cross validation procedure to stress model
generalizability. For each trained model, the root-mean-square error (RMSE), mean squared
error (MSE), mean absolute error (MAE), and R2 were computed for both training and test
sets using the Regression Learner MATLAB app. The list of optimized hyperparameters
using the Bayesian optimization method is reported in Table 2 for each selected architecture.

After training, the best model for each architecture (Table 3) was selected based on the
minimum RMSE and used in the successive test phase.

The best model across all architectures was identified and used on the training set
to analyze how much each input variable influences the estimate and enriches model
interpretability. To this aim, permutation feature importance (PFI) analysis [42–44] was
performed on the training set. PFI is an iterative process based on the analysis of the
model error, evaluated as mean squared error (MSE), in output from the model when
one of the input variables is randomly permuted and the others are maintained as they
are. This analysis is performed for each input variable and provides an index of their
importance, computed as the ratio between the MSE obtained by the permutation of the i-th
input variable (MSEi) and the MSE of the model without any permuted variables (MSE0).
The higher the ratio, the higher the contribution of the i-th variable to the estimate, and
vice versa.
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Table 2. Type of selected models used for regression. The first column reports the architecture; the
second reports the hyperparameter options for each architecture that can be personalized or optimized
in the Regression Learner app; the third reports the ranges of hyperparameters optimization (using
the default values in MATLAB).

Model Hyperparameter Hyperparameter Options/Ranges

Linear regression (LR) - -

Stepwise regression (SR) - -

SVMs

Function Gaussian, Quadratic, Cubic, Linear
Epsilon [3.15 × 10−4, 31.50]

Box Constraint [10−3, 103]
Kernel Scale [10−3, 103]

Ensemble

Function Bag, LSBoost
Minimum leaf size [1, 114]
Number of learners [10, 500]

Number of predictors to sample [1, 11]

GPR
Function Rational Quadratic, Exponential, Matern

5/2, Matern 3/2, Squared Exponential
Sigma [10−4, 3.05]

Basis Function Constant, Zero, Linear

NNs

Function Sigmoid, Tanh, ReLu, None
Number of connected layers [1, 3]

Layer size [1, 300]
Lambda [4.36 × 10−8, 4.36 × 102]

Table 3. List of the best models for each architecture selected considering the model with the
lowest RMSE value (train test). Models are reported along with their functions and optimized
hyperparameters. Legend: * refers to a kernel function; § refers to an activation function.

Model Function Optimized
Hyperparameters

RMSE
[m]

MSE
[m2]

MAE
[m] R2

LR - 0.18–0.17 0.03–0.03 0.14–0.14 0.67–0.63

SR - 0.19–0.17 0.04–0.03 0.15–0.14 0.60–0.62

SVMs Gaussian * Box Constraint: 0.7205
Epsilon: 0.07 0.18–0.18 0.03–0.03 0.14–0.14 0.66–0.59

Ensemble -

Learners: 70
Minimum leaf size: 1

Predictors to sample: 11
Method: Bag

0.16–0.15 0.03–0.02 0.13–0.12 0.73–0.72

GPR Rational
Quadratic *

Sigma: 1.949 × 10−4

Basis Function: Linear
0.11–0.12 0.01–0.02 0.08–0.09 0.88–0.81

NNs Sigmoid §
Fully connected layers: 1

Lambda: 0.0116
Layer size: 1

0.17–0.17 0.03–0.03 0.14–0.14 0.68–0.64
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2.5. Statistical Analysis

The best model for each architecture was analyzed on the test data using Bland and
Altman plots [45]. The upper limit (UL) and lower limit (LL) were calculated, respectively,
as follows: UL = BIAS + 1.96 × SD; LL = BIAS − 1.96 × SD (BIAS = test value—model
predicted value; SD = standard deviation of the previous differences). Moreover, confidence
intervals (CI) at 95% of BIAS, UL, and LL were calculated as the following [46]: t-value,
number of samples in test set (n), and standard error for the BIAS (SEBIAS) used of CI
calculations and were reported in Table 4. Confidence intervals, as well as the regression
line of the averages vs. differences, characterized by the coefficient and intercept value
and the associated RAB

2, were reported in Bland and Altman plots. The Kendall’s τ

coefficient [47] was calculated to verify the presence of data heteroscedasticity.

