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Markerless Motion Tracking with Noisy Video
and IMU Data

Soyong Shin, Zhixiong Li, and Eni Halilaj

Abstract— Objective: Marker-based motion capture, con-
sidered the gold standard in human motion analysis, is
expensive and requires trained personnel. Advances in
inertial sensing and computer vision offer new opportuni-
ties to obtain research-grade assessments in clinics and
natural environments. A challenge that discourages clini-
cal adoption, however, is the need for careful sensor-to-
body alignment, which slows the data collection process
in clinics and is prone to errors when patients take the
sensors home. Methods: We propose deep learning models
to estimate human movement with noisy data from videos
(VideoNet), inertial sensors (IMUNet), and a combination
of the two (FusionNet), obviating the need for careful cal-
ibration. The video and inertial sensing data used to train
the models were generated synthetically from a marker-
based motion capture dataset of a broad range of activities
and augmented to account for sensor-misplacement and
camera-occlusion errors. The models were tested using
real data that included walking, jogging, squatting, sit-to-
stand, and other activities. Results: Compared to state-of-
the-art models, IMUNet was as accurate, while VideoNet
and FusionNet reduced mean (± std) root-mean-squared
errors by 7.6 ± 5.4° and 5.9 ± 3.3°, respectively, on cali-
brated data. Importantly, these models were less sensitive
to noise than existing approaches, reducing errors by up
to 14.0 ± 5.3° for sensor-misplacement errors of up to 30.0
± 13.7° and by up to 7.4 ± 5.5° for joint-center-estimation
errors of up to 101.1 ± 11.2 mm, across joints. Conclusion:
These tools offer clinicians and patients the opportunity to
estimate movement with research-grade accuracy, without
the need for time-consuming calibration steps or the high
costs associated with trusted commercial products such
as Theia3D or Xsens, helping democratize the diagnosis,
prognosis, and treatment of musculoskeletal conditions.

Index Terms— Biomechanics, Computer vision, Deep
learning, Human motion capture, Inertial measurement
units

I. INTRODUCTION

MARKERLESS motion tracking could transform rehabil-
itation monitoring [6], [35], athletic performance [37],

and biomechanics research at large [36]. A key challenge
toward better understanding of human movement, both in
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health and pathology, has been the limited set of tools available
to study it. Marker-based motion capture, the most widely
used approach, is limited to research laboratories and specialty
clinics due to equipment cost and required expertise. Inertial
measurement units (IMUs) and computer vision algorithms
are now accessible alternatives that could democratize gait
analysis for researchers, clinicians, and patients everywhere.
Such tools will strengthen the feedback loop between research
and clinical practice, enabling clinics to collect research-grade
data for tailored care and researchers to receive large datasets
for increased statistical power and more accurate machine-
learning models. Currently, inertial sensing requires careful
sensor-to-body calibration and suffers from integration drift
[14], [28], while vision-based approaches require a relatively
high number of cameras for optimal accuracy [16], resulting
in prohibitive data storage demands.

The need for sensor-to-body calibration makes inertial sen-
sors less practical for clinical use and remote monitoring,
especially when patients are required to mount the sensors
themselves. Filtering [2], [8], [22] and physics-based ap-
proaches [1], [5], [38], which rely on a calibration step, are
therefore better suited for laboratory studies. Deep learning
models trained on augmented data can account for sensor mis-
placement, making them better suited for remote monitoring,
but until now they have been limited to walking and running
since the large datasets used to train them include only those
activities [12], [24], [30]. The Archive of Motion Capture
as Surface Shapes (AMASS) dataset [23], however, includes
a wider array of human movements and could improve the
generalizability of these deep learning models. It is the largest
publicly available motion capture database, amassing data
from 23 laboratories and 495 subjects.

