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Abstract: Abnormal posture or movement is generally the indicator of musculoskeletal injuries or
diseases. Mechanical forces dominate the injury and recovery processes of musculoskeletal tissue.
Using kinematic data collected from wearable sensors (notably IMUs) as input, activity recognition
and musculoskeletal force (typically represented by ground reaction force, joint force/torque, and
muscle activity /force) estimation approaches based on machine learning models have demonstrated
their superior accuracy. The purpose of the present study is to summarize recent achievements in
the application of IMUs in biomechanics, with an emphasis on activity recognition and mechanical
force estimation. The methodology adopted in such applications, including data pre-processing,
noise suppression, classification models, force/torque estimation models, and the corresponding
application effects, are reviewed. The extent of the applications of IMUs in daily activity assessment,
posture assessment, disease diagnosis, rehabilitation, and exoskeleton control strategy development
are illustrated and discussed. More importantly, the technical feasibility and application opportunities
of musculoskeletal force prediction using IMU-based wearable devices are indicated and highlighted.
With the development and application of novel adaptive networks and deep learning models, the
accurate estimation of musculoskeletal forces can become a research field worthy of further attention.

Keywords: inertial measurement unit; human activity recognition; joint force; ground reaction force;

machine learning

1. Introduction

Daily human activity is characterized by a broad variety of movements which represent
the capabilities of the human musculoskeletal system. An abnormal posture or movement is
generally an indication of musculoskeletal injuries or diseases. Human activity recognition
(HAR) is a fundamental function for identifying a specific movements or actions in an
individual. It is typically based on different types of motion capture systems, wearable
sensors, video, etc. Extensive state-of-the-art research has been conducted to develop
various data processing and classification techniques owing to the broad application of
HAR in human-to-human interactions, human-to-machine interactions, and robotics [1-3].

In biomechanics, the mechanical forces that originate from muscle activities are more
likely to dominate development, growth, aging, and injury and recovery processes, when
compared with human activities generally referred to as human kinematics. Therefore, the
identification of the mechanical forces transmitted through the musculoskeletal system
(represented by GRE, joint force/torque, and muscle activity/force) (i.e., human kinetics) is
gaining potential and becoming clinically significant [4-7]. A growing body of research is
now examining this potential and developing novel solutions to estimate the mechanical
forces of the musculoskeletal system [8-14].

Human kinematics and kinetics have conventionally been assessed using standard
systems for biomechanical data acquisition and analysis. A motion capture system embed-
ded with a force platform and inverse dynamics analysis is the most frequently adopted
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approach for evaluating the kinematics and kinetics of human motion. However, the
corresponding laboratory setup of the motion capture systems significantly restricts the
scenarios in which it can be used. Furthermore, it involves technical difficulties in long-term
monitoring during sports, rehabilitation, and outdoor activities. The inertial measurement
unit (IMU) has been introduced in the past decades as one of the most representative
wearable sensors to directly collect the acceleration, angular amplitude, or velocity of the
human body or limb [15]. It is typically composed of an accelerometer, a gyroscope, and
magnetometer sensors. IMUs are characterized by their low weight, cost effectiveness,
convenience of use, and accessibility for the general population when compared with the
laboratory setup. With the development of novel data processing approaches and deep
learning algorithms, the capability of wearable IMUs in human kinematics and kinetics
assessments has been validated in numerous studies [10,11,16-20].

Human activity classification based on IMU data is used to identify movement pat-
terns. Most activity recognition models for classifying common activities performed during
daily life have been established by utilizing conventional machine learning techniques, such
as k-nearest neighbor (K-NN), support vector machine (SVM), random forest (RF), decision
tree (DT), logistic regression, and discriminant analysis. More importantly, deep learning
has gained increasing popularity in HAR tasks. In addition to the convolutional neural net-
work (CNN) [19-21] and recurrent neural network (RNN) [22,23] series models, advanced
approaches using attention [24,25] and transformer [26] have recently demonstrated their
superior accuracy in HAR. In contrast, kinetics data can only be estimated using inverse dy-
namics methods based on in-lab systems for specific locomotive activities. Computational
human dynamic models [27,28], neuromusculoskeletal models [29], and deep learning
models [5,9-11,13] have been developed to calculate GRF and joint force/torque based on
IMU data. Among these approaches, deep learning methods have the greatest potential to
avoid subject-specific calibration and minimize sensor suite complexity.

Human kinematics and kinetics estimation using wearable sensors have been well
summarized and reviewed previously. For instance, a comprehensive review on IMU-
based kinetic estimation was presented, focusing on the methodologies for estimating
GRFE, GRM, and CoP using IMU data [30]. Another systematic review illustrated the
development of GRF estimation approaches using wearable sensors, mostly based on
surface electromyography sensors [31]. Furthermore, a systematic review summarized
the latest progress on joint kinetic estimation using inverse dynamics and a machine
learning approach with IMU data [32]. However, a comprehensive overview on the
application of IMUs in biomechanics, including activity recognition, force estimation, and
the corresponding applications, has not been provided.

Related research papers published in the field in the last few years were summarized
and reviewed. Based on the keywords, more than a thousand related studies were collected
and analyzed. Among these studies, over a hundred articles were selected and discussed in
depth in four aspects: data pre-processing; machine learning and deep learning algorithms;
applications and future challenges. The frequently used keywords as screening criteria
employed in the present study were (“inertial measurement unit” or “accelerometer” or
“gyroscope”), (“joint” or “limb” or “ankle” or “knee” or “hip”), (“kinetic” or “power” or
“moment” or “torque” or “load” or “force” or “ground reaction force”), (“human activity
recognition”), (“deep learning”), (“machine learning”), (“convolutional neural network” or
“recurrent neural network” or “long short-term memory” or “gated recurrent unit network”
or “transfer learning” or “attention” or “generative adversarial networks”). Articles that
met the following criteria were excluded: studies focusing on estimating kinetic variables
using sensors other than IMU as input, and articles that did not sufficiently describe the
method or system.
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The purpose of the present study is to summarize recent progress in the application of
IMUs for assessment of human kinematics and kinetics in biomechanics. The emphasis is
on the methodology of activity recognition and the extended application in musculoskeletal
force estimation. First, the most commonly used IMU setup, data pre-processing methods,
and feature extraction for HAR and musculoskeletal force estimation were summarized.
Second, classification models of HAR based on IMUs and their application in daily life
and clinical diagnosis were reviewed. Third, IMU-based ground reaction force and joint
force predictions during locomotive activities and their applications in rehabilitation and
disease diagnosis were discussed. Finally, the upcoming challenges and opportunities
for the application of IMUs in the field of biomechanics were indicated and highlighted
(Figure 1).
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Figure 1. Outline of the application of IMUs in human activity recognition and musculoskeletal
force estimation.

