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Abstract
In recent years, human activity recognition (HAR) methods are developing rapidly. However, most existing methods base on 
single input data modality, and suffers from accuracy and robustness issues. In this paper, we present a novel multi-modal 
HAR architecture which fuses signals from both RGB visual data and Inertial Measurement Units (IMU) data. As for the 
RGB modality, the speed-weighted star RGB representation is proposed to aggregate the temporal information, and a convo-
lutional network is employed to extract features; As for the IMU modality, Fast Fourier transform and multi-layer perceptron 
are employed to extract the dynamical features of IMU data. As for the feature fusion scheme, the global soft attention layer 
is designed to adjust the weights according to the concatenated features, and the L-softmax with soft voting is adopted to 
classify activities. The proposed method is evaluated on the UP-Fall dataset, the F1-scores are 0.92 and 1.00 for 11 classes 
classification task and fall/non-fall binary classification task respectively.
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1 Introduction

Human activity recognition (HAR) aims to detect and clas-
sify human activities, which is widely employed in intel-
ligent security systems, health monitoring, virtual reality 
etc. Wan et al. (2020). According to the types of the data 

collection sensors, HAR methods can be categorized into 2 
classes, which are ambient sensor-based methods and wear-
able sensor-based methods.

Ambient sensors are deployed in the surrounding envi-
ronment of monitored subjects to record human activities. 
With the advancements of the machine learning technolo-
gies, ambient sensor-based methods achieve significant pro-
gress in the HAR fields. For instance, Luo et al. (2020) used 
2-D LIDAR to perform multiple people activity recognition. 
They cluster signals into human and nonhuman classes and 
segmented the human trajectory by Kalman Filter, and then 
employ a long short-term memory (LSTM) network and a 
temporal convolutional network (TCN) to classify trajec-
tory samples into 15 classes. Cippitelli et al. (2016) exploit 
skeleton data extracted by RGB-D sensors to compose fea-
ture vectors and then employ cluster algorithm and support 
vector machine (SVM) to classify human activities. Han and 
Bhanu (2005) investigate human repetitive activity proper-
ties with thermal infrared imagery to remove the affects of 
lighting conditions and colors of the human surfaces and 
backgrounds.

Although ambient sensors have many advantages, meth-
ods based on ambient sensors suffers from limitations and 
challenges. One of the major challenges is the occlusion 
problem. Usually, the installation positions of sensors such 
as RGB-D cameras and thermal cameras are fixed, and 
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parts of the human body can be occluded according to 
the camera angles, human motions and body orientations 
etc. In such cases, it is difficult to accurately classify the 
actions. Another challenge is the complexity of the visual 
data, where different light conditions, background colors 
and moving background objects can affect the classifica-
tion performance.

Wearable sensors are another type of sensors widely 
employed in HAR methods (Ometov et al. 2021), which are 
able to collect human activity data continuously without the 
problem of occlusions and background noises. For example, 
Salehzadeh et al. (2020) used electroencephalogram (EEG) 
sensors to detect human activities, and developed a deep 
learning framework to classify human activities based on 
EEG artifacts (FCEA). He et al. (2019) designed an IMU-
based wearable vest for fall detection, signals from the IMU 
sensors were converted into a 3-channel image feature. 
They proposed an FD-CNN network, which combines a 
convolutional neural network (CNN) with an LSTM net-
work, to learn image features and classify human activities. 
Balli et al. (2019) integrated accelerometer, gyroscope, step 
counter, and heart rate sensors with the smartwatch to detect 
human movements. However, the data collected by wearable 
sensors are not as informative as that of the visual sensors. 
For example, falling using hands or knees are distinguishable 
by the visual data, but classifying them with IMUs are much 
harder, as these 2 actions produce similar inertial signals.

In order to increase the recognition accuracy of the 
HAR, some multi-modal approaches are proposed (Chen 
et al. 2017) to make different modalities complement each 
other. However, there are 2 challenges on these approaches: 
(1) The complexity of the data collected from ambient sen-
sors, especially RGB cameras are high. Directly sending the 
data into neural networks can result in overfitting. There-
fore, the handcrafted visual representation method needs 
to be designed to alleviate the overfit and presents useful 
information. (2) To make use of the features from different 
modalities, a fusion scheme needs to be applied. How to 
design the fusion scheme to reach higher performance on the 
classification still remains a challenge. In this paper, a multi-
modal fused HAR method is proposed to take advantage of 
2 types of sensors by combining RGB and IMU modalities, 
as shown in Fig. 1. The main contributions are as follows:

1) An speed-weighted star RGB algorithm is proposed to 
generate the trajectory map of human motion according 
to the RGB data, the high-velocity parts in the trajectory 
maps are emphasized.