Vision-based motion tracking is affected by both the number
and quality of videos, in addition to relying on spatial calibra-
tion. A typical approach for extracting three-dimensional (3-D)
kinematics from video data is to extract two-dimensional (2-
D) joint centers from individual videos using a neural network
[7], [29] and then fit a parametric statistical mesh of the human
body on the 2-D or triangulated 3-D joint centers using top-
down optimization [4], [10], [26] (Fig. 1). While systematic
analyses of how the accuracy of kinematics changes with video
data quality are currently missing, a commercial software
of growing popularity (Theia Markerless, Kingston, Ontario,
Canada) reports accuracies of 2.6 to 13.2° with 8 cameras
across lower-extremity joints [18]. This camera density may
not be feasible in clinical settings or patient homes, motivating
the need for high accuracies with fewer cameras. A recently
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Fig. 1. Meshed Model Fitting. (A) Original image. (B) Joint centers
are estimated through single-view or multi-view computer vision models
(convolutional neural networks, such as OpenPose). (C) A statistical
meshed model is fitted to the given joint centers via top-down optimiza-
tion, using a cost function that minimizes the distance between the joint
centers in the image and the joint centers of the meshed model, while
bound to satisfy physiological constraints.

released open-source package (OpenCap) can estimate lower-
body kinematics with a mean absolute error of 4.5° using
two cameras, but generalizability to data from laboratories
outside the one that collected the training data remains to
be demonstrated [42]. Fusion of video and inertial sensing
data via unconstrained optimization [10], [44], biomechani-
cally constrained optimization [27], or neural networks [19],
[40], [48] has been proposed as an alternative for improving
accuracy, with initial success. Yet, priorly proposed approaches
continue to require careful sensor-to-body calibration steps.

Here we present deep neural networks for the estimation
of joint kinematics directly from noisy inertial and video
data, obviating the need for careful calibration steps. These
models support applications where the adoption of gait anal-
ysis hinges on data acquisition speed. In this paper, we (1)
benchmark these models against state-of-the-art markerless
motion tracking methods, (2) characterize model accuracy as
a function of data quality, and (3) provide access to all the
associated data and code required to reproduce and build on
the presented work. We hypothesized that the accuracy of
the models proposed here would match that of state-of-the-
art models when the data are well-calibrated. Importantly,
we hypothesized that the accuracy of these models would
surpass that of state-of-the-art models by clinically significant
margins (> 5 degrees) when the data are noisy, confirming
their suitability for clinical translation.

II. METHODS

A. Datasets

To train the neural networks, we used AMASS [23], a
publicly available dataset (Table 1). With 495 subjects (214
females and 281 males) performing a diverse set of activities,
for a total of 60 hours, AMASS is currently the largest
standardized motion capture dataset, making it ideal for model
training (Fig. 2A). Represented activities include walking,
jogging, dancing, and squatting. To standardize kinematics

across markersets used by different laboratories, statistical
meshes of the human body parameterized in terms of body
pose and shape [20], [26] have been fit to both the AMASS
data [9], [21]. The statistical meshed model is parameterized
in terms of 72 rotational degrees of freedom and 10 body-
shape modes of variation. Given that the AMASS dataset does
not include video and inertial data, we generated these data
synthetically (Fig. 2A).

Synthetic joint centers were obtained from the body mesh
using a mesh-to-joints regression matrix associated with this
parametric mesh. To mimic the prediction error of computer
vision models, we added three different types of noise to
the synthetic joint centers: jittering, high-peak noise, and
bias. Frame-to-frame jittering of joint centers was modeled
as Gaussian noise (σ = 12 mm). Low-frequency and high-
peak noise were modeled as Gaussian noise (σ = 250 mm)
with masking (p = 0.03), which accounts for large prediction
errors in computer vision models, such as missing joint centers
in certain frames due to occlusion. In addition to these two
sources of noise, bias due to disagreements between the joint
centers of the body meshed model and the joint centers
identified in images with neural networks is also often present.
We modeled this disagreement as a bias with a magnitude
of approximately 25 mm based on empirical evidence. The
noise was modeled independently for each joint center because
these errors are not consistent across joints. For example, joint
centers such as the hips and knees, for which annotators exhibit
higher ambiguity during annotation of common datasets, have
larger jittering and bias than other joints [31]. Distal joints
like the ankle and wrist, however, have larger peak noise
since these joints are more likely to be occluded [50]. These
three components resulted in a mean noise of 41 ± 30 mm
across joints, which is larger than the root-mean-squared error
(RMSE) associated with state-of-the-art approaches utilizing
four videos [3], [15], [48], providing more robustness for our
models.