2. IMU Sensor Placement and Data Acquisition and Processing
2.1. IMU Sensor Placement for Kinematics and Kinetics Assessments

The precision of HAR and force estimation rely substantially on the placement of
the IMU sensors, particularly when using machine learning methods. This is because the
estimation models learn the relationship between the input and output based on the motion
data collected from the IMU of a specific position. A marginal tilt or misalignment of the
sensor relative to a human limb during data collection could result in a substantial error
in the derived results. The robustness of the data acquisition system reduces the risk of
relative motion and misalignment between the sensors and human body.

The placement of sensors for specific applications is a contentious topic. The placement
setup of the sensors in different previous studies has been summarized according to the
literature survey (Figure 2). Tables 1 and 2 summarize the placement setup of IMUs in
previous HAR and force estimation studies, respectively.

Table 1. IMU locations adopted in the previous studies for human activity recognition.

Location References
(Barshan and Yiiksek, 2014; Liu, S. et al., 2020; Martinez-Hernandez and
Thigh Dehghani-Sanij, 2018; Rezaie and Ghassemian, 2017; Safi, Attal, Mohammed,

Khalil, and Amirat, 2015) [33-37]
Shank (Liu, S. et al., 2020; Martinez-Hernandez and Dehghani-Sanij, 2018) [35,37]
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Table 1. Cont.

Location References
(Abdel-Basset et al., 2021; Alemayoh et al., 2021; Yuwen Chen, Zhong, Zhang,

Sun, and Zhao, 2016; Haresamudram et al., 2020; Ignatov, 2018; Liu, Y., Zhao,
Shao, and Luo, 2016; Ma, Li, Zhang, Gao, and Lu, 2019; Mekruksavanich and

Phone Jitpattanakul, 2021; Pei et al., 2013; Reyes-Ortiz, Oneto, Sama, Parra, and
Anguita, 2016; Yao, S., Hu, Zhao, Zhang, and Abdelzaher, 2017; Zhao, Yang,
Chevalier, Xu, and Zhang, 2018) [21,25,26,38-46]
Waist (Haresamudram et al., 2020; Liu, S. et al., 2020; Mahmud et al., 2020) [24,26,37]
(Abedin, Ehsanpour, Shi, Rezatofighi, and Ranasinghe, 2021; Mahmud et al.,
Foot 2020; Martinez-Hernandez and Dehghani-Sanij, 2018; Ordéiiez and Roggen,

2016; Zhao et al., 2018) [24,35,43,47,48]

(Abedin et al., 2021; Fullerton, Heller, and Munoz-Organero, 2017; Guan and
Arm Ploetz, 2017; Liu, S. et al., 2020; Ma et al., 2019; Mahmud et al., 2020; Ordofiez
and Roggen, 2016; Ming Zeng et al., 2018; Zhao et al., 2018) [24,37,43,46-51]

(Abedin et al., 2021; Barshan and Yiiksek, 2014; Guan and Ploetz, 2017;
Chest S. Liu et al., 2020; Ma et al., 2019; Mahmud et al., 2020; Rezaie and Ghassemian,
2017; Safi et al., 2015; Ming Zeng et al., 2018) [24,33,34,36,37,46,48,50,51]

(Abedin et al., 2021; Barshan and Yiiksek, 2014; Fullerton et al., 2017; Guan and
Ploetz, 2017; Hassemer et al., 2023; Liu, S. et al., 2020; Ma et al., 2019;
Mahmud et al., 2020; Mekruksavanich and Jitpattanakul, 2021; Rezaie and

Wrist Ghassemian, 2017; Sergio Staab, Broning, Luderschmidt, and Martin, 2022;
S. Staab, Krissel, Luderschmidt, and Martin, 2022; Staab, S., Luderschmidt, and
Martin, 2021; Ming Zeng et al., 2018) [24,33,36,37,45,46,48-55]
(Abedin et al., 2021; Fullerton et al., 2017; Guan and Ploetz, 2017; Liu, S. et al.,
Ankle 2020; Ma et al., 2019; Mahmud et al., 2020; Safi et al., 2015; Ming Zeng et al.,
2018) [24,34,37,46,48-51]
Hip (Fullerton et al., 2017) [49]
Spine (Fullerton et al., 2017) [49]
Head (Liu, S. et al., 2020) [37]
Trunk (Liu, S. et al., 2020; Ming Zeng et al., 2018) [37,51]

Figure 2. The most common locations to attach the IMUs for human activity recognition and force
estimation were waist, hip, wrist, thigh, shank, and foot.
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Table 2. IMU locations adopted in the previous studies for estimating ground reaction force and joint

force/ moment.
Location References
CoM (Hyerim Lim et al., 2020) [16]
Sacrum (Alcantara et al., 2022; M. Lee and Park, 2020) [9,14]
Pelvis (Johnson et al., 2021; Mur.1dt et al., 2021; Mundt et al., 2020; Wouda et al., 2018;
Zhu, Xia, and Zhang, 2023) [8,11,13,56,57]
L5 (Guo et al., 2017; Shahabpoor et al., 2018) [58,59]
c7 (Shahabpoor et al., 2018) [59]
Lower back (Dorschky et al., 2020) [10]

