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A B S T R A C T

Objective analysis of gait abilities (Gait Analysis, GAn) in clinic is an essential motor assessment to improve
clinical decision-making and provide precision rehabilitation approaches to recover gait functions. GAn is
usually based on wearable motion sensors or camera-based systems, which generate an extensive set of
data which are challenging to manage, analyse, and interpret. This makes GAn a time-consuming unfeasible
assessment approach in clinical practice. Machine Learning (ML) techniques can provide a viable solution, as
they can handle massive time series and complex data.

This study aims to correctly classify subjects’ physical activity levels, using as ground truth a self-
reported questionnaire (International Physical Activity Questionnaire, IPAQ), via kinematic features provided
by wearable wireless Inertial Measurement Unit (IMU) sensors. Kinematic gait data were collected from 37
healthy subjects (24 male and 13 female) while walking on a sensorised treadmill at natural speed. Velocity,
acceleration, jerk, and smoothness were calculated using the kinematic features and used to perform statistical
feature extraction. The Neighbourhood Component Analysis (NCA) algorithm was used to process the statistical
features space and select the most significant ones.

Several models have been trained and tested before and after the feature selection to validate the approach’s
effectiveness. Feature reduction resulted in a significant increase in accuracy for K-Nearest Neighbours (KNN)
(81.978 ± 0.368), Random Forest (84.044 ± 3.409) and Rough-Set-Exploration-System Library K-Nearest
Neighbours (RSesLib KNN) (83.956 ± 0), with an improvement of ≈20%. The performance of the best-
performing classifiers was then analysed, observing the behaviour of accuracy by varying the number of
features considered.
. Introduction

Gait analysis (GAn) is a standard diagnostic laboratory procedure to
ssess and analyse human body motion quantitatively. GAn has been
sed in various fields, including rehabilitation and health diagnostics
Tao et al., 2012). GAn has a crucial function in the healthcare sys-
em to provide timely interventions and keep track of recovery, as it
llows the extraction of clinically relevant parameters to assess the
verall level of walking ability (Hollman et al., 2011; M et al., 2014;
acellari et al., 1999). Physical activity level (PAL) directly affects gait
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parameters, influencing both balance control and propulsion of inactive
versus active individuals (Katsiaras et al., 2005; O’Connor et al., 2007).
Moreover, PAL also influences walking speed: Niang and McFadyen
(2005) shows that active individuals have higher walking speeds during
unobstructed and obstructed walking. Subjective questionnaires are the
most common method of assessing PAL, as it is an inexpensive and
easily applicable tool for large populations (Vanhees et al., 2005). The
International Physical Activity Questionnaire (IPAQ) long form is a 27-
item self-reported physical activity measure for use with adults aged
15–69 years. The IPAQ is organised into five sections covering different
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Nomenclature

GAn Gait Analysis
ML Machine Learning
IPAQ International Physical Activity Question-

naire
IMU Inertial Measurement Unit
NCA Neighbourhood Component Analysis
PAL Physical Activity Level

types and domains of physical activity and behaviours. The IPAQ aims
to provide a set of well-developed tools that can be used internationally
to obtain comparable estimates of physical activity (Bauman et al.,
2009; Hagströmer et al., 2006). Although the IPAQ is a clinically
validated instrument, it remains a subjective evaluation of gait and may
be susceptible to the biases and level of experience of the evaluator.
This can lead to errors and inconsistencies of the GAn, which can affect
the accuracy of the diagnosis and the effectiveness of the treatment
plan. Objective measures of gait provide a more comprehensive un-
derstanding of a patient’s movement patterns, which can help identify
underlying biomechanical issues and guide the development of an
appropriate treatment plan (Muro-de-la Herran et al., 2014).

To date, several technologies have been adopted to objectively as-
sess GAn motion data. Optical motion capture systems, force plates and
instrumented walkways are the most used ones, as they represent the
‘‘gold standard’’ in laboratory settings. However, these instruments are
expensive to acquire and operate, and requires specialised locomotion
laboratories, reducing their feasibility for clinical use (Akhtaruzzaman
et al., 2016). Inertial measurement units (IMUs) represent a wear-
able, portable, light, low-cost alternative to the classic GAn laboratory
equipment. IMUs consist of 3D accelerometers, gyroscopes, and mag-
netometers arranged to provide comprehensive information about the
sensor’s linear acceleration, angular velocity, and magnetic orientation
(Li et al., 2009; Luinge et al., 2007). By analysing the motion signal
recorded by IMUs, it is possible to measure the various characteristics
of human gait and then perform GAn (Bonato, 2003; Engin et al., 2005).
Due to their portability, IMUs are preferred over traditional camera-
based (SR, 2004) GAn systems in clinical practice (Aminian et al., 2002;
Auvinet et al., 2002; Pappas et al., 2004; Tao et al., 2012; Tong and
Granat, 1999), but they are still unpractical in clinical use given the
massive amount of data generated, especially if the full-body analysis
is needed.