Synthetic angular velocities and linear accelerations were
extracted from 13 virtual IMUs attached to different segments
of the body mesh. The calibration and placement of each
virtual sensor was based on a sample subject from the Total
Capture dataset, which contained real IMU data (Fig. 3). To
account for sensor placement errors, we augmented the data by
randomly rotating IMUs, with rotations drawn from a Gaussian
distribution (σ = 13.5°). Given the orientations and placements
of the virtual sensors, we generated angular velocities and
linear accelerations by taking numerical derivatives.

To validate and test the models, we used both a pub-
licly available benchmark dataset (Total Capture [41], Test
1) and data collected in our laboratory (Test 2). The mix
of test data was intentional, to demonstrate generalizability
across different environments and beyond standard benchmark
datasets. Total Capture, with five subjects, contains a total
of 37 minutes of marker-based motion capture data collected
simultaneously with data from 4 RGB cameras and 13 inertial
sensors (Movella, Henderson, NV), which were calibrated
both spatially and temporally (Fig. 2B). Represented activities
include walking, range of motion, acting, and freestyle motion.
In our laboratory, we collected data from three healthy adults
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Fig. 2. Overview of the Approach. (A) Synthetic video and IMU data were generated from the AMASS dataset (n = 495 subjects, t = 60 hours), a
publicly available marker-based motion capture dataset amassed from 23 different laboratories. Synthetic video data were augmented to account
for jittering and occlusion errors, while synthetic IMU data were augmented to account for miscalibration errors. Three models were trained to allow
flexibility in data collection: IMUNet, VideoNet, and FusionNet. (B) The models were tested using real data from four videos and 13 IMUs.

Fig. 3. Virtual IMU Placement. Virtual IMUs were placed on 13
body segments. (A) The IMU orientation (i.e, internal coordinate system
relative to a world coordinate system) was derived from marker-based
motion tracking data. (B) The top view, illustrating IMU placement on the
head and arms. (C) Front and rear views, illustrating the positioning of
the back and lower limb sensors.

performing walking, jogging, sit-to-stand, squatting, drop-
jump, and step-up tasks, for a total of 17 minutes of data.
Walking and jogging were performed while subjects walked

TABLE I
TRAIN, VALIDATION, AND TEST DATASETS

Dataset Number of
subejcts

Activity type Total time
(minutes)

Train
(AMASS)

495
(214 F, 281 M)

Walking, Running,
Jogging, Crouch
walking, Crawling,
Dancing, Squatting,
Jumping, etc.,

3731

Validation
(Total Capture)

3 (1 F, 2 M) Walking, Range of mo-
tion, Acting, Freestyle
motion

14

Test 1
(Total Capture)

5 (1 F, 4 M) Walking, Range of mo-
tion, Acting, Freestyle
motion

23

Test 2
(Our data)

3 (3 M) Squatting, Sit-to-stand,
Drop jump, Step up,
Walking, Braced walk-
ing

17

normally and while wearing a brace on the knee of the domi-
nant leg to emulate stiff-knee and/or asymmetric gait, which is
typical in orthopedics patients. Subjects were equipped with 41
markers (modified Rizzoli markerset) and 13 IMUs (Movella,
Henderson, NV). We used 20 infrared cameras (Optitrak,
Corvallis, OR) to collect ground truth motion from markers
and 4 RGB cameras (Optitrak, Corvallis, OR) to collect video
data for the computer vision approaches.