(Chaaban et al., 2021; Dorschky et al., 2020; Hossain, Guo, and Choi, 2023;
Johnson et al., 2021; Molinaro, Kang, Camargo, Gombolay, and Young, 2022;
Thigh Mundt et al., 2021; Mundt et al., 2020; Shahabpoor et al., 2018; Stetter et al.,
2020; Stetter, Ringhof, Krafft, Sell, and Stein, 2019; Zhu et al., 2023)
[4,8,10,11,13,57,59-63]

(Barua et al., 2021; Chaaban et al., 2021; Derie et al., 2020; Dorschky et al., 2020;
Hossain et al., 2023; Jiang, Gholami, Khoshnam, Eng, and Menon, 2019;
Johnson et al., 2021; Mundt et al., 2021; Mundyt et al., 2020; Stetter et al., 2020;
Stetter et al., 2019; Tedesco et al., 2021) [4,8,10-13,60,62-66]

Phone (De Brabandere et al., 2020) [5]

(Alcantara et al., 2022; Barua et al., 2021; Dorschky et al., 2020; Hossain et al.,
2023; Jiang et al., 2019; Zhu et al., 2023) [10,12,14,57,63,65]

Hip (De Brabandere et al., 2020; Molinaro et al., 2022) [5,61]

Shank

Foot

Body segments including the trunk, pelvis, thigh, shank, and foot are frequently
selected as locations for IMUs in gait analysis [67]. It was observed that placing the
accelerometer in a location with marginal acceleration variations (i.e., waist and back)
yields better activity recognition accuracy than in a location with large motions. Moreover,
for segments with relatively large masses (such as the trunk and pelvis), the collected
vertical accelerations have been demonstrated to be highly correlated with the vertical
GREF [68]. Meanwhile, the shock waves on the segments closer to the collision of each foot
strike (such as the shank and foot) from impact loading are less dampened [59,69]. It is still
uncertain how a precise placement and arrangement of IMUs could achieve an optimal
accuracy of activity recognition and force estimation.

Numerous studies in the past decades have investigated how IMU placement could
influence the accuracy of activity recognition and force estimation. Both placement and
orientation errors of IMUs could result in a significant decrease in the activity recognition
and force estimation [70-72]. An inappropriate IMU placement could also affect the
magnitude and direction of the measured acceleration and angular velocity and thereby
yield unreliable estimations. The misplacement of IMUs (particularly orientation placement
errors) could significantly reduce GRF estimation accuracy [73]. Novel fixation solutions
were developed to securely hold the IMU sensor node in a designated position and ensure
the accuracy of activity recognition [74]. Moreover, an appropriate calibration procedure
is an alternative method of minimizing the accuracy loss caused by the misplacement of
IMUs [67,75].

2.2. Data Acquisition

The primary task for activity recognition or force/torque estimation is to acquire
raw data or the data for a machine learning training model. Certain recent efforts have
begun addressing this problem by establishing open datasets for various locomotion activi-
ties. The dataset includes IMU, EMG, and goniometer information regarding able-bodied
subjects for level ground, ramps, and stairs. It can be used to train IMU-based activity
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recognition and force/torque estimation models [76]. For example, in the most recent
open-source dataset, four IMUs were attached on the right leg to collect 3D data from
22 able-bodied adults for multiple locomotion activities (level-ground /treadmill walking,
stair ascent/descent, and ramp ascent/descent) and multiple terrain conditions for each
activity (walking speed, stair height, and ramp inclination). The dataset is a comprehen-
sive source of locomotion information from the same set of subjects, which can motivate
applications in activity recognition and force/torque estimation. With this dataset, the
models for these applications can be subject-dependent or subject-independent. Thereby, it
provides substantial flexibility for advanced research and significantly accelerates scientific
achievement by fostering new analyses, good data practices, and reproducibility [77].

2.3. Data Pre-Processing

In general, acceleration and angular velocity data can be collected from IMUs placed
on different locations of the human body. Traditional methods based on numerical calcula-
tions and machine learning approaches are the two most representative methods for IMU
data processing.

Numerical methods utilized the acceleration and angular velocity collected from
IMUs to calculate the orientation, velocity, and position of human limbs [78,79]. Biome-
chanics models were then implemented to estimate high-level parameters for HAR and
musculoskeletal force estimation [80-82].

In order to ensure the accuracy of the calculation, bias compensation, distortion
rejection, alignment, and filtering (e.g., complementary filter [83], Kalman filter [84], and
zero-velocity update [85]) are normally utilized to process the raw IMU data. The most
commonly used sensor fusion algorithms in the previous studies can be grouped in two
main classes: Kalman filters and complementary filters. Evidence suggests that Kalman
filter-based methods are computationally demanding, while complementary filter-based
methods are computationally light. However, Kalman filters are more competitive for
deriving more accurate results if the execution time is not considered [86].

In contrast, machine learning methods typically use raw acceleration and angular
velocity measured from IMUs directly as inputs to classify activities and estimate the
musculoskeletal force. Occasionally, a combination of the classic numerical calculations
and machine learning methods is used to predict human kinematics and kinetics. For
instance, zero velocity update was used for IMU data pre-processing, and it generated
the velocity and displacement of the sacrum [9] and CoM [16]. The derived velocity and
displacement data were further input into the neural network to estimate the kinematic
and kinetic parameters of lower limbs.

In addition, for both activity recognition and force estimation, the noise caused by the
vibration and movement of IMUs relative to the human body during data acquisition poses
a challenge to the acquisition of an optimized output. Therefore, pre-processing of the raw
data is a particularly critical step in the post-data mining procedure. Data pre-processing
primarily includes data denoising and the calculation and extraction of eigenvalues.