2) The soft-attention ensemble is modified as the global 
soft-attention layer to fuse the features from different 
modalities.

3) The L-softmax algorithm with soft voting is employed 
to classify the activities.

2  Related works

Optical Flow (OF) and Motion History Image (MHI) 
(Bobick and Davis 2001) are widely used in vision-based 
human motion modelling. OF refers to the displacements 
of intensity patterns caused by relative motion between an 
observer and an object (Fortun et al. 2015). The typical 
Lucas-Kanade algorithm (Lucas et al. 1981) and Horn-
Schunck algorithm (Horn and Schunck 1981) obtain 
the flow direction and density of each pixel at a specific 
moment by calculating the derivative of the time interval 
between two adjacent frames, but it is more time-consum-
ing due to a large amount of computation in the derivation 
operation.

MHI stacks the differences and contour changing 
among a set of frames and outputs a trajectory (namely 
Motion Energy Image, MEI), which is widely studied in 
HAR tasks because of its time-efficiency and good per-
formance (Ahad et al. 2012). For example, Barros et al. 
(2014) proposes a variant of MHI that stacks the trajec-
tory into a gray-scale image. However, in this conversion 
process, some temporal sequential information is lost, and 
it leads to the misclassification of the activities, such as 
raising hands and putting down hands. To address this 
problem, dos Santos et al. (2020) proposes a method by 
amplifying the differences between frames and converting 
MHI to RGB images rather than gray-scale images so that 
the three channels can reflect the time series of motion.

In addition, pre-processing raw signals from sensors 
can help researchers extract apparent or interpretable fea-
tures of human activities. For example, Mao et al. (2017) 
deploy IMU sensors on the shoulder, waist, and foot of the 
subjects, and convert the acceleration and angular veloc-
ity into Euler angle to predict whether a person has fallen 
according to a threshold of Euler angles.

Conventional machine learning methods in the HAR 
field has the advantage of working with small dataset, but 
the performances are limited. With the rapid advance-
ment of deep learning techniques in recent years, there 

Fig. 1  The proposed method combines visual and IMU signals to rec-
ognize activities
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has been an increased interest in combining conventional 
data representation techniques with deep neural networks 
in HAR tasks (Demrozi et al. 2020). For example, Ravi 
et al. (2005) used FFT to extract the frequent features 
of IMU data and employed base-level and meta-level 
machine learning methods to classify human activities. 
Steven Eyobu and Han (2018) apply the short-time Fou-
rier method to analyze IMU data to obtain the spectral 
features, and adopt an LSTM network to capture sequential 
patterns, then feed the outputs into an MLP layer to rec-
ognize human activities. Rivera et al. (2017) proposed an 
RNN-based network to fuse the data from multiple IMU 
sensors. Zimmermann et al. (2018) further utilize the ben-
efits of both CNN and RNN networks to extract features 
of the data from multiple IMU sensors deployed in lower 
limbs, and also adopted an MLP layer to classify human 
activities. Similarly, Stoeve et al. (2021) embedded IMU 
sensors on shoes and employ CNN and LSTM networks in 
their solution to classify the football shooting and passing 
activities.

Studies show that directly applying machine learning 
solutions on handcrafted features for multi-modal fusion on 
HAR (Zhu et al. 2019) suffers from kinematic model errors 
and noises (Li and Wu 2015). In recent years, researchers 
have explored building end-to-end models, which utilize the 
advantages of deep learning technologies to extract features 
from raw data automatically, and integrate with classifica-
tion tasks seamlessly. For example, Jian et al. introduced a 
convolutional pose machine and LSTM combined with two 
kinds of handcrafted features (namely relative bone length 
and angle with gravity) to recognize traffic police gestures 
(He et al. 2020). Lu and Velipasalar (2019) use a feature-
level (Brena et al. 2020) concatenation to fuse the visual and 
the dynamic features. Feichtenhofer et al. (2016) introduced 
the two-stream algorithm to fuse the appearance and motion 
features of human activities simultaneously. dos Santos et al. 
(2020) used two CNN networks to extract two kinds of ges-
ture features, and introduced a local soft-attention mecha-
nism to fuse those features so as to classify human activities. 
In general, convolutional fusion is suitable for the modalities 
with the same semantic, while local soft-attention is suitable 
for modalities only considering a subset of features to solve 
the narrow-sight problem (Luong et al. 2015).