Machine Learning (ML) and Deep Learning (DL) approaches have re-
cently emerged as viable options in multiple fields, including healthcare
research (Dua et al., 2014). Recent advances in these fields have paved
the way for their widespread applications in various fields, especially
for different data analysis and processing techniques. These algorithms
are being used to make predictions, classify data, recognise patterns,
and automate tasks. As a result, they have become indispensable in
various fields such as data science (Namar et al., 2022), engineering
(Roy, 2022; Tao et al., 2022; Zhuang et al., 2022), and computer sci-
ence (Matkovic et al., 2022; Stojanovic and Nedic, 2016), particularly
in the subfield of computer vision (Lawal, 2021). Such techniques can
automatically learn data features by identifying complicated patterns
within a large amount of data, such as the gait biometrics, which
are usually large and contain complex characteristics. ML approaches
have already been used to analyse IMUs data (Mannini et al., 2016).
Hutabarat et al. (2021) present a comprehensive review of GAn using
wearable sensors, covering different types of sensors, ML algorithms,
and applications in healthcare and rehabilitation. They may even be
used to identify different gait phases (Williamson and Andrews, 2000)
and humans from gait patterns (Nowlan, 2009).

Previous studies on GAn through ML already exist, in which various
methods and techniques have been implemented, and different datasets
2

have been used for analysis. These studies have demonstrated both
the possibilities and the limitations of current approaches. Whittle’s
seminal work on GAn provided a comprehensive introduction to the
topic and has served as a foundation for much of the research in
this field (Whittle, 1996). Early applications of ML in GAn focused on
biometric authentication. Ailisto et al. (2005) and Begg et al. (2005)
demonstrated the potential of using ML algorithms, such as Support
Vector Machines (SVM) and Artificial Neural Networks (ANN), to iden-
tify individuals based on their unique walking patterns. The use of ML
to analyse pathological gait patterns has also gained attention, with
(Pogorelc and Gams, 2013) using a multidimensional dynamic time-
warping approach to detect gait-related health problems in the elderly.
Mannini et al. (2014) employing hidden Markov mode algorithm to
differentiate between different gait events. These studies suggest that
ML can be a powerful tool for the early detection of gait-related
disorders and for assessing treatment outcomes. As of today, no one
as highlighted the prediction of a clinically validated questionnaire
via ML algorithm based on human motion data. Aminian and Najafi
(2004), Ayachi et al. (2016) and Tudor-Locke and Myers (2001) explore
various aspects of PAL assessment using GAn, with applications ranging
from general physical activity monitoring, and daily living activities
recognition to specific clinical conditions. While some of these papers
may not explicitly use ML techniques, they provide valuable insights
into evaluating PAL through GAn.

Considering the abilities of ML algorithms and the need to provide
clinical meaning to the massive amount of data generated via GAn,
we have aimed to correctly classify the PAL of healthy subjects via
ML models fed by the IMUs-acquired kinematic features (3D Joints
Range of Motion). In order to explore the extracted statistical features
space and to improve the performance of the considered ML mod-
els, the Neighbourhood Component Analysis (NCA) was used. Identify
kinematic features with the highest reliability to detect PAL, allowed
us to reduce the complexity of the problem and focus only on the
discriminative features. To provide clinically valuable indications on
the least time-consuming IMU sensors’ set-up, the secondary aim of this
study is to evaluate the best-performing ML model with the minimum
number of kinematic features. The remainder of this paper is organised
as follows: Section 2 presents the materials and data acquisition proto-
col, as well as the preprocessing techniques adopted to analyse the raw
data and extract statistical features. The achieved results are presented
Section 3. In Section 4 the obtained results are discussed, followed by
conclusions and future study in Section 5.

2. Material and methods

2.1. Design and participants

A single-session study was conducted within the IRCCS ‘‘Bonino
Pulejo’’ Neurolesi Center in Messina, Italy. Thirty-seven young, healthy
subjects were recruited for the study. Subjects were contacted via email,
provided information about the study, and asked to sign a written
consent form before proceeding with the testing session. The testing
session lasted one hour and a half.