The acceleration signals of human locomotive activities are primarily low frequency
signals. These are non-stationary signals of a time series and normally contain random
noise caused by external interference and the sensor’s vibration during the locomotive
activities. This necessitates appropriate data filtering approaches. Existing solutions for
filtering raw data primarily include filters and the Fourier, Gabor, and wavelet transforms.
The technical details are well described elsewhere [87].

The type of eigenvalue selected is of particular importance in activity recognition and
force/torque estimation. It eventually affects the accuracy of the activity recognition and
force/torque estimation models. Features are abstract descriptions of the original data.
Extracting features from a set of data can reduce the size of the data and result in a better
comprehension of the critical information contained in the data. Conventional machine
learning approaches use a set of predesigned features (also known as “shallow” features)
to represent the data for activity recognition [88-90]. Time-domain and frequency-domain
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eigenvalue calculations are the main categories for feature extraction. A simple energy
thresholding method was applied to the frequency analysis of input data. It was used
to detect the freezing of gait in patients with Parkinson’s disease [91]. In other applica-
tions, statistical parameters, basis transform coding [89], and symbolic representation [88]
were generally used as “shallow” features to describe time series data from IMUs. To
simplify the machine learning model to prevent a dimension explosion, feature selection
or transformation methods were the standard procedure after feature extraction. Feature
selection methods can be categorized into three classes: the filter, wrapper, and hybrid
methods [92]. For feature transformation, principal component analysis used an orthogonal
transformation to convert raw features to compact uncorrelated new features. It was widely
used to reduce the dimensions without compromising on the accuracy. For example, the
nonparametric weighted feature extraction algorithm and the principal component analysis
were utilized to reduce the dimensions of features and achieve a recognition accuracy of
98.23% for 10 common domestic activities [93]. A method of kernel principal component
analysis and linear discriminant analysis for HAR based on smartphone IMUs was pro-
posed to process the features further; deep belief networks were also used to train the
features for activity recognition [94]. The features used in previous HAR as well as force
estimation studies have been summarized in Table 3.

Although the conventional handcrafted feature learning methods are highly accessible,
feature vectors extracted using such techniques are task- or application-dependent and
cannot be transferred to similar tasks. Automatic feature extraction with less human effort
has been achieved with the development of the machine learning approach [95]. Moreover,
deep learning approaches such as CNN models are capable of automatically detecting
essential features from the input data and reducing programming requirements when
compared with conventional machine learning approaches [19,96,97]. Using multiple layers
of abstraction, deep learning methods learn intricate features from raw sensor data and
identify the most optimized pattern to improve recognition performance. Recent studies
have indicated the remarkable outcome of deep learning over conventional handcrafted
features for HAR [47].

Table 3. Selected features for HAR and musculoskeletal force estimation.

Reference

Selected Features

(De Brabandere et al., 2020) [5]

63 features generated using TSFuse (e.g., mean, median, variance, ... )

(Lee, M. and Park, 2020) [9]

Position velocity and acceleration of the sacrum

(Barua et al., 2021) [12]

L2 norm and average were extracted from each accelerometer and gyroscope sensor (three
axes combinedly)

(Alcantara et al., 2022) [14]

Mean, standard deviation, and range in vertical and anteroposterior acceleration data for
each 12 ms window

(Derie et al., 2020) [66]

Mean, maximum, number of peaks, timing of peak values, continuous wavelet coefficients,
coefficients of an autoregressive model, the time reversal symmetry statistic, Fourier coefficients

(Jiang, Napier, Hannigan,
Eng, and Menon, 2020) [98]

Temporal domain features were employed, including root mean square, sum of absolute value,
mean absolute deviation, variance, wavelength, slope sign changes, and simple square integral,
mean wavelet with db7, difference absolute standard deviation value, average amplitude
change, log detector, and the coefficients of linear fit and parabolic fit

(Jiang et al., 2019) [65]

Root mean square, sum of absolute value, mean absolute deviation, variance, wavelength, slope
sign changes, simple square integral, mean wavelet with db7, difference absolute standard
deviation value, average amplitude change, log detector, linear fit, and parabolic fit

(Zhu et al., 2023) [57]

PCA
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Table 3. Cont.

Reference

Selected Features

(Alemayoh et al., 2021) [21]

Time-domain, frequency-domain, and wavelet transformation

(Barshan and Yiiksek, 2014) [36]

The minimum and maximum values, the mean value, variance, skewness, kurtosis,
autocorrelation sequence, and the peaks of the discrete Fourier transform

(Fullerton et al., 2017) [49]

Time-domain features: mean, standard deviation, root mean square, peak
count, and peak amplitude
Frequency-domain features: spectral energy and spectral power
Heuristic features: signal magnitude area, signal vector magnitude

(Pei et al., 2013) [39]

Mean, variance, median, interquartile range, skewness, kurtosis, difference in two successive
measurements, 1st dominant frequency, 2nd dominant frequency, amplitude of the 1st
dominant frequency, amplitude of the 2nd dominant frequency, amplitude scale of two

dominant frequencies, difference between two dominant frequencies

(Y. Liu et al., 2016) [40]

Statistical domain: mean, variance, STD, median, min, max, range,
interquartile range, kurtosis, skewness
Frequency domain: spectrum peak position

(Reyes-Ortiz et al., 2016) [44]

Arithmetic mean, standard deviation, median absolute deviation, largest values in array,
smallest value in array, frequency signal skewness, frequency signal kurtosis, largest frequency
component, average sum of the squares, signal magnitude area, signal entropy, interquartile
range, 4th order burg autoregression coefficients, Pearson correlation coefficient, frequency
signal weighted average, spectral energy of a frequency band [a, b], angle between
signal mean and vector

(Ma et al., 2019) [46]

Spectrogram

3. Activity Recognition Based on IMUs
3.1. Classification Models

Most of the current HAR models are established using conventional machine learning
approaches, including DT [33,36], K-NN [49], SVM [39,99], RF [34], Bayesian [35], and the
HMM [40]. These are the most common classification algorithms with straightforward
concepts and classification rules. In research using machine learning, it is important to
extract handcrafted features. For this purpose, domain knowledge and signal processing
theory are required. In deep learning models, the feature extraction process is performed
automatically and derives sounding performance. For instance, CNN-based HAR methods
could accurately extract spatial features automatically from a spectrogram converted from
a time series or multivariate time series of data. A CNN model was proposed for the
extraction of local features along with statistical features to obtain the global properties of
the time series accelerometer data. The recognition accuracy on the public dataset Wireless
Sensor Data Mining (WISDM) was 93.32% [41]. To improve the classification accuracy, a
two-stage end-to-end CNN was trained using WISDM. The recognition accuracy for stair
ascent and descent improved in comparison to the single-stage CNN [20]. Moreover, a
double-channel CNN was trained to identify human behavior using an accelerometer and a
gyroscope in a smartphone strapped to the waist. The recognition accuracy reached 97.08%
using WISDM [21].