Researchers also study multi-modal fusion to address 
the flaws within single modality methods. Hwang et al. 
(2017) combined a fixed camera with a wrist-mounted 
inertial sensor to collect image and dynamic data of human 
activities. CNN and RNN were introduced to extract 
features and classify human activities. The experimen-
tal result showed that it solved the problems of spatial 
constraints, occlusions in images. Mallat et al. (2018) 
employed a device integrated with a camera, an IMU sen-
sor, and a Wii Balance board to capture human kinematics 

data of human activities. Meanwhile, extended Kalman 
filter was introduced to assess the kinetics motion. Lu and 
Velipasalar (2019) combined an egocentric camera with 
an IMU sensor to collect the data of fine-grained activities 
(such as eating, drinking, etc.). Meanwhile, they devel-
oped a framework that consists of a capsule network and 
an LSTM network to classify the fine-grained activities. 
Abebe and Cavallaro (2017) develop a framework inte-
grating CNN with LSTM and transfer learning to extract 
features of data both from IMU sensor and camera to rec-
ognize egocentric prospective activities.

In conclusion, single-modal approaches in either IMU 
modality or visual modality face many problems such as 
resource constrain, occlusion, fine-grained classification and 
constrained working range, etc. Previous researches have 
apparently shown that fusing both modalities could offset 
the aforementioned problems and preserve the merits of 
each modality. But detailed problems such as MHI could 
not reflect speed, effective IMU data extraction, automatic 
modality fusion method are urged to be solved.

3  Methodology

This paper adopts the star RGB algorithm which achieves 
high performance in gesture recognition into the field of 
activity recognition, and optimize it by adding a weight 
term that represents the motion speed to further empha-
size the expressive power of the human motion trajectory 
maps. Meanwhile, an FFT followed by MLP is employed to 
extract IMU features collected with wearable sensors. Then, 
a global soft attention mechanism is introduced to fuse the 
visual and the dynamic features both from the camera and 
IMU sensors. Last, the large margin Softmax (L-Softmax) 
combined with a soft voting algorithm is adopted to robustly 
classify human activities. The overall process is shown in 
Fig. 2, which contains four parts:

1) Visual feature extraction. The visual features of human 
activities are extracted from the video captured by an 
RGB camera, an RGB image of human motion trajec-
tory map is generated from each video fragment, which 
distinguishes the motion speed and gives prominence to 
faster movements. Then, the trajectory map is input into 
a CNN to obtain the visual feature of human activities.

2) IMU feature extraction. The acceleration and angular 
velocity data from the wearable IMU sensors placed 
on different parts of the human body are collected, the 
frequent features of the human activities from IMUs in 
each period are generated by FFT, and are processed by 
the MLP to generate lower dimensional dynamic fea-
tures of human activities.
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3) Multi-modal fusion. Global soft attention mechanism 
is employed to fuse the visual and dynamic features of 
human activities.

4) Activity classification. The L-Softmax (Liu et al. 2016) 
which can actively expand the distance among features 
of training samples to identify more implicit differ-
ences between different samples is introduced to clas-
sify human activities according to the fused multi-modal 
features. Meanwhile, a soft voting algorithm is adopted 
to improve the robustness of L-Softmax.

3.1  Visual feature extraction

The conventional MHI-based method assigned a fixed 
motion strength to each foreground point, and then updated 
it with a small constant for the background point. It causes 
body parts with different movement speeds to have simi-
lar intensity, and may generate indistinguishable MHI pat-
terns (Tsai et al. 2015). To alleviate this problem, this paper 
proposes a speed-weighted mask that gives more weight to 

fast-moving objects based on the star RGB MHI to better 
represent the motions.

The star RGB representation is proposed by dos Santos 
et al. (2020), which calculate a human motion trajectory map 
from a sequence of continuous frames according to Eq. 1.

Where Mk(i, j) is the trajectory map generated by k and k + 1 
frames at pixel position (i, j), as shown in Fig. 3. Ik(i, j) is the 
k frame’s RGB vector at position (i, j), k = 1, 2, 3,⋯ ,N − 1 . 
N is the number of frames. � is calculated according to Eq. 2

However, the generated motion trajectory map only repre-
sents the temporal change in pixel level, The moving speed 
of the pixels are not represented. This paper further consid-
ers the part moving velocities at the regional level, and uses 
a weight term to emphasize the speed information. For a 

(1)Mk(i, j) =
�
1 −

�

2

�
⋅ �(‖Ik(i, j)‖2 − ‖Ik+1(i, j)‖2)�

(2)� = 1 − cos � = 1 −
Ik(i, j)

TIk+1(i, j)