The inclusion criteria were: (a) age between 18–40, (b) entirely out
of any pain in the last month, (c) not under active health management
or receiving therapies (e.g., physiotherapy) in the last three months.
The exclusion criteria were: (a) gait impairments given by neuro-
logical, cardiovascular, orthopaedic, or rheumatologic conditions, (b)
being pregnant for the female participants. The enrolled participants’
characteristics are reported in Table 1.

At the end of the testing session, subjects filled out the long version
of the IPAQ, which was used as ground-truth for the classification
task. A Python script was realised to translate the answers provided
on the questionnaire into a categorical score. Three possible values

of PAL are proposed: ‘‘Low’’, ‘‘Moderate’’, or ‘‘High’’. Table 2 shows
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Fig. 1. IMUs sensors placement.
Fig. 2. Overall methodology followed.
Table 1
Subjects’ characteristics.

Male Female Overall

Number (%) 24(65%) 13(35%) 37
Age (mean ± std_dev) 24 ± 3 22 ± 2 23 ± 3
Height (mean ± std_dev, cm) 177 ± 9 167 ± 7 173 ± 10
Body Mass (mean ± std_dev, kg) 73 ± 9 63 ± 8 69 ± 10

Table 2
IPAQ level distribution.

IPAQ level Number of subjects

Low 0
Moderate 11
High 26

the distribution of subjects’ IPAQ levels. None of the participants were
labelled with a ‘‘Low’’ level of PAL.

All the participants gave their written informed consent to partici-
pate in the study. The acquired data were fully anonymised following
ethics recommendations. The study was conducted in accordance with
the guidelines of the Declaration of Helsinki, and all the procedures
were fully approved by the ethics committee of the Istituto di Ricerca
e Cura a Carattere Scientifico Centro Neurolesi ‘‘Bonino Pulejo’’.

2.2. Measurement system

The participants were asked to perform two walking tasks at natural
speed, without shoes, for five minutes on a treadmill (Gait Trainer 3;
Biodex medical system, Shirley, New York). The order of execution
was randomised to avoid bias. Full body motion data were captured
with 9 IMUs sampling at 100 Hz (MyoMotion, NORAXON, USA). Upper
and lower body motions were acquired while performing the walking
task. Upper body sensors were securely fixed directly to the skin via
a skin-safe tape (Hypafix, BSN medical GmbH) on the upper thoracic
and lower thoracic (respectively below C7 and on T12/L1). Lower body
sensors were placed on the pelvis and both legs. Elastic belts were used
on the sacrum, thighs and shanks. The remaining sensors were taped
3

to the feet. Fig. 1 shows the sensors’ placement. The participant acqui-
sition file reported all the information provided by each IMU’s tri-axial
accelerometer and tri-axial gyroscope, resulting in 102 features.

2.3. Project overview

Fig. 2 shows the procedure implemented from the raw IMUs data
to the training of several ML classifiers to validate the proposed ap-
proach, going through data pre-processing, and the statistical feature
extraction.

MSI Vector GP66 laptop with 12th Gen Intel(R) Core (TM) i7-
12700H (2.70 GHz), 16.0 GB DDR4 RAM was used for the data analysis,
training, and testing of ML models.

2.4. Data analysis

MATLAB R2019b (The MathWorks Inc., Natick, MA, USA) and the
Python 3 (Van Rossum and Drake, 2009) Pandas library were used for
data processing. Data augmentation was performed by identifying the
participants’ gait cycles to increase the number of pares considered in
the ML approach. Gait cycles and heel strike detection were realised
via acceleration peak detection of the right-foot IMU sensor. Triaxial ac-
celerometer and gyroscope data were zero-lag filtered using a 4th-order
low-pass Butterworth filter with a cut-off frequency of 𝜔𝑐 = 4 Hz to re-
move undesirable sensor noise (Cho et al., 2016; Jayalath et al., 2013).
The acceleration magnitude was calculated from the filtered accelerom-
eters signals (

√

𝑅𝑖𝑔ℎ𝑡_𝐹𝑜𝑜𝑡_𝑎2𝑥 + 𝑅𝑖𝑔ℎ𝑡_𝐹𝑜𝑜𝑡_𝑎2𝑦 + 𝑅𝑖𝑔ℎ𝑡_𝐹𝑜𝑜𝑡_𝑎2𝑧), as
shown in Fig. 3.