Table 4. Metrics for each model: accuracy, precision, bias, UL, and LL of the difference are expressed
in meters. Kendall’s tau coefficient (τ) is used to infer about data homoscedasticity (τ < 0.1). Samples
(n); CI = confidence interval; t-value; SEBIAS = standardized error of the estimates are also presented.

Parameter LR SR SVMs Ensemble GPR NNs

Accuracy [m] 0.17 0.17 0.18 0.15 0.12 0.17
Precision [m] 0.17 0.17 0.18 0.15 0.12 0.17

Bias [m] −0.01 −0.03 −0.04 −0.02 0.01 −0.01
CIBIAS (95%) [m] [−0.06, 0.03] [−0.07, 0.02] [−0.07, 0.02] [−0.06, 0.02] [−0.02, 0.04] [−0.06, 0.03]

UL [m] 0.32 0.31 0.31 0.027 0.25 0.32
CIUL (95%) [m] [0.25, 0.40] [0.23, 0.39] [0.23, 0.38] [0.19, 0.33] [0.19, 0.31] [0.24, 0.39]

LL [m] −0.35 −0.36 −0.36 −0.31 −0.23 −0.34
CILL (95%) [m] [−0.43, −0.27] [−0.44, −0.28] [−0.43, −0.23] [−0.38, −0.24] [−0.29, −0.17] [−0.42, −0.26]

Kendall’s τ 0.06 0.021 0.02 0.08 0.06 0.06
Samples (n) 57 57 57 57 57 57

t-value 2.00 2.00 2.00 2.00 2.00 2.00
SEBIAS (s/

√
n) 0.02 0.02 0.02 0.01 0.01 0.02

Moreover, the models’ performances were evaluated using three metrics applied
on the test set: (i) accuracy, obtained as the RMSE between the reference value and the
estimated one; (ii) precision, obtained as the standard deviation of the distance between
the reference and estimated values; (iii) bias, obtained as the mean distance between the
reference values and the estimated ones.

3. Results

The 286 jumps had a lmeter of 1.83 ± 0.30 m, ranging from 1.12 m to 2.60 m.
After Lasso regularization, 11 out of 61 features were used to train the ML models.

The best models obtained after Bayesian optimization for each architecture along with their
optimized hyperparameters are reported in Table 3.

The Bland and Altman plots relative to the models listed in Table 3 are reported
in Figure 3.

The metrics of the best models together with the values of bias, UL, and LL of the
Bland and Altman plots are reported in Table 4.

Among the optimized models, the GPR model presented the best performances, with
the highest R2 (0.81) as well as the best values for all the analyzed performance metrics.
The model was homoscedastic (τ = 0.06). Referring to this model, in Figure 4, the list of key
features is reported and sorted based on their importance as assessed by the PFI score.
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output of test data, lmeter, and yi = estimated output of the i-th trained model. In grey, confidence 

Figure 3. Bland–Altman plots of the test set for: (a) linear regression (LR) model; (b) stepwise
regression (SR) model; (c) SVM model; (d) ensemble model; (e) GPR model; (f) neural network (NN)
model. For each model, the mean (BIAS), upper limit (UL), and lower limit (LL) of the difference
are reported. Average and difference are computed in meters using the test set, where y = reference
output of test data, lmeter, and yi = estimated output of the i-th trained model. In grey, confidence
intervals are reported for BIAS, UL, and LL. The regression line is reported in black; the regression
equation and the associated RBA

2 are reported on the top of the plots.
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4. Discussion

In this study, the SLJ distance was estimated investigating the use of low-cost IMUs,
as available in current smartphones, in combination with different machine learning archi-
tectures. The protocol proposed in this work is designed for an ecological setting and an
unsupervised user administration: by extracting features only in the preparation phase and
holding the smartphone with the hand at the hip level, robust estimates of the SLJ distance
are allowed.

The GPR model proved to be the most capable at describing the jumped distance
variation in training (R2 = 0.88) and test set (R2 = 0.81), while presenting the best accuracy
(12 cm, 6.6% of the jumped length) among all the trained architectures. This choice also
grants better precision and bias (12 and 1 cm, respectively), as well as estimation errors
independent from the magnitude of the jumped distance, as detailed in Table 4 and ob-
served in the relevant Bland–Altman plot. Ninety-six percent of the tested jumps had an
absolute error below 15%, spanning from a minimum error (underestimation) of −18.5% to
a maximum error (overestimation) of 17.0%. Given the error obtained, we could speculate
that it is least problematic when performing an analysis where a high variability is expected
such as in children’s motor development; however, it remains within the subjectivity of the
tester whether such error is considered acceptable or not in other applicative contexts.