B. Neural Networks

We trained three sets of deep neural networks: IMUNet,
VideoNet, and FusionNet. Training of FusionNet consisted
of three stages: unimodal encoding, fusion, and kinematics
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Fig. 4. Neural Network Overview. (A) 3-D joint centers and IMU data were input into 1-D convolutional layers and 2-D self-attention blocks to
extract video and IMU features. Features were then fused by a 2-D cross-attention block before being regressed through a 1-D self-attention block
and linear layers. A regressor for the FusionNet computed the residual from the output of VideoNet. (B) A 2-D attention mechanism was applied to
the feature map in both the space and time axes. Self-attention within each modality is noted by a rigid line, while cross-modality-fusion attention
is noted by dotted lines. The cross-attention operation was applied to the video and IMU features across each of the axes. Last, the aggregated
feature map was computed by the maximum pooling of the two feature maps.

regression (Fig. 4A), whereas the other two did not include
the fusion stage. The unimodal encoding stage was used to
extract features from each modality without interaction be-
tween modalities. The fusion stage merged these features. The
last stage, regression, predicted kinematics from the merged
features. For IMUNet and VideoNet, features extracted in
the unimodal encoding stage were input directly through the
regression stage.

First, we used one-dimensional (1-D) convolutional blocks
consisting of three layers, where each layer is followed by an
activation function (ReLU) [47] and a regularization function
(BatchNorm) [13]. The sizes of the convolutional kernels were
set to 1, 3, and 5 to allow each element to refer to various
ranges of neighbors. The features were then input into 2-
D transformers, which here model the relations within and
between the spatial and temporal spectra of the data (Fig.
4B) [43], [49]. For each attention mechanism, we used 4

layers with 8 attention heads and a hidden dimension of
32. In the fusion stage, a cross-attention block was used to
compute correlations between the video and inertial data and
to align them in both spatial and temporal dimensions. The
features were aggregated into a single feature using 1-D max
pooling (Fig. 4B). Subsequently, a 1-D transformer collected
the temporal information and re-aligned the aggregated fea-
tures in the time dimension. Finally, three regression networks
composed of linear layers were used to predict the body mesh
parameters from the unimodal and merged features. Here, we
used Gaussian Error Linear Units (GELU) for the activation
function to allow higher non-linearity on the prediction [11]
and dropout for regularization [39]. In FusionNet, kinematics
were predicted through a residual architecture [17], allowing
networks to fine-tune the prediction of the unimodal network
in a top-down manner. In this architecture, the estimation of
i-th iteration was obtained as follows:
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θ̂i = f([θ̂i−1; yfusion]) + θ̂i−1. (1)

where f(·) is regressor network, yfusion is the fused feature,
and [·; ·] denotes a concatenation operation. The output was
initialized using the proposal from VideoNet, after determining
that iterative regression with initialization from a unimodal
network converged faster during training and performed better
during validation.

The loss functions used to train the models included three
terms: pose loss, joint-centers loss, and body-shape loss. Pose
loss, lθ, was defined as the sum of the L-2 distances between
ground-truth, θ, and the predicted joint angles θ̂. Joint center
position loss, lp, was defined as the 3-D Euclidean distance
between ground truth, p, and predicted, p̂, joint centers. Body-
shape loss was defined as the L-2 distance between ground
truth, β, and predicted shape parameters, β̂.

lθ =
1

NfNs

Nf∑
t=1

Ns∑
s=1

Ω
(
θs,t, θ̂s,t

)
(2)

lp =
1

NfNj

Nf∑
t=1

Nj∑
j=1

||pj,t − p̂j,t|| (3)

lβ =
1

Nf

Nf∑
t=1

∣∣∣∣∣∣βt − β̂t∣∣∣∣∣∣ (4)

Here, Nf , Ns, Nj denote the number of time frames, body
segments associated with IMUs, and joints, respectively, while
t, s, j denote the indices for time, body segment, and joint.
Ω(θ1, θ2) is the magnitude of the relative rotation between θ1
and θ2.