For each participant, consecutive windows of 6 gait cycles were
considered. In this way, each gait cycle window was equated with
an instance of the resulting dataset. Six gait cycles are sufficient to
perform averaging procedures and thus minimise artefacts caused by
natural gait variability (Macellari and Giacomozzi, 1996). The MATLAB
‘‘findpeaks’’ function, with MinPeakProminence = 200 and MinPeakDis-
tance = 80, automatically identified the heel strike. Single gait cycle
detection was based on two consecutive peaks (Mahoney and Rhudy,
2019; Rhudy and Mahoney, 2018) (Fig. 4).
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Fig. 3. Magnitude of right foot IMU acceleration signal.

Fig. 4. Example of six gait cycles identification from heel strike detection (marked in
red).

After data augmentation, a dataset of 1520 instances was created
from the 37 participants’ acquisition dataset. Each of the instances
contained 102 kinematic features provided by the sensors. Considering
the absence of participants’ laterality, only the right-sided 3D Joints’
Range of Motion was considered, resulting in 30 kinematic features
(Table 3).

Velocity, acceleration, and jerk were computed for each of the
30 considered features, resulting in 120 new signals (30 initial fea-
tures × 4). The smoothness (Shahbazi et al., 2018) was computed
y calculating the jerk magnitude, resulting in a total of 130 signals
[(30 initial features × 4) + 10 smoothness]). Statistical features, such
s mean, root mean square, maximum, and standard deviation, were
xtracted from the 130 new features. Statistical extraction resulted in
20 derived features (130 new features × 4 statistic measures) (Fig. 5).
he described procedure allows to move from a time series dataset,

n which each subject was characterised by 130 signals (considered as
eatures), to a tabular dataset, in which each subject is represented by

row in the table and characterised by 520 columns (considered as
eatures).

After data augmentation and statistical feature extraction, the re-
ulting dataset consisted of 1520 instances described by 520 statistical
4

Table 3
3D joints range of motion features.

Upper body sensors Lower body sensors

Anatomical angles (deg) Lumbar flexion
Lumbar lateral
Lumbar axial
Thoracic flexion
Thoracic lateral
Thoracic axial

Hip flexion
Hip abduction
Hip rotation
Ankle dorsiflexion
Ankle inversion
Ankle abduction

Orientations (deg) Upper spine course
Upper spine pitch
Upper spine roll
Lower spine course
Lower spine pitch
Lower spine roll

Pelvis course
Pelvis pitch
Pelvis roll
Thigh course
Thigh pitch
Thigh roll
Shank course
Shank pitch
Shank roll
Foot course
Foot pitch
Foot roll

features with the PAL (IPAQ outcomes) as ground truth for the su-
pervised learning application. The provided dataset was used to train
several ML models to classify the PAL of input instances, identifying
which features are most significant for discrimination. To explore the
discrimination power of the selected features and to reduce the number
of features considered, the NCA was used. NCA is a supervised learning
non-parametric technique that uses the gradient ascent technique to
maximise the average leave-one-out (LOO) classification performance
in the transformed space. The goal is to ‘‘learn’’ a distance metric by
finding a linear transformation of the input data. NCA proves to be
an effective method for both metric learning and linear dimensionality
reduction (Goldberger et al., 2004). As reported in Yang et al. (2012),
NCA provides a feature ranking by learning a feature weighting vector
based on features’ statistical distribution and discriminatory power. The
algorithm is almost insensitive to the increase in the number of irrel-
evant features and performs better than the neighbour-based feature
weighting state-of-the-art methods in most cases, such as Simba (Iter-
ative Search Margin Based Algorithm) (Gilad-Bachrach et al., 2004),
LMFW (Large Margin Feature Weighting method) (Chen et al., 2009)
and FSSun (Sun et al., 2010).

Waikato Environment for Knowledge Analysis – WEKA 3.8.6
(Waikato University, New Zealand) was used to test the efficiency of
the approach (Witten et al., 2016). Several ML models were trained
before and after NCA, and performance was compared using Accuracy,
the Area Under the Curve (AUC), Precision, and Recall (Sensitivity)
(Fig. 6).

The training and test sets were manually assigned with 70% and
30% of the statistical instances dataset, respectively. Careful data split-
ting was realised to keep all instances related to a single subject in one
set to avoid biasing the classification results.

2.5. Classification algorithms

For the validation phase of the proposed approach, a wide range
of classification algorithms were analysed to screen different possible
ML approaches (Table 4). The hyperparameters has been selected in a
preliminary session of experiments on the validation test.