‖Ik(i, j)‖2 ⋅ ‖Ik+1(i, j)‖2

Fig. 2  The overall process of the proposed method

Fig. 3  The heatmaps of star RGB trajectory, speed weight and the weighted trajectory respectively
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pixel position (i, j), a region H is defined as the surrounding 
area of the pixel. In this region, if the total number of the 
pixels changes dramatically between frames, then this pixel 
is deemed to have a large motion speed. For such pixels, 
larger weights are given. Therefore, the weight for a pixel 
is decided by the pixel differences on the motion image of 
its surrounding area. The above method is implemented by 
convolution operation, shown in Eq. 3

Where Wk(i, j) is the speed weight of the pixel at position 
(i,  j) generated according to k and k + 1 frame. H is the 
region around pixel (i, j). Enumerating (i, j) within the image 
by 

∑
H Ik(i, j) outputs a regional speed information map at 

k frame, in which each pixel represents the corresponding 
surrounding region information. The speed representation, 
namely speed-weighted mask, is obtained by subtracting the 
regional speed information map between k and k + 1 frame.
The subtraction operation computes the regional difference 
between two continuous frames, which reflects the motion 
speed. Fig. 3 shows the appearance of the speed-weighted 
mask.

In order to preserve the pixel information from the star 
RGB trajectory map, the weight term should be normalized 
into range [0,1]. Let min(⋅ ) and max(⋅ ) be the minimum and 
maximum matrix, which have the same size as the speed-
weighted mask, and they capture elements’ minimum and 
maximum value, respectively. The normalized Dk could be 
calculated according to Eq. 4.

Where ⋅ is element-wise matrix multiplication.
Then, the temporal information is aggregated. Computing 

each pair of frames within N frames produces N − 1 trajec-
tory maps, The star RGB image uses RGB channels to rep-
resent the sequential information of these trajectory maps. 
Let D = {D1,D2, ...,DN−1} be the trajectory set, a 3-channel 
RGB image T is generated by aggregating D.

Last, the 3-channel weighted trajectory map T is sent into 
the Resnet101 network (He et al. 2016) to extract visual 
features as one of the inputs in the subsequent fusion stage.

3.2  IMU feature extraction

FFT and MLP are adopted to extract IMU dynamic features. 
FFT converts IMU’s temporal domain feature into frequency 
domain feature, and decomposes the signal into amplitudes 
in the corresponding frequency. Let Ak and Gk be the signals 
produced by the k-th accelerometer and gyroscope placed 

(3)Wk(i, j) =
|||||

∑

H

Ik+1(i, j) −
∑

H

Ik(i, j)
|||||

(4)Dk = Mk ⋅

(
Wk −min(Wk)

max(Wk) −min(Wk)

)

on human body, the signal values on each time points are 
denoted with

Where t is the t-th moment in the period T. at and gt denote 
(at

x
, at

y
, at

z
)T and (gt

x
, gt

y
, gt

z
)T respectively. Let Mk be the k-

th IMU vector, and Mk = (Ak,Gk)
T  . Then the IMU data 

matrix is obtained by concatenating K-th IMU data, where 
U = (M1,M2,⋯ ,Mk)

T.
Let F be the feature matrix generated by decomposing the 

data matrix U by FFT as F = FFT(U) . Dimensional feature 
vector Fflat is then obtained by flattening the feature matrix 
F. The Fflat is sent into MLP as F� = MLP(Fflat) Where F′ 
is the final IMU modal feature as one of the inputs in the 
subsequent fusion stage.

3.3  Multi‑modal fusion

With the above processing steps, visual features and IMU 
features are extracted, the spatial and temporal dimensions of 
the data are aggregated, only the channel dimension remains. 
To classify the activities, the probability of these features 
belonging to each class needs to be computed, therefore 
the features from different modalities must be fused. The 
conventional fusion schemes are concatenation and averag-
ing. As for the concatenation, the features are concatenated 
before sending into the MLP and the softmax layers. As for 
the averaging, features from different modalities are sent 
into the MLP and the softmax layers to produce the class 
probability distributions, then the distributions are averaged 
as the final result.

In this paper, a concatenation based multi-modal fusion 
scheme is proposed, where a global soft attention mecha-
nism is employed during the fusion process to weight the 
features from different modalities. The soft attention mecha-
nism is proposed by dos Santos et al. (2020) to fuse and 
weight the features from two networks, as shown in Eq. 7, 
where F denotes the features and Ffuse denotes the attention 
weighted features. The input is a single visual modality.

The original soft attention method combines features gener-
ated from the same modality. However, for the multi-modal 
activity recognition task, The inputs are collected from dif-
ferent modalities, which requires global attention mecha-
nism. Attention mechanism are classified as local attention 
mechanism and global attention mechanism (Luong et al. 
2015). The global attention mechanism generates weights 

(5)Ak ={a1, a2, ..., at|t ∈ T}

(6)Gk ={g1, g2, ..., gt|t ∈ T}

(7)Ffuse =

K∑

k

Fk ⋅ softmax(MLP(Fk))
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according to features from all modalities, the local attention 
mechanism generates weights according to single modality.