However, given that the HAR is a classification problem based on time series, the
CNN-based recognition approaches were not able to capture long-term information and
suffered limited performance. To overcome the shortcomings of CNN-based recognition
approaches, several classical RNNs [42,50], e.g., long short-term memory (LSTM) and gate
recurrent unit (GRU), were introduced for HAR. A stacked LSTM network was proposed
to recognize human behavior using accelerometer and gyroscope data. The accuracy of the
proposed network was 93.13% [23]. Moreover, a residual BILSTM was proposed to resolve
the gradient vanishing problem of HAR using IMU data [43].
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Of note, the above-mentioned RNNs cannot effectively identify the correlations be-
tween different sensor modalities [100], leading to poor classification performance. Due to
the complementary advantages of CNNs and RNNs, CNN and LSTM hybrid models were
proposed and achieved notable performance [38,44]. A DeepConvLSTM model combining
the LSTM model with a number of CNN layers was proposed to capture the short-term
and long-term temporal correlations by learning the characterizations of the collected data.
The recognition performance was a 0.69 F1 score using solely accelerometers and was
improved on average by 15% when fusing accelerometers and gyroscopes; it was further
elevated by 20% when fusing accelerometers, gyroscopes, and magnetic sensors [47]. Four
deep learning hybrid models composed of CNN and RNN were developed to recognize
complex activities. The results suggested that CNN-BiGRU achieves a recognition accuracy
of 98.89%, which is better than the other three models [45].

Another significant advance in deep neural networks relevant to HAR is the use of
attention and transformer [37,46,48,51]. A ConvTransformer network was first applied
as the encoder of masked reconstruction-based self-supervision for HAR. This method
has demonstrated its effectiveness over multiple commonly used HAR datasets [26]. A
self-attention-based neural network model that foregoes recurrent architectures and utilizes
different types of attention mechanisms to generate higher dimensional feature representa-
tion of IMU signals was used for classification. Results indicated that the F1 score of the
model is 96% [24]. A dual-channel network consisting of a convolutional residual network,
an LSTM, and an attention mechanism was proposed to process IMU data. The accuracy of
the proposed network on WISDM reached 98.9% [25].

Of note, non-locomotive activities, including eating, drinking, nose blowing, reading,
looking at photos, knitting, telephoning, and brushing hair, are also essential components
of HAR. In an attempt to recognize activities in the dementia syndrome, an LSTM network
was developed to identify nearly identical motion sequences, such as drinking, eating,
writing, and nose blowing, using a smartwatch-embedded IMU. Results suggested that
LSTM achieves a recognition accuracy of up to 79.81% [52]. Likewise, in combination with
an LSTM network, a smartwatch was used to identify twelve daily activities, including
eating with a spoon, eating with a fork, drinking from a bottle or a drinking cup, blowing
the nose, cutting, writing, etc. The combination of data collected from acceleration, attitude,
and gyroscope sensors achieved the best classification result with LSTM with a prediction
accuracy of 85.67% [53]. Using smartwatch data, another study investigated the perfor-
mance of different classifiers for four different activities including blowing the nose, cutting
food, talking on the phone, and brushing hair. An accuracy of 98.33% was obtained for
such activity recognition using the fast forest algorithm [54]. Moreover, logistic regression
was used to classify three activities with similar motion, i.e., eating, drinking, and writing,
and achieved a recognition accuracy of 98.31% [55].

It should be noted that although the deep learning algorithm has a better recognition
accuracy than machine learning algorithms, it has shortcomings. First, the advantages of the
deep learning algorithm rely on model training based on a large amount of data which are
normally difficult to collect (particularly the high-quality and large-scale datasets). Second,
most of the deep learning algorithms involve complex structures and calculation procedures.
This is not conductive to certain recognition scenarios with real-time requirements and
limited energy consumption. Therefore, it may be unsuitable for deployment in various
devices with limited power supply.

3.2. Application of the IMU-Based HAR in Clinical and Daily Scenarios

Dynamic monitoring of limb movement using wireless wearable IMUs and pervasive
computing technology can provide an effective and inexpensive solution for early diagnosis
of musculoskeletal diseases. Data collected using wearable IMUs, in conjunction with
the associated algorithms, can be mapped to make appropriate clinical assessments and
provide updates on rehabilitation progression. Thus, the wearable IMU system is capable
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of providing valuable information to the therapist regarding the treatment solutions or
training intensity during rehabilitation.