Multilayer Perceptron (MLP) is a feed-forward artificial neural net-
work widely used for solving supervised learning problems, charac-
terised by several layers of input nodes connected as a directed graph
between the input and output layers. The number of hidden layers
between the input and output layer depends on the problem and
remains one of the main challenges while tuning MLP (Ramchoun et al.,
2016).

Logistic Regression is an ML classification technique that uses a
logistic function to predict a binary outcome. It is an extension of the
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Fig. 5. Summary of the statistical features extraction procedure.
Fig. 6. Summary diagram of the data analysis process.
Table 4
WEKA classifier algorithms considered.

Classifiers AKA Type in WEKA Hyperparameters

Multilayer Perceptron MultilayerPerceptron Functions Number of Hidden Layers = (attributes + classes)/ 2 = 11
Logistic Regression Logistic Functions Ridge value = 1.0E−8
Support vector machine LibSVM Functions Kernel = Radial Basis Function (RBF)
Stochastic Gradient Descent SGD Functions Loss function = SVM
K-Nearest Neighbours IBk Lazy K = 3
RSesLib-K-Nearest Neighbours RseslibKnn Lazy K = 3
AdaBoost AdaBoostM1 Meta Number of iterations = 10
Random Forest RandomForest Trees Number of trees = 100
Random Tree RandomTree Trees Number of iterations = 100
Reduced Error Pruning Tree REPTree Trees Number of folds = 3
linear regression model that cannot be used for classification problems
(Kleinbaum and Klein, 2010).

Support Vector Machine (SVM) algorithm is a supervised learning
classifier that constructs a transformed space of the input feature space
dividing each class by constructing a boundary based on a specific
kernel function (linear, polynomial, gaussian, sigmoid, etc.) (Noble,
2006). SVM in WEKA was trained with the default parameters and
with the parameters optimised via Stochastic Gradient Descent (SGD)
(Bottou, 2012).

The K-Nearest Neighbours (KNN) algorithm assigns each new in-
stance of the test set to one of the classes in the training set by
evaluating its distance from the nearest point in the feature space. The
metric used to evaluate the distance between points was the Euclidean
distance (Guo et al., 2003). In the present work, the KNN algorithm
was trained in the default version of WEKA and in an extended version
provided by the RSES (Rough Set Exploration System) library.

Adaptive Boosting (AdaBoost) is an ensemble learning method that
combines a set of weak learners (decision stumps) into a strong learner
to minimise training errors. At each iteration, the weights of AdaBoost
instances are re-assigned based on the misclassification error of the
previous iteration. Misclassified instances are assigned higher weights
(Rokach, 2009).

Random Forest is a tree-based machine learning algorithm that
leverages the power of multiple decision trees for making decisions. The
Random Forest algorithm combines the output of multiple, randomly
created, decision trees (ensemble approach) to generate the final output

(Shaik and Srinivasan, 2019).

5

Random Tree combines the principles of single-model trees with the
ideas of Random Forest. It selects a K number of attributes to calculate
the entropy at each node without performing pruning (Thin Swe, 2019).

Reduced Error Pruning Tree (REPTree) is fast decision tree learning
which uses regression tree logic to create multiple trees and selects
the best among all generated trees. The mean square error on the
predictions made by the tree is used to prune the tree (Kalmegh, 2015).

2.6. Performance evaluation

Precision, Recall, Accuracy (Sokolova and Lapalme, 2009), and
AUC (Fawcett, 2006) score are all commonly used metrics in ML for
evaluating the performance of a classification model. Each of these
metrics provides different information about the model’s performance,
and together they can give a more complete picture of how well the
model is working. Precision measures the percentage of instances that
are classified as positive that are actually positive. Recall (Sensitivity)
measures the percentage of positive instances that are correctly clas-
sified as such by the model. Accuracy measures the percentage of all
instances that are classified correctly. AUC score measures the overall
performance of the model in terms of its ability to distinguish between
the two classes. The use of these metrics is important because they
provide a way to objectively evaluate the performance of a model and
compare it to other models. By looking at each of these metrics, it
is possible to identify areas where the model is performing well and
areas where it needs improvement. For example, a model with high
Precision but low Recall may be good at identifying positive instances
but is missing many of them.
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Fig. 7. Accuracy trend of best-performing classifiers by number of features selected by NCA.
Table 5
The 20 most relevant features selected by NCA.