To solve the above problem, this paper provides a global 
attention based soft attention fusion scheme, the improved 
architecture is shown in Fig. 2. First, the concatenated fea-
tures are employed to generate weight mask for features in 
each modality, as shown in Eq. 8. Then, features in each 
modality are weighted separately. Last, the weighted features 
are concatenated, as shown in Eq. 9.

Where Ffuse is the final feature vector of the two modalities, 
⊕ is vector concatenation, Wv and Wi are the scalar weight of 
visual modality and IMU modality. Fv and Fi are the feature 
of visual modality and IMU modality.

3.4  Classification

The conventional architecture for classification an MLP fol-
lowed by Softmax mapping layer in the last. However, this 
approach is not enough to encourage discriminative learning 
of features due to high similarities between some activity 
samples. Following the work of Liu et al. (2016), the cross-
entropy loss, the Softmax function, and the fully connected 
layer are employed to enhance the intra-class compactness 
and the inter-class separability between learned features.

The distance between sample and parameter are decom-
posed into amplitude ones and angular ones with cosine 
similarity. Let Wn be the n-th row in the last fully connected 
layer’s parameter matrix, x be the learned sample feature 
from the previous layers, �n is the angle between Wn and x, 
the cross-entropy loss is denoted as

Where �(�i) is denoted as

Where � ∈ [
k�

m
,
(k+1)�

m
] , k ∈ [0,m − 1] , and k is an integer, 

m is the separability margin. With larger m, the separability 
margin is larger, but the learning process is more difficult.

Last, the soft voting is adopted to improve the robustness 
of the architecture during the test stage, which considers the 
diversity within a video clip. It averages the diversity of a 
video clip, and offsets the influence of abnormal samples.

Let V be a video clip sample, take equal amounts frames 
M times with random interval on a video clip, this random-
ness only acting on visual modality, where M different tra-
jectory maps are generated, namely vm . As shown in Eq. 12, 

(8)(Wv,Wi) =softmax(MLP(Fv ⊕ Fi))

(9)Ffuse =Wv ⋅ Fv ⊕Wi ⋅ Fi

(10)L = − log

�
e‖Wi‖‖x‖�(�i)

e‖Wi‖‖x‖�(�i) +
∑

j≠i e
‖Wj‖‖x‖ cos �j

�

(11)�(�i) = (−1)k cosm� − 2k

a video clip is represented by a series of trajectory maps in 
the visual modality. The demonstration are shown in Fig. 4.

On the other hand, IMU modality data in this period is not 
changed. Let I be the IMU modality data in the correspond-
ing period and Sk be the multi-modal sub-sample at the k-th 
frame-taking step, where Sk = (vk, I) . After combining the 
two modalities, the set of M raw multi-modal sub-samples 
is used to represent this multi-modal human activity sample 
in the corresponding period, as Eq. 13.

Then, M sub-samples are classified by the trained model in 
turn, which generates M n-dimensional similarities predic-
tion vectors, where n is the number of classes. M predicted 
similarities with corresponding regression lines of each 
class are summed up, and operated by Softmax to obtain 
an n-dimensional probability prediction vector P, as Eq. 14.

Finally, the class with the highest predicted probability is 
selected as the output, denoted as

(12)V = {v1, v2,⋯ , vm|m ∈ M}

(13)S = {S1, S2,⋯ , Sm|m ∈ M}

(14)P =

∑M

m=1
softmax(model(Sm))

M

(15)c = argmax(P)

Fig. 4  The demonstration of frames selection in voting stage
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4  Experiments

4.1  Dataset

The UP-Fall dataset (Martínez-Villaseñor et al. 2019) pre-
sented for the Challenge UP Competition in 2019 (Ponce 
and Martínez-Villaseñor 2020) is selected for the experi-
ment. The dataset consists of the data of human falls and 
daily activities. The sensors used in the UP-Fall dataset 
included RGB camera, IMUs, illumination sensor, infrared 
sensor, and EEG sensor. 17 persons (age 18–24 years old, 
height 1.57−1.75 ms, and weight 53–99 kg) were invited 
to collect the data of human falls and daily activities. Each 
person performed 11 kinds of actions, and each action was 
repeated 3 times. As shown in Table 1, the actions include 
5 types of falls, and 6 types of daily activity. 2 RGB cam-
eras from the front and lateral perspectives, and six infra-
red sensors were deployed under indoor environment. 5 
IMU sensors were deployed in different parts of the human 
body to collect the dynamic data of human activities.