Wireless wearable devices have been used to monitor patient activities such as those
with Parkinson’s disease. These can accurately quantify symptoms and motor function,
support experts in clinical evaluations, and provide valuable references for rehabilitation
programs. For example, data collected from two IMUs attached to both shoes were used
to assess gait characteristics of Parkinson’s disease. The associated approach provided
objective and quantitative results on different gait parameters that can be used as valid and
reliable biofeedback in daily life. This can satisfy the requirements of physicians, patients,
and caregivers [101]. A recent study used IMU to integrate technology to monitor and
evaluate the gait of patients with Parkinson’s disease. An IMU integrated with a cloud
computing approach has demonstrated its capability for monitoring freezing episodes
and reducing variability or the risk of falling. For patients with Parkinson’s disease, a
single IMU system could improve the follow-up of the recovery process after they receive
treatment [102]. With the widespread application of the machine learning approach, the
corresponding models and algorithms are also becoming highly effective tools to process
the clinical data obtained by IMUs. A study with two IMUs mounted on the shank was
used to analyze gait patterns of healthy subjects and patients with peripheral neuropathy,
post-stroke, or Parkinson’s disease. Eight spatiotemporal and kinematic gait parameters
were extracted and classified with an accuracy of 93.9% using an SVM algorithm. This
indicates the feasibility of gait pattern recognition with a few IMUs and its significant
potential in clinical applications [103]. Similarly, with a deep convolutional neural network
and IMU-based sensor system, the rehabilitation process can be classified with an accuracy
of up to 98% while walking at an arbitrary speed on flat ground [104]. It is therefore
indicated that the IMU-based approach could be one of the objective, evidence-based
solutions for clinical diagnosis and rehabilitation evaluation through the recognition of
human movement patterns.

Similarly, IMU-based activity recognition has also been used in daily life. Falling is one
of the leading causes of injuries among the elderly. Numerous studies have been conducted
using wearable IMUs for fall detection and fall prediction. A three-axis accelerometer and
HMM computing approach can detect and predict fall events with an accuracy of 100% [105].
Timely assistance in case of a fall and a reduction in casualty rates are becoming feasible
with the emergence of wireless transmission-combined IMU systems and positioning
technologies. For example, a low-cost multifunctional wearable IMU-based device was
developed for real-time location and movement activity monitoring, particularly for fall
detection and emergency notification for the elderly [106].

Posture assessment of human daily behavioral patterns generally requires precise
capturing of posture during locomotive tasks. Using the information exported by IMUs,
coaches can accurately evaluate the performance of athletes and develop appropriate
training programs [107]. Similarly, training and match demands were quantified using the
jumping count data obtained from IMUs. This aided the reduction in knee joint injuries
among volleyball players [108].

In the field of human—computer interactions, IMUs were used to monitor the move-
ment of the human body and convey the corresponding information to the machine. This
can be applied in various scenarios of the industrial field [109,110]. A kinematics-based
approach was developed to estimate human leg posture and velocity from IMUs during
the performance of typical physiotherapy and training exercises. The proposed approach
used an extended Kalman filter to estimate joint angles from accelerometer and gyroscopic
data. It was capable of deriving joint angles from arbitrary 3D motion [110]. In a recent
study, bidirectional long short-term memory, CNN, a wavelet neural network, and LSTM
networks were trained to estimate lower limb joint angles using a single IMU attached
to the pelvis. The results suggested that the LSTM networks derive a better estimation
with a minimum error of 5.8° and a maximum error of 11.32° [111]. In a subsequent
study, a multi-joint angle estimation approach based on an LSTM network with a single



Sensors 2023, 23, 4229

11 of 26

shank-attached low-sampling-frequency (23 Hz) IMU was proposed. The results showed
that the estimation accuracy is comparable to the previous studies using high-frequency
IMU sensors. The estimated angle coefficient of determination was greater than 0.74. The
root mean square error and normalized root mean square error were less than 7° and
9.87%, respectively [112]. An IMU-based virtual reality therapy system has the potential
to increase the intensity and frequency of physical activity at home for stroke patients.
The virtual reality system uses three IMUs attached to the lower and upper arm and the
trunk to capture patient motion data for training upper extremity functions. This may
help increase the dose of rehabilitation without the costs associated with clinical visits and
therapist supervision [109].

4. Estimation of Musculoskeletal Force Using IMUs

The application of IMUs and deep learning techniques is exhibiting increasing poten-
tial and clinical significance. Essentially, all human activities are the result of a combination
of muscle forces and gravitational forces. Therefore, an estimation of the mechanical forces
in the musculoskeletal system (represented by ground reaction force, joint force/torque,
and muscle activity /force) would be more straightforward than activity recognition in
clinical diagnosis, rehabilitation evaluation, and daily locomotive activity monitoring [113].

Several methods have been established to calculate GRF or joint forces using data
collected by IMUs. Inverse dynamics and machine learning techniques are a few of the
most representative methods for such purposes. Inverse dynamics is one of the classical
methods for calculating the lower limb joint load based on IMU data. The inverse dynamics
approach assumes that the human body is a multi-link rigid segment system connected
by joints and the recursive Newton-Euler inverse dynamics formula. Thereafter, the
kinematic and kinetics variables of human motion can be calculated. This procedure
requires a number of assumptions, which introduces inaccuracies and uncertainty [80]. In
contrast, machine learning is a potential method for solving the above-mentioned problems.
The machine learning approach could accomplish self-learning and model construction
based on sample data (so-called training data) and makes predictions or decisions without
explicit programming. Force or torque prediction based on IMUs has become feasible and
accurate with the development of machine learning and deep learning approaches and
their application in the field of biomechanics. Tables 4 and 5 summarize the accuracy of
GFR and joint force estimation achieved in different studies with different IMU numbers
and placements in the human body.

Table 4. Model selection and IMU sensor position for estimating ground reaction force.

Number o, e Optimal
Reference of Sensors Position Frequency Activation Tasks Model Accuracy
(Guo et al., . Average prediction
2017) [58] 1 L5 128 Hz Walking VGRF OFR percentage error < 5%
. Single subject training:
(“2’%‘11;)3[?6?1" 3 Pel"i’ lsower 240 Hz Running vGRF ANN p > 0.99, Multiple subject
: & training: p > 0.9
(Shahabpoor . . Tri-Axial Linear NRMSE: vGRF: 7%, A-P GRF:
etal., 2018) [59] 3 7,15 thigh 128 Hz Walking GRF regression 16%, M-L GRF: 18%
(Lim et al., . A-P GRF, The approximate errors:
2019) [16] 1 CoM 100 Hz Walking VGRE ANN VGREF: 58 N, A-P GRF: 23 N
Pearson correlation
CaffeNet -
(Johnson et al., 5 Pelvis, thigh, Virtual Sidestepping, Tri-Axial coefficient: 0.89
2021) [8] shank IMU data running GRF ResNet-50 Pearson correlation

coefficient: 0.87
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Table 4. Cont.