These results constitute an improvement with respect to the only available model
for SLJ distance estimate [2], which presented an RMSE of 15.4 cm. This improvement
can be attributed to the use of features related to the biomechanics of the jump which
allows estimating the SLJ distance differently for each jump of the same person. Conversely,
the model by Akay and co-authors is not able to capture intra-individual variations of
the SLJ length since it only includes anthropometric variables and the sport branch as
input variables. Moreover, the population sampled in [2] was younger (9 to 13 years old),
limiting the length of the analyzed jump and the generalizability of the model to jumpers of
similar age.

Lasso regularization was used as a tool for removing multicollinear, redundant fea-
tures. Overall, 11 out of 61 features were selected for model training: 3 of them are related
to the participants anthropometric characteristics, while the remaining ones come from
both the AP and V components. This suggests that both directions contribute to the overall
performance of the test.

For the proposed model and following the PFI analysis, the features that mostly affect
the results if permutated (MSE ratio > 1, Figure 4) are the height and the body mass of
the participant (hanthro and wanthro, respectively), the distance jumped estimated under the
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ballistic motion assumption (bjump), and the maximum acceleration in the antero-posterior
direction (eAP). While on the one hand, the role of the anthropometric features in the
estimate of the SLJ length confirms Akay’s results [2], on the other hand, the presence of
bjump confirms the important contribution to the estimate given by the ballistic motion
hypothesis [48]. Noteworthily, bjump cannot be considered alone for the SLJ length estimate
(thus using only IMUs information without the use of ML approaches), as it leads to a
MAE on the test set of about 0.57 m, underperforming the current results using the GPR
model (0.09 m as in Table 3). Finally, the presence of eAP as a predictive feature confirms
that the power production in the anterior–posterior direction is crucial in the SLJ distance,
consistently with the use of this measure as a test to assess power [7,10,11,49].

The results presented here should be evaluated within the following limitations: (i) the
reported quality can be expected only when the proposed model is applied to jumps within
the same range of those measured (1.12–2.60 m); (ii) the model applies to jumps performed
with the hands at hip level, therefore limiting the analysis to the role of the lower limbs
alone, and thus neglecting the theoretical positive contribution given by the upper limbs.
Moreover, we anecdotally experienced that the prolonged use of the smartphone in the
same session caused the random loss of signal. This problem may depend on several SP
factors whose investigation is outside the scope of this research, but are worth keeping in
mind for in-the-field use of this research.

Finally, regarding the strong point of this approach, we can highlight the follow-
ing important aspects: (i) while the proposed method only provides the SLJ distance,
the adoption of IMUs gives access to biomechanical features, thus offering the opportu-
nity to analyse jumping technique of the athlete; (ii) the proposed integrated approach
(IMU data + machine learning) outperforms SLJ length estimates obtained using only IMUs;
(iii) the proposed method is objective and ecologic as it could be fully applied in the sport
field using only SPs in stand-alone modality, i.e., without the need to involve external
testers, thus enabling self-monitoring applications.

In the future, such insights could be derived through a dedicated app, allowing easy
and widespread access to this information. Of particular interest would be predicting
peak and average power as attempted for CMJ [30,50,51] and SLJ [11]. Specifically, this
latter study used both SLJ distance and anthropometric variables as predictors of peak and
average power. In this perspective, a future step could be to improve the models proposed
by Mann [11] with the integration of biomechanical features such as those included in the
current study. The exploratory work by Harry, evaluating the potential contribution of
variables derived from force plates to SLJ power production, could also set the stage for
expanding the current work.

5. Conclusions

This study proved the feasibility of using low-cost smartphone sensors to provide an
automatic and objective estimate of SLJ performance in ecological settings. This result was
made possible by complementing smartphone-based measurement with state-of-the-art
machine learning methods. Based on the massive use of jumping testing in team sports
and the wide availability of smartphones, it is believed that such a democratic approach
could represent an added value in players’ assessment, especially when working at the
amateur level.
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