C. Model Performance

To test the first hypothesis that our three models match
state-of-the-art approaches when the data are well-calibrated,
we benchmarked IMUNet, VideoNet, and FusionNet against
Xsens [33], SMPLify3D (a 3-D extension of SMPLify) [4],
[26], and unconstrained optimization [10], respectively. For
primary hypothesis testing, we used the Total Capture data
(Test 1). The primary evaluation metric was the mean joint
angle RMSE for the lower (knees, hips, and ankles) and upper
(shoulders, elbows, and neck) extremity joints, across all the
activities. We used paired t tests with Bonferroni correction
for multiple comparisons to determine statistically significant
differences (p = 0.013). Pairing at the joint and degree-of-
freedom level was used for all the comparisons. We report
all the data as means and standard deviations, after testing
for normality using the Anderson-Darling test. Two sets of
tests were carried out for additional insight. We split the data
by activity (walking, range of motion, acting, and freestyle
motion) and joint type (upper and lower extremities) to gain
insight into the performance of the models across these dif-
ferent contexts. Repeated measures (RM) analyses of variance
(ANOVA) were used to test for difference across activities.
Unpaired t tests were used to compare model performance in
the upper versus lower extremity joints.

Last, we compared our models to Theia3D, a commercial
software of growing popularity [18], using data collected in
our laboratory (Test 2). Our VideoNet and FusionNet used
data from 4 cameras, while Theia3D requires a minimum
of 6 videos. In addition to comparing our models against
Theia3D using a RM ANOVA, we also tested that our models’
performance is not lower on stiff-knee (braced) gait compared
to normal (unbraced) gait using a paired t test.

D. Sensitivity Analysis
To test the second hypothesis, that the models presented

here outperform existing approaches when the video and IMU
data are noisy, we augmented the calibrated data from Total
Capture (Test 1) to replicate real-world errors. Miscalibration
errors ranged from 0 to 30.0 ± 13.7° for IMU data, which
encompasses the majority of errors encountered in field studies
[25], [32]. For video data, we added joint-center errors ranging
from 52.6 ± 6.8 to 101.1 ± 11.2 mm, since this range is rep-
resentative of errors associated with computer vision models
[15], [34]. We repeated the experiments 30 times for each noise
level to capture varying combinations of misplacement error
across body segments. To determine if the performance varied
across noise levels and models, we performed a two-way RM
ANOVA. The effects of IMU and video noise were modeled
in separate statistical analyses. We selected four discrete noise
profiles for each analysis.

III. RESULTS

A. Model Performance with Calibrated Data
The three proposed networks matched or outperformed

existing approaches when the data were carefully calibrated.
IMUNet matched the accuracy of Xsens (8.8 ± 3.4° vs.
8.2 ± 3.3°, p = 0.3192), whereas VideoNet and FusionNet
outperformed state-of-the-art approaches by a mean ± std of
7.6 ± 5.4° (7.0 ± 3.0° vs. 14.6 ± 7.7°, p = 0.0013) and 5.9 ±
3.3° (6.2 ± 2.8° vs. 12.2 ± 5.6°, p = 0.0002), respectively (Fig.
5). Across activities and lower-extremity joints, the proposed
models performed similarly with Theia3D, despite the latter
using six videos when our models used four (Fig. 6). Theia3D
achieved an RMSE of 5.6 ± 0.7°, while IMUNet, VideoNet,
and FusionNet achieved comparable RMSEs of 6.0 ± 0.9°
(p = 0.4813), 5.6 ± 0.6° (p = 0.9195), and 5.1 ± 0.7
(p = 0.3940), respectively.