The IMU sensors are distributed in the left wrist, chest 
(near the neck), right pocket, middle of waist and left 
ankle, where the left wrist sensor is used to simulating 
the status of wearing a smartwatch, the pocket sensor is 
used to simulating the sensor on the phone. For each sen-
sor, 3 parameters from accelerometer and 3 parameters 
from gyroscope are received. Also, the timestamps are 
recorded for the multimodal data alignment. The sampling 
rate of is 18.4 Hz, signals are uploaded to the computer 
through Bluetooth. Two cameras record the scene from 
different perspectives at approximately 18 fps, signals and 
timestamps are saved to the computer through USB cables. 
After the collection process, the dataset is consolidated, 
signals from IMU sensors and RGB cameras are associated 
and aligned according to the saved timestamps.

4.2  Implementations

RGB camera and wearable IMU modal data were selected 
to test the multi-modal fusion algorithm presented in this 
paper. Since the duration of human activity is usually less 
than 3 s, the width of the sliding window is set as 51 (about 
2.77 s), each video clip with the same label is segmented 
by a sliding window. All the data in a sliding window are 
adopted as IMU modality data, while 11 frames with 5 
interval length are taken to generate a 3channel trajectory 
map as visual modality data. Since clipped video may cap-
ture arbitrary segments of human action, starting and end-
ing moments are uncertain, this method will increase the 
difficulty of classification, but it is closest to the real appli-
cation scenario. In practical applications, human activity 
monitoring usually requires rapid response, sampling may 
be very random. From Table 1, we can see that the number 
of Falls and Picking up an object are much smaller than 
those of other activities. Because the UP-Fall dataset is a 
fall detection dataset and falls’ duration is usually short, as 
a consequence, the split dataset has the problem of imbal-
anced samples’ number. The number of original samples 
in each class is shown in the 4-th column of Table 1. The 
number of fall samples (class 1–5) is much smaller than 
that of daily activities (class 6–11). Therefore, in order to 
make the model learn more distribution of fall samples, the 
number of fall samples in the training stage is augmented 
as below.

On the training set, the frame-taking strategy of the visual 
modality of the fall sample is changed to random interval 
frame-taking, that is, one image is taken at every 5 ± 1 time 
points, and a total of 11 images are taken. Finally, stop taking 
frames randomly till the number of fall samples is approxi-
mately equal to the number of daily activities. Augmented 
samples number is shown in the 5-th column of Table 1. 
Such a frame-taking strategy increases the diversity of fall 
samples and the probability of model learning fall samples.

The test environment is a server with Ubuntu operat-
ing system (E5-2620 CPU, 128GB memory, TESLA M40 
GPU), the program is implemented by Pytorch and Python. 
The training and testing sets were split according to the com-
petition’s setting (Ponce and Martínez-Villaseñor 2020).

In terms of visual modality processing, after evaluated 
the result, only lateral view camera’s data are adopted. In 
each video clip, the size of the original image 480 × 640 × 3 
is scaled to 120 × 160 × 3 . In practice, human contour width 
is about 30 pixel after rescaling, thus, H in Eq. 3 is selected 
to be 30 × 30 to reflect the human contour’s change. Subse-
quently, the generated human activity trajectory map with 
size 120 × 160 × 3 is input into the Resnet101 network. The 
1 × 40960 flattened feature map is reduced to 1 × 64 through 
an MLP which composed by 4096, 512 and 128 neurons hid-
den layer as the final feature of the visual modal of the video.

Table 1  Activity types, durations, training samples

Id Activities Duration Original Augmented

1 Falling forward using hands 10 33 624
2 Falling forward using knees 10 30 576
3 Falling backwards 10 34 640
4 Falling sideways 10 33 624
5 Falling sitting in empty chair 10 33 624
6 Walking 60 658 658
7 Standing 60 882 882
8 Sitting 60 637 637
9 Picking up an object 10 33 624
10 Jumping 30 320 320
11 Laying 60 980 980
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In terms of IMU modality processing, due to the error 
of the dataset, part of the IMU data deployed on the right 
pocket are missing. Consequently, only the IMU sensor 
data of the remaining four parts are considered. The four 
body parts’ IMU 6-axis data that contain 51 time points in 
a period, which are generated into a matrix of 24 × 51 . Flat-
tened feature with dimension 1 × 624 is fed into an MLP 
which composed by 256 and 128 neurons hidden layer. 
Finally, the feature vector is reduced to 1 × 64 as the final 
feature vector of IMU modality.

The feature vectors of the above two modalities are 
reduced to the same dimension by MLP so that the subse-
quent modality fusion stage is carried out.