Reference ol;lggnz(e):s Position Frequency Activation Tasks Oﬁgggl Accuracy
Intra-subject test:
(Jiang et al., . Random forest RMSE = 0.02 BW
2020) [98] ! Shank 100 Hz Walking VGRE regressor Inter-subject test:
RMSE =0.10 BW
(Lee and Park, . Tri-Axial NRMSE:
2020) [9] 1 Sacrum 148 Hz Walking GRF ANN Tri-Axial GRF: 6.7-15.6%,
Lower back, Pearson correlation
(Dorschky etal., the right Walking, A-P GRF, coefficients:
2020) [10] 4 thigh, shank 1000 Hz Running vGRF CNN A-P GRF: 0.970
and foot vGREF: 0.980
4 acc, 4 gre ; RMSE: 0.22 + 0.002 BW
(Chaaban et al., 28 Thi . Linear
————— Thigh,shank  1125Hz Jumpin vGRF :

2021) [60] 4acc 8 pmg regression RMSE: 0.25 4 0.003 BW
(T;%‘;jc)"[:;]al" 2 ringftftsflzgks 238 Hz Running VGRF ANN RMSE: 0.148 BW
(Alcantara etal ];‘YV(})ltO :ht:ee Uphill and Perpendicular

2022) [14] i 3 an%i one on 2000 Hz downbhill to running RNN RMSE: 0.16 & 0.04 BW

the sacrum running surface GRF
Fast running,
Pelvis, left joggingl, slow
(Zhu et al thigh, left W@ili(slﬂg/
- 5 ankle, right 100 Hz . vGRF Transformer MSE: 0.0205
2023) [57] thigh, and walking, and
right ankle walking up
and down
stairs
OFR: Orthogonal forward regression, vGRE: Vertical ground reaction force, A-P: Anterior-posterior ground
reaction force, CoM: Center of mass, L5: 5th lumbar vertebrae, C7: 7th cervical vertebrae, NRMSE: Normalized
root mean square error, RMSE: Root mean square error, MSE: Mean squared error.
q q q
Table 5. Model selection and IMU sensor position for estimating joint force/torque.
Number
Reference of Position Frequenc Activation Tasks Optimal Model Accurac,
q y P y
Sensors
Pearson correlation coefficients:
(Stetter et al., Right thigh L. . vertical KJF: 0.60-0.94,
2019) [62] 2 and shank 1500Hz  Walking, jumping KJF ANN P KJF: 0.64-0.90,
M-L KJF: 0.25-0.60.
The approximate errors:
(Lim et al., 2020) . . hip joint torques: 16.7 Nm,
[16] 1 CoM 100 Hz Walking Joint torques ANN knee joint torques: 11.4 N,
ankle joint torques: 15.3 Nm.
(Jiang et al., 2019) : Ankle joint Intra-subject test: R = 0.98,
[65] 2 Shank, foot 100 Hz Walking power RF Inter-subject test: R = 0.92.
Subject-dependent: mean
(Derie et al Antero-medial Maximal absolute percentage error: 6.08%,
28;; ?6 6] v 2 side of 1000 Hz Running vertical XGB Subject-independent: mean
both tibias loading rate absolute percentage
error: 11.09%.
(Lee and Park, . . NRMSE:
2020) [9] 1 Sacrum 148 Hz Walking Joint torques ANN joint torques: 11.4-24.1%
. . Walking, running,
(Stetter et al., Right thigh o . KFM: R =0.74 + 0.36,
2020) [4] 2 and shank 1500 Fz 45° cutting KFM, KAM ANN KAM: R = 0.39 + 0.32.

maneuver
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Table 5. Cont.
Number
Reference of Position Frequency Activation Tasks Optimal Model Accuracy
Sensors
Walking, walking
up-
stairs/downstairs,
sitting down and
(De Brabandere . standing up, . Regularized Mean absolute error:
et al., 2020) [5] 1 Left hip 50 Hz forward lunge and Hip moment linear regression left hip: 29%, right hip: 36%.
side lunging,
standing on one
leg, squatting on
one leg
Lower back Pearson correlation coefficients:
(Dorschky et al., . L . . . hip moment: 0.94,
2020) [10] 4 the right thigh, 1000 Hz Walking, running Joint moments CNN knee moment:0.975,
shank and foot
ankle moment: 0.981.
The mean correlation of the
(Mundt et al., Pelvis, Virtual . . models:
2020) [11] 5 thigh, shank IMU data Walking Joint moments MLP r-kinetic-measured: 0.95,
r-kinetic-combined: 0.95.
LSTM R > 81.25%
(Bz%rzul"; Fltzall 2 Foot, shank 100 Hz Walking A‘g‘;ﬁ}gm CNN R > 83.09%
CNN-LSTM R > 83.19%
RMSE:
4 ace knee extension moment:
4 / K 0.028 + 0.0002 BW-HT,
gre nee N .
extension sagittal plane knee power:
(Chaabanet al., Thigh, shank 1125 Hz Jumping n.‘ome“t' Linear regression 0.27 0005 BW-HT-
2021) [60] ’ sagittal plane RMSE:
knee power knee extension moment:
4 acc absorption 0.031 + 0.0002 BW-HT
sagittal plane knee power:
0.32 + 0.003 BW-HT
. MLP, Mean model correlation
(l\ggggtﬁg?l" 5 thi P}f IZ:énk 100 Hz Walking Joint moments LSTM, coefficients:
: gt CNN joint moment > 0.939.
Average RMSE:
. . ] steady-state ambulation:
(Molinaro et al., Trunk, thigh, Virtual . .
2022) [61] 3 and hip IMU data Walking Hip moment TCN 0.131 + 0.018 Nm/kg,
mode transitions:
0.152 £ 0.027 Nm/kg.
Tread-mill walking,
level-ground . .
Thigh, shank walking ramp TPy fee s Hybrid model
3 &1, shank, 100 Hz ascent/descent, €Jo based on 1D, 2D PCC: 0.923 + 0.030
and foot and moment, 3D convolutional,
(Hossain et al., stair GRFs GRU, and dense
2023) [63] ascent/descent layers with the
———— ap;;licat.ion of
runk, pelvis, agging
8 and both 100 Hz Walking KEM, KAM, techniques PCC: 0.884 + 0.029
thighs, shanks and 3D GRFs