All the proposed models performed better in lower than
upper extremity joints (Fig. 5B), better for standard activities
than freestyle motion (Fig. 5C), and similarly between normal
and “impaired gait”. RMSEs were lower in lower-extremity
than upper-extremity joints for IMUNet (6.6 ± 1.2° vs. 11.6
± 3.1°, p = 0.0045), VideoNet (5.2 ± 0.3 vs. 9.2 ± 3.3°, p =
0.0075), and FusionNet (4.5 ± 0.3° vs. 8.3 ± 3.0°, p = 0.0054).
Compared to freestyle motion, walking, range of motion, and
acting activities were estimated with a mean ± std RMSE that
was at least 4.1 ± 4.0° lower for IMUNet (p = 0.0060),
4.1 ± 4.2° lower VideoNet (p = 0.0089), and 4.2 ± 3.8
lower for FusionNet (p = 0.0069). In comparison to unbraced
walking, IMUNet, VideoNet, and FusionNet estimated braced
walking kinematics with a mean ± std RMSE that differed
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Fig. 5. Model Performance: Total Capture (Test 1). (A) The proposed models matched or outperformed state-of-the-art methods, across activities
and joints. (B) All models performed better when estimating lower-extremity joint angles than upper-extremity ones. (C) All models performed better
for walking, range of motion, and acting than freestyle motion, which includes fewer cyclical movements. (D) Walking kinematics across the gait
cycle (mean and standard deviations) for the lower extremity joints, illustrating that our models outperformed existing markerless approach and that
FusionNet performs better than IMUNet and VideoNet.

insignificantly by 0.6 ± 0.5° (p = 0.0260), 0.6 ± 0.4° (p =
0.0398), and 0.5 ± 0.4° (p = 0.0348), respectively.

Fusion of IMU and video data was marginally more accurate
than using a single data modality. Across all joints and
activities, FusionNet outperformed IMUNet and VideoNet by a
mean ± std of 2.6 ± 1.3° (6.2 ± 2.8° vs. 8.8 ± 3.4°, p = 0.0001)
and 0.8 ± 0.3° (6.2 ± 2.8° vs. 7.0 ± 3.0°, p < 0.0001)
respectively (Fig. 5D). This result generalized across other
activities and joints.

B. Sensitivity to Noise
IMUNet and FusionNet outperformed existing approaches

when the IMU data were noisy (Fig. 7A). When IMUs were
miscalibrated by up to 30.0 ± 13.7°, IMUNet outperformed
Xsens by up to a mean ± std of 14.0 ± 5.3° (13.9 ± 5.1° vs.
27.9 ± 6.2°, p < 0.0001), across joints. When IMUs were
miscalibrated by 15.0 ± 6.3°, IMUNet outperformed Xsens by
a mean ± std of 5.9 ± 3.8° (9.8 ± 3.9° vs. 15.7 ± 4.9°, p =
0.0006). FusionNet performed better than both IMUNet and
Xsens across noise levels, with larger effects as miscalibration
increased. Generally, kinematics predicted via Xsens explained
less of the variability in ground-truth kinematics (R2 < 0.33)

compared to IMUNet (R2 > 0.76) and FusionNet (R2 > 0.90)
(Fig. 8).

VideoNet and FusionNet outperformed existing approaches
when the video data were noisy (Fig. 7B). Given joint-center
errors of up to 101.1 ± 11.2 mm, VideoNet outperformed
SMPLify3D by up to 7.4 ± 5.5° (7.8 ± 2.2° vs. 15.2 ±
7.5°, p = 0.0017), across joints. Given joint-center errors
of up to 70.5 ± 7.7 mm, VideoNet surpassed SMPLify3D
by a mean ± std of 7.1 ± 6.0° (6.5 ± 1.8° vs. 13.6 ± 7.6°,
p = 0.0036). FusionNet performed better than both IMUNet
and SMPLify3D across noise levels, with larger effects as
the noise level increased. Generally, kinematics predicted via
SMPLify3D explained less of the variability in ground-truth
kinematics (R2 < 0.55) than VideoNet (R2 > 0.85) and
FusionNet (R2 > 0.90) (Fig. 8).