Rank Features selected by NCA Weight

1 RTFootRoll_deg_MAXIMUM 0.693
2 RTHipFlexion_deg_MAXIMUM 0.607
3 RTShankRoll_deg_MEAN 0.540
4 LumbarFlexion_deg_MEAN 0.502
5 RTThighCourse_deg_MAXIMUM 0.460
6 RTAnkleDorsiflexion_deg_MEAN 0.390
7 RTShankCourse_deg_MAXIMUM 0.382
8 RTFootCourse_deg_MEAN 0.375
9 RTFootCourse_deg_MAXIMUM 0.282
10 RTShankRoll_deg_MAXIMUM 0.188
11 RTHipRotation_Out_deg_MAXIMUM 0.117
12 RTFootCourse_deg_STD_DEV 0.091
13 LumbarFlexion_deg_RMS 0.058
14 RTShankCourse_deg_MEAN 0.043
15 RTAnkleInversion_deg_MAXIMUM 0.042
16 PelvisPitch_deg_MEAN 0.035
17 RTHipAbduction_deg_MAXIMUM 0.035
18 RTAnkleAbduction_deg_MEAN 0.032
19 LowerSpineCourse_deg_MEAN 0.027
20 LowerSpineCourse_deg_RMS 0.020

3. Results

From the initial 520 statistical features, the NCA algorithm identi-
fied 20 as the most relevant (Table 5). Features with a higher weight
correspond to the most relevant features for classification. Features
with lower values than the 20th represent irrelevant features discarded
from the initial dataset.

Each ML model was trained and tested 10 times, normalising the
data, and shuffling the training and test sets to avoid bias. The mean
and standard deviation were evaluated for each performance measure.
The overall performance of the models is summarised in Table 6
considering all the features and those selected by the NCA.

Table 7 shows the confusion matrix related to the Random Forest,
that was found to be the best performing classifier.

Following the study’s secondary aim, a further analysis was exe-
cuted to find the best-accuracy-retrieving combination of the minimum
set of selected features. The accuracy as a function of the number of
features selected by the NCA was analysed to assess the best classifier
with the fewest features (Fig. 7).
6

4. Discussion

In the present study, the performance of different classifiers in pre-
dicting PAL were analysed by considering statistical features extracted
from kinematic gait data. The results obtained show that walking with a
linear trajectory at natural speed is sufficient to predict PAL with a good
level of accuracy without administering any questionnaire. Specifically,
9 IMUs were used to acquire kinematic data and considered 6 gait
cycles (recording only 8 s of walking) to validate the methodology. In
addition, the NCA algorithm was used to rank the derived statistical
features and understand which IMUs are found to be most discriminat-
ing and to which body segment they belong. The NCA results showed
that considering only four sensors is sufficient to predict PAL, as the
algorithm recognised only features derived from lower body IMUs as
relevant. The behaviour of the best-performing classifiers was then
analysed by varying the 20 most relevant features selected by NCA.

Table 5 shows how the NCA algorithm considers features derived
from position data of the lower body sensors more discriminating
than those derived from velocity, acceleration, jerk, and smoothness.
In Jiménez-Grande et al. (2021), the authors used NCA to identify
the body segments and corresponding significant features that have
the greatest discriminatory power in classifying asymptomatic indi-
viduals from those with chronic neck pain while performing linear
and nonlinear gait trajectories. Although nonlinear walking trajectories
provided the best classification performance, a comparison can be made
between the results obtained from the linear walking trajectory and
the results presented in this study. It is reported that for a linear
walk path, the most representative body segments appear to be those
related to the upper body sensors, such as the head and trunk, while
the features related to jerk smoothness and speed turn out to be the
most discriminative (higher feature weight). The differences between
the studies result from having similar walking direction, while the
kinematic features may be different. This can be attributed to the ab-
sence of constraints on maintaining a constant speed during overground
walking. As reported in Alton et al. (1998), statistically significant
differences exist between overground and treadmill walking in healthy
subjects for some joint kinematic and temporal variables. Specifically,
significant increases were seen during treadmill walking in hip range
of motion, maximum hip flexion joint angle, and cadence. Differences
between overground and treadmill walking in temporal gait parameters
were also reported in Chockalingam et al. (2012). The authors reported
a lower pelvic obliquity motion for treadmill walking compared to
overground walking, and the pelvic rotation movement pattern showed



S. Galasso, R. Baptista, M. Molinara et al. Engineering Applications of Artificial Intelligence 123 (2023) 106487

P
m
t
i
c
(
p
F
t
t
T
r
i
i
‘
t

m
o
s
h
a

Table 6
Model’s classification performance (std_dev = standard deviation).