In terms of modality fusion, concatenation fusion, and 
soft attention mechanism fusion are tested in this paper. 
After sum fusion and concatenation fusion, 1 × 64 and 
1 × 128 dimensional fusion vectors are formed, respectively. 
For the attention fusion method, the feature vectors of two 
modalities are concatenated and input into an MLP com-
posed by 128 and 64 neurons hidden layer, two correspond-
ing scalar weight are then obtained. The 1 × 128 dimensional 
fused vector is then obtained by weighted concatenation of 
two modalities’ feature.

In the classification stage, the fused vector is reduced to 
1 × 32 through an MLP with two hidden layers, which con-
tains 64, 32 neurons in the hidden layer. During training, 
the L-Softmax with cross entropy loss function is used for 
classification and punishment, after evaluating the results, 
the condition of margin = 2 is proved to be optimum. Dur-
ing testing, 7 times random frame-taking are conducted on 
the tested samples to comprehensively identify the predicted 
class by soft voting.

As for the training parameters, the batch size is set to 32, 
the learning rate starts from 0.001 with a decaying rate of 
0.7 every 10 epochs. The Adam optimizer is employed for 

the gradient descent. The dropout rate for the last layer of 
the MLP is 0.5. Training lasts for 50 epochs.

4.3  Ablation and comparison experiments

The comparison results are shown in Tables 2 and 3, where 
Table 2 shows the 11-class recognition results and Table 3 
shows the binary classification results. In Table 2, Gjoreski 
et al. (2020) introduces a multi-sensor data-fusion machine-
learning algorithm using 5 wearable inertial sensor’s data, 
Ponce and Martínez-Villaseñor (2020) employ MLP, RF, 
SVM, KNN as extractors and fuse the RGB visual modality, 
IMU modality, EEG modality data. Their per-class accuracy 
and F1-Macros are shown in the table. It can be seen that our 
proposed method has the highest F1-Macros of 0.92. The 
recognition accuracy on falls and daily activities are better 
than that of the Martinez-Villasenor’s method, most of the 
per-class performance are higher than that of the Gjoreski 
et al. [40]’s method, except for fall classes 3–5, and daily 
activity class 6. Table 2 shows that the proposed method can 
distinguish the daily activities (class 6–11) as well as the first 
two fall activities effectively, the values displayed in bold 
represent the highest scores. All compared methods perform 
slightly worse on overall fall activities. The F1-Macro com-
parison shows that the proposed architecture outperforms 
other methods. Compared with Gjoreski et al. (2020), the 
performance distribution of the proposed method on each 
class is more balanced, and the accuracy of the first 2 classes 
are higher, which leads to a higher F1-Macro.

The UP-Fall dataset also provides a binary fall detection 
task, where 11 classes are summarized as fall and non-fall. 
The proposed method is trained for the binary classifica-
tion task, the experimental results are shown in Table 3. 
The proposed architecture reaches 100% accuracy in binary 
classification task with either fused modalities and single 

Table 2  The comparison of 
F1-Score for each class

1 2 3 4 5 6 7 8 9 10 11 F1-Marco

proposed method 0.83 0.83 0.80 0.96 0.78 0.99 0.99 0.99 1.0 1.0 0.98 0.92
 Gjoreski et al. (2020) 0.74 0.54 0.94 0.97 0.84 1.0 0.99 0.98 0.91 1.0 0.98 0.89
 Ponce and Martínez-

Villaseñor (2020)
0.40 0.70 0.53 0.33 0.39 0.93 0.93 0.98 0.57 0.99 0.98 0.70

Table 3  Accuracy comparison on fall and non-fall binary classification

Precision Recall Specificity F1-Score Accuracy

proposed method (multi-modal fusion) 1.0 1.0 1.0 1.0 100%
proposed method (visual modality) 1.0 1.0 1.0 1.0 100%
Ponce and Martínez-Villaseñor (2020), Galvão et al. (2021) (multi-modal fusion) 1.0 – 1.0 – 100%
Ponce and Martínez-Villaseñor (2020), Galvão et al. (2021) (visual modality) 0.999 – 1.0 – 99.99%
Galvão et al. (2021), Espinosa et al. (2019) (visual modality) 0.95 0.98 0.82 0.97 95.24%
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RGB modality. This result shows that the proposed method 
is effective against fall detection task.

The performance of different backbone networks for 
visual feature extraction is evaluated. Resnet101 (He et al. 
2016), Inception-V3 (Szegedy et al. 2016) for 2D-CNN and 
X3D (Feichtenhofer 2020) for 3DCNN are selected. The 
comparison results are shown in Table 4. The result shows 
that Resnet101 produces better performances in 2D-CNN 
with 3-channel star RGB MHI, the values in bold represent 
the highest scores among different backbones.