C. Synthetic Data Quality
The synthetic data used to train the models were generally

representative of true inertial sensing and video-based joint
centers and the performance of the proposed models degraded
only minimally when tested on real data, despite the models
being trained using synthetic data. The root-mean-squared
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Fig. 6. Model Performance: Our Data (Test 2). (A) Across the lower extremities and activities, the proposed models matched or outperformed the
commercial software Theia3D, although Theia3D used six cameras, while VideoNet and FusionNet used four. (B) Walking kinematics (mean and
standard deviations) for three degrees of freedom in the knee, illustrating that our models matched or outperformed Theia3D.

deviation (RMSD) of the synthetic joint centers from true
joint centers was 78.7 ± 6.7 mm across all the joints, which
is greater than the artificial noise we added to the ground
truth joint centers in efforts of matching the error of true
joint centers (52.6 ± 6.8 mm). The RMSDs of the synthetic
inertial data from true inertial data were 30.4°/s (4% of range)
for angular velocity and 3.7 m/s2 (12% of range) for linear
acceleration, across all the IMUs. The accuracy of IMUNet,
VideoNet, and FusionNet receded by 0.6 ± 0.6°, 0.4 ± 0.2°,
and 0.4 ± 0.3°, respectively, when these models were tested
on real, instead of synthetic, data (Table 2).

IV. DISCUSSION

The goal of this study was to enable fast motion tracking
with inertial sensors and portable cameras, obviating the need
for careful sensor-to-body calibration in applications where
data acquisition speed is important. We took advantage of
synthetic data generation and augmentation approaches to
build a large database of inertial and video data from ground
truth motion capture and trained deep learning models to
predict joint kinematics. Results indicate that the models

TABLE II
PERFORMANCE WITH REAL AND SYNTHETIC DATA

Models Input data type Angle RMSE (°)
(mean ± std)

IMUNet real IMU 5.6 ± 0.7
syn. IMU 4.9 ± 0.6

VideoNet real video 5.3 ± 0.6
syn. video 5.0 ± 0.6

FusionNet real IMU & video 4.5 ± 0.4
syn. IMU & video 4.1 ± 0.6

proposed here outperform state-of-the-art models and are less
affected by data quality. Given that we have made the data
and code publicly available, these models can be retrained
to accommodate data collection with a wide range of sensor
densities and locations, depending on the kinematic outcomes
of interest. They can be combined with transfer learning to
enable better generalization to clinical populations.

When using these models and interpreting the reported
findings, a few characteristics of the study must be noted.
First, the AMASS dataset used to train the models is limited
to healthy adults without major gait pathologies. While it
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Fig. 7. Model Sensitivity to Sensor and Video Noise. The proposed models were evaluated on data with different levels of noise. (A) IMUNet
and FusionNet outperformed Xsens when the IMU-miscalibration error ranged from 0° (baseline) to 30.0 ± 13.7°. (B) VideoNet and FusionNet
outperformed SMPLify3D when the joint-center error ranged from 52.6 mm (baseline) to 101.1 ± 11.2 mm.

will be important to either test or finetune the models using
data from a population of interest, our preliminary proof-
of-concept testing of the models with ”impaired gait” (i.e.,
braced gait) indicates that the models generalize to gaits not

present in the training data. Transfer learning may be used
as an alternative strategy toward better generalizability should
our results not uphold across populations and types of gaits.
Second, while these models may be useful for rapid data

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2023.3275775

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 08,2023 at 08:58:49 UTC from IEEE Xplore.  Restrictions apply. 