All features

Classifier Precision Recall Accuracy AUC

mean std_dev mean std_dev mean std_dev mean std_dev

AdaBoost 0.811 0.000 0.820 0.000 81.978 0.000 0.905 0.000
REPTree 0.660 0.046 0.643 0.050 64.286 5.051 0.607 0.048
KNN (K-nearest neighbours) 0.632 0.009 0.631 0.006 63.055 0.577 0.528 0.011
Logistic Regression 0.778 0.000 0.758 0.000 75.824 0.000 0.868 0.000
MLP (Multilayer Perceptron) 0.586 0.014 0.604 0.012 60.440 1.167 0.635 0.007
Random Forest 0.709 0.071 0.745 0.028 74.505 2.823 0.801 0.024
Random Tree 0.680 0.109 0.687 0.097 68.681 9.679 0.588 0.128
RSesLib KNN (K-nearest neighbours) 0.661 0.000 0.648 0.000 64.835 0.000 0.568 0.000
SGD (Stochastic Gradient Descent) 0.624 0.011 0.654 0.008 65.407 0.788 0.516 0.013
SVM (Support vector machine) 0.821 0.000 0.763 0.000 76.264 0.000 0.554 0.000

NCA selected features

Classifier Precision Recall Accuracy AUC

mean std_dev mean std_dev mean std_dev mean std_dev

AdaBoost 0.751 0.000 0.752 0.000 75.165 0.000 0.733 0.000
REPTree 0.726 0.034 0.679 0.050 67.846 5.566 0.670 0.058
KNN (K-nearest neighbours) 0.834 0.008 0.820 0.003 81.978 0.368 0.675 0.003
Logistic Regression 0.626 0.000 0.618 0.000 61.758 0.000 0.590 0.000
MLP (Multilayer Perceptron) 0.787 0.052 0.799 0.049 79.846 4.508 0.766 0.051
Random Forest 0.843 0.043 0.841 0.035 84.044 3.409 0.901 0.041
Random Tree 0.726 0.092 0.697 0.090 69.736 9.768 0.639 0.118
RSesLib KNN (K-nearest neighbours) 0.868 0.000 0.840 0.000 83.956 0.000 0.698 0.000
SGD (Stochastic Gradient Descent) 0.710 0.004 0.734 0.004 73.429 0.302 0.609 0.006
SVM (Support vector machine) 0.506 0.000 0.589 0.000 58.901 0.000 0.401 0.000
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Table 7
Confusion matrix of the Random Forest classifier.

Predicted

High Moderate

Ground truth High 326 8
Moderate 59 62

the most significant difference between walking modes. Moreover, the
systematic review (Semaan et al., 2022) reported significant differences
in kinematic parameters such as reduced pelvic range of motion, max-
imum hip flexion angle for females, maximum knee flexion angle for
males, and cautious gait pattern.

Considering the accuracy reported in Table 6, the classifiers that
benefited most from feature reduction were the KNN (81.978 ± 0.368),
Random Forest (84.044 ± 3.409), and RSesLib KNN (83.956 ± 0).
revious studies have addressed ML classification problems using kine-
atic data from IMUs. Although it was shown in McGrath et al. (2021)

hat no ML model is the best for activity classification, as differences
n sensor placement, IMU specifications and pre-processing decisions
an affect model performance. In Hua et al. (2020) and Khaksar et al.
2021), the authors achieved 87.75% accuracy in classifying cerebral
alsy and 98.60% in classifying upper limb exercises with the Random
orest classifier, respectively. Similar to what was found in this study,
he results suggest that the Random Forest classifier demonstrates
he highest classification accuracy using kinematic data from IMUs.
he confusion matrix of the Random Forest is presented in Table 7,
evealing that a significant number of misclassifications occur when
nstances are labelled as ‘‘High’’ instead of ‘‘Moderate’’ (59 misclassified
nstances). This result is not surprising given the prevalence of the
‘High’’ category. However, a less noticeable effect was expected since
he imbalance between classes is not as obvious.

In Wang et al. (2021), the authors developed a Deep Neural Network
odel to detect stroke from kinematic gait data. They achieved 99.36%

f accuracy in identifying stroke gaits. Further analysis of the identified
troke gaits shows that the drop foot gait, the circumduction gait, the
ip hiking gait, and the back knee gait, are the four common gait

bnormalities of stroke patients. As described in the articles reviewed c

7

bove, several applications of ML on kinematic data have been devel-
ped, but none have aimed to predict the result of a clinically validated
uestionnaire such as the IPAQ. This study represents the first step
owards the development of ML algorithms based on kinematic gait
ata able to predict clinically validated outcomes in different clinical
opulations e.g., predicting the Motor Section 3 of the UPDRS in
arkinson’s disease patients (Goetz et al., 2008).