In order to verify the difference between the multi-modal 
fusion model and the single-modal performance, the ablation 
experiments are carried out, and the differences between the 
modalities and different fusion methods are compared. The 
experimental results are shown in Table 5, where the val-
ues in bold represent highest scores among different fusion 
methods.

The ablation experiments show that the proposed fusion 
method is effective in balancing the weights between 
modalities, and gains higher accuracy than concatenation 
fusion, local attention fusion and element-level fusion. 
Also, the IMU modality failed to precisely distinguish the 
first 5 classes. This is because that in the dataset, the dis-
tribution of the wearable sensors are relatively sparse, the 
collected signals are similar for the classes 1–5. For exam-
ple, falling forward using hands and using knees are hard 
to distinguish. This fact indicates that the IMU modality 
data are not suitable for classifying activities with simi-
lar motions, and it is difficult to extract the joint angle 
changes. On the other hand, the visual modality performs 
much better in the first 5 classes, indicates that the RGB 
data are more suitable for classifying activities with small 
motion differences. The proposed speed-weighted star 

RGB representation achieves further improvement over 
the original star RGB, the biggest improvement is 7% on 
the recognition rate of class 5 (falling, setting in empty 
chair). Last, the multi-modal approach that combines 2 
modalities performs better than single modal approaches.

The IMUs are deployed on 4 locations (neck, wrist, 
waist and ankle) in UP-Fall dataset. Hence, the perfor-
mances on different deployment combinations of IMUs 
are evaluated based on the setting of UP-Fall dataset, the 
results are shown in Fig. 5. The solid line in the figure 
represents the highest F1-Macro of the IMU combination, 
and the dash line represents the average F1-Macro of the 
IMU combination. In the figure, 4 IMU combination gets 
the highest F1-Macro (0.92). Ankle produces the high-
est performance (0.87) in single-IMU test, ankle + neck 
produce the highest performance (0.86) in dual-IMU test, 
ankle+waist+neck produce the highest performance in 
triple-IMU test (0.89).

Table 4  Performance with different backbone networks

1 2 3 4 5 6 7 8 9 10 11 F1-Marco

Resnet101 (He et al. 2016) 0.83 0.83 0.80 0.96 0.78 0.99 0.99 0.99 1.0 1.0 0.98 0.92
Inception-V3 (Szegedy et al. 2016) 0.64 0.27 0.52 0.69 0.75 0.99 0.98 0.98 0.74 0.99 0.99 0.78
X3D (Feichtenhofer 2020) 0.57 0.32 0.58 0.60 0.72 0.93 0.90 0.44 0.85 0.97 0.99 0.72

Table 5  Ablation study on 
modalities

1 2 3 4 5 6 7 8 9 10 11

Proposed global soft attention fusion 0.83 0.83 0.80 0.96 0.78 0.99 0.99 0.99 1.0 1.0 0.98
Multi-modal element-level fusion 0.74 0.70 0.80 0.72 0.80 0.99 0.99 0.98 0.91 1.0 0.98
Multi-modal local attention fusion 0.80 0.79 0.80 0.80 0.82 0.79 0.99 0.98 0.96 0.99 0.98
Multi-modal concatenation fusion 0.74 0.58 0.80 0.80 0.81 0.98 0.91 0.89 0.95 0.90 0.95
Only visual modality (speed-weighted) 0.77 0.75 0.75 0.74 0.83 0.98 0.94 0.97 0.89 0.90 0.98
Only visual modality (star RGB) 0.75 0.77 0.75 0.76 0.75 0.99 0.93 0.97 0.89 0.92 0.95
Only IMU modality 0.64 0.38 0.44 0.62 0.34 0.95 0.93 0.88 0.79 0.94 0.92

Fig. 5  Performances of different IMU combinations
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5  Conclusion

A multi-modal activity recognition method that fuses visual 
and wearable IMUs data modalities is proposed in our paper. 
The star RGB method is improved to strengthen the speed 
representations in the visual modality. In the IMU modality, 
FFT is used to aggregate temporal information and MLP is 
employed to further extract features. A global soft atten-
tion mechanism is introduced to adjust the weight between 
the visual features and dynamical features, and L-softmax 
combined with a soft voting algorithm is adopted to classify 
human activities. Experiments show that the proposed multi-
modal fusion method is more effective on the recognition of 
human activities than single-modal methods, and performs 
better comparing with existing methods. The F1-Macro of 
11-class classification is 0.92, and that of fall and non-fall 
binary classification reaches 1.0.
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