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 9

Fig. 8. Model Sensitivity to a Single Noise Profile. The proposed models generally outperformed state-of-the-art approaches both when the sensors
were well calibrated and under the synthetic noise condition (i.e., 15.0 ± 6.6° IMU-miscalibration error and 70.5 ± 7.7 mm of joint-center error). A)
Parity plots indicate that the proposed models performed better, especially when that data are noisy. The results, presented here only for knee
flexion/extension, held across joints, degrees of freedom, and activities. B) Joint angle curves (mean and standard deviation) predicted by IMUNet,
VideNet, and FusionNet were not only more accurate, but also less variable, than those predicted by state-of-the-art methods.

collection in clinics and patient homes, we do not expect them
to generalize to applications that require higher accuracy. One
of the limitations of the AMASS dataset is that the markersets
used by the computer vision and graphics communities are not
as detailed as those recommended by the International Society
of Biomechanics [45], [46]. A third limitation is that, although
the models were tested with real IMU and video data (Fig. 2),
sensitivity to noise was tested using synthetically added noise
(Fig. 7). It remains to be determined whether the observed
robustness to different levels of noise will translate to real-
world data. This is especially important given that we modeled
noise using Gaussian distributions. A final note is that, while
we obviated the need for spatial calibration, FusionNet still
requires time syncing of the video and IMU data, which may
require a hop trial or another salient activity that is easily

identifiable by both modalities.

The success of these models is primarily due to the AMASS
dataset, spanning a wide array of human movements captured
across multiple laboratories. Prior deep learning models for
kinematics estimation from IMUs have been limited to the
lower extremity and only walking and running activities and
have not included tests with real data [24], [30]. Here, we
trained models entirely using synthetic data and tested their
generalizability using real data. Our analysis revealed general
agreement between real and synthetic data, reinforcing the
utility of synthetic data. The fact that the performance of these
open-source models matches that of expansively licensed com-
mercial tools (Theia Markerless, Kingston, Ontario, Canada)
is remarkable.

All the models performed better in estimating lower than
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upper extremity kinematics, likely due to the more constrained
physics that characterizes gait compared to upper extremity
motion. Walking, for example, follows passive dynamics prin-
ciples that neural networks can learn more easily than they can
learn arm motion. Similar logic could be used to explain the
lower performance of the models during freestyle motion than
other activities. Walking, for instance, is cyclical and can be
roughly modeled using passive pendular dynamics principles.
Freestyle motion, however, is more variable and not typically
modeled using simplistic dynamical models that capture most
of the relevant physics.

While neural networks were able to learn typical gait
patterns and harness data augmentation techniques to minimize
sensitivity to noise compared to state-of-the-art approaches,
they were not able to harness the complementary nature of
IMU and video data well. Although FusionNet maintained
relatively stable errors across IMU or video data noise profiles
and was generally more accurate than IMUNet and VideoNet,
these improvements were not always clinically meaningful
(Fig. 7). For example, sagittal plane kinematics in the hip and
knee benefit from IMU-video fusion when either the IMU or
video data are very noisy, but other degrees of freedom do not.
It is therefore important to consider the clinical application
when weighing the cost and benefit of additional sensors.
The comprehensive data presented here should facilitate these
choices. Further, they serve as a baseline for what purely
data-driven approaches can achieve as new fusion approaches,
including those that rely on biomechanical modeling, are
developed.

V. CONCLUSION

As markerless motion tracking evolves and becomes more
pervasive in movement sciences and clinical research, a wide
array of tools will enable better matches between the required
accuracy for a given application and data collection speed and
complexity. In this study, we proposed three neural network
models to predict 3-D human kinematics from videos, IMUs,
and their fusion. The proposed models performed accurately
with noisy data, obviating the need for careful sensor-to-body
calibration and a dense number of cameras. These lightweight
models enable rapid gait analysis in clinical settings, where
the adoption of motion-tracking technology is lagging behind,
despite the transformative impact it could have on patient treat-
ment. We have open-sourced the models, code, and synthetic
data to allow others to build on this work.
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