Of all the models analysed, only those that performed best were
elected for further analysis. It can be seen from Fig. 7 that, except for
he Random Forest classifier, the highest value of accuracy is obtained
ith fewer features than those selected by the NCA. This suggests that

ome of the features selected by the algorithm are redundant in that
hey do not provide additional discriminatory information. The KNN
lassifier achieves the highest accuracy with only 15 features. The
NN and RSesLib KNN overall performance deteriorates after reaching

he maximum accuracy value considering the first 15 and 18 features
eported in Table 5, respectively.

One of the main limitations of this study was the small number of
amples considered (37 participants). Although the data augmentation
echnique provided us with 1520 instances, it still limits the use of typ-
cal statistical techniques for ML model evaluation. Data augmentation
equired manual data splitting to ensure that all instances related to a
ingle subject were present in the train or test set, to avoid biasing clas-
ification results. For this reason, techniques such as cross-validation
hould be avoided, as it could not be guaranteed that instances of the
ame participants would be limited to the train or test set.

Another limitation is represented by the statistical features derived
rom the original kinematic features. With the performed statistical
eature extraction, the conducted analysis moved from a time series
lassification problem to a standard classification problem. These prob-
ems are easier to address because they require less computing power,
aking it possible to use tools such as WEKA for the testing part. On

he other hand, working with derived features reduces the explicability
f the models making them less interpretable for clinicians. Instead of
xtracting statistical features, in Liew et al. (2020a,b) the authors deal
ith time series data by making them all the same lengths and then
pplying functional data boosting (FDboost) (Brockhaus et al., 2017).

From a computational point of view, all the proposed ML algorithms
ould be deployed on devices with reduced computational power, in-

luding commercial PCs or microcontrollers. This makes deploying the
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Table 8
Machine learning libraries available for microcontroller.

Framework Web site Brief description

uTensor https://utensor.ai/ A lightweight version of TensorFlow designed specifically for
microcontrollers, which supports a variety of hardware platforms and is
optimised for memory and computational efficiency

Edge Impulse https://www.edgeimpulse.com/ An open-source deep learning inference framework designed for
microcontrollers, which provides a simple and flexible API for building
and deploying ML models on microcontrollers

Arm CMSIS-NN https://developer.arm.com/ip-products/processors/
machine-learning/cortex-m/cmsis-nn

A platform for building, training, and deploying machine learning models
on edge devices, including microcontrollers. Edge Impulse provides a
range of pre-built ML models and supports a variety of hardware platforms

TinyML https://www.tinyml.org/ A collection of optimised neural network kernels for Arm Cortex-M
processors, which provides a set of low-level functions for implementing
neural networks on microcontrollersc

ELL https://microsoft.github.io/ELL/ An open-source platform for building ultra-low-power machine learning
applications on microcontrollers, which includes a range of pre-trained
models and tools for developing custom models

Keras for Microcontrollers https://www.tensorflow.org/lite/microcontrollers/
library/overview

A lightweight version of the Keras deep learning framework designed
specifically for microcontrollers. Keras for Microcontrollers includes
support for a range of microcontroller architectures and provides a simple
API for building and deploying ML models

OpenMV https://openmv.io/ An open-source platform for machine vision and deep learning on
microcontrollers, which includes a range of pre-trained models and tools
for developing custom models
A

w
(

entire computational chain very close to the sensors possible, following
the so-called ‘‘AI on the edge’’ approach. There are several ML libraries
available online for microcontrollers (Table 8).

5. Conclusions

This paper investigated the classification performance of different
ML classifiers in discriminating PAL from motion data. It was shown
that reducing the feature space increased performance for most of the
considered classifiers. Analysis of the best-performing classifiers (KNN,
Random Forest, and RSesLib KNN) showed the behaviour of accuracy
by varying the number of features considered, suggesting that some of
the features are redundant.

Future work should focus on extending the proposed results by
comparing NCA with other feature selection techniques and analysing
and testing additional ML classifiers based on time-varying data. In
addition, a more in-depth analysis of performance behaviour concern-
ing the number of features considered is needed. To this end, shuffling
the features to find the best minimum set of relevant features will be
executed.
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