KJE: Knee joint force, KFM: Knee flexion moment, KAM: Knee adduction moment, NRMSE: Normalized root
mean square error, RMSE: Root mean square error, TCN: Temporal convolutional network.

4.1. Estimation of Musculoskeletal Force Using IMUs

The GRF is one of the most representative parameters for motion analyses. As an
external force in the most distal link of the human lower limb, GRF is used in inverse
dynamics analyses to calculate continuous joint dynamics including the force and torque
of each link of the human body. The vertical component of the GRF during running
can be used to predict the occurrence risk of knee injury in long-distance runners [66].
Furthermore, the GRF during walking can also be used to assess fall risk and abnormal
gait [114].

A series of data-driven methods have been developed to estimate GRFs. These include
the conventional regression models and the recently developed deep learning methods. DT-
based methods have been widely used owing to their substantial capability for representing
the relationships in the data. DTs are inherently transparent in their decision-making
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process. This highly valuable feature can provide information regarding which joints
are critical for estimating the GRF. Using data derived from two shin-mounted tri-axial
accelerometers and a gradient-boosted regression tree model machine learning approach,
the maximal vertical instantaneous loading rate was predicted with high precision (mean
absolute error of 12.41 £ 7.90 BW-) during overground running [66]. An RF is also a
supervised classification algorithm consisting of a large number of decision trees. A novel
solution using an RF algorithm was proposed to estimate the timing and magnitude of the
vertical GRF peaks during walking using the data from an IMU fixed on one of the lower
limbs. The proposed method achieved a significantly high correlation coefficient (R = 0.97)
averaged over all the speeds (0.4 m/s, 0.7 m/s, 1.0 m/s, 1.3 m/s, and 1.6 m/s) [98].

The most evident feature of the nonlinear auto-regressive moving average model
with exogenous inputs (NARMAX) modeling methodology is that it produces transparent
mathematical functions that are directly related to the task. NARMAX methods provide
linear and/or nonlinear dynamic relationships and models between user-defined inputs
and outputs [115]. Therefore, it is appropriate to apply NARMAX to determine the optimal
location of IMUs when IMU data are used for force estimation. NARMAX was used to
identify the optimal number and location of IMUs on different body segments to accurately
estimate the vertical, medial-lateral (ML), and anterior—posterior (AP) GRFs. A set of
12 IMUs was used to measure the tri-axial acceleration and orientation signals at the seventh
cervical vertebrae (C7), fifth lumbar vertebrae (L5), upper arms, fore arms, thighs, shanks,
and fourth metatarsals. The best locations for IMUs to estimate the three components of the
GRF were C7 for the single-sensor system; C7 and L5 for the two-sensor system; and C7, L5,
and one of the thighs for the three-sensor system. In all the cases, the higher the number
of sensors, the lower the NRMSE of the estimated GRF signals. The average decrease in
these NRMSEs with an increase in the number of sensors from one to three were 2%, 3%,
3%, and 4% for the V, AP, ML, and tri-axial directions, respectively. A simple linear model
was then proposed to estimate the GRFE. It was observed that for the three-IMU system,
the proposed model estimated the GRF with average NRMSEs of 7%, 13%, and 13% in
the vertical, AP, and ML directions, respectively [59]. In another study, NARMAX and the
orthogonal forward regression algorithm were used to predict the vertical GRF from IMUs
attached at different locations including L5, C7, and the forehead. The results indicated
that the prediction accuracy was better for the IMU at L5 than for the sensors on C7 and
the forehead. The vertical GRF was reconstructed with high accuracy and an average
prediction error of less than 5.0% when only one wearable sensor mounted at the waist (L5)
was used [58].

The ANN is one of the earliest neural network models used to predict GRF. MLP
is the most commonly used ANN. It displays high computing speed, is convenient to
implement, and has small training set requirements. Two concatenated ANNs were trained
using an ambulatory minimal IMU setup to estimate the kinematics and kinetics of runners.
The first ANN mapped the orientation and acceleration of three IMUs on the lower legs
and pelvis to lower-body joint angles. The estimated joint angles in combination with
the measured vertical accelerations were input into a second ANN that estimated the
vertical GRE. The results indicated that the mean RMSE of the estimation was less than
0.27 BW [56]. A system based on an IMU and an ANN was developed to estimate vertical
GRF waveforms during running and metrics during jumping (peak force, flight time, peak
power at landing, etc.). During running, the system relies on two IMUs located on the left
and right shanks. Meanwhile, only one IMU worn on the pelvis is required for jumping.
The predictions were satisfactory (RMSE of vertical GRF during running = 0.148 BW;
error < 10% for most jumping metrics) [64]. The evidence indicated that the GRF could be
predicted with moderate effectiveness using an ANN, based on the dynamic relationship
between the center of mass (CoM), the GREF, and joint kinetics. The vertical GRF can be
predicted with a correlation coefficient of 0.97 using an IMU at the CoM in combination
with an ANN [16]. An IMU at the sacrum in combination with an ANN predicts the 3D
GREF, CoP trajectory, and joint torque of the lower extremity with moderate accuracy. The



Sensors 2023, 23, 4229

15 of 26

normalized root mean square errors range from 6.7% to 15.6%, 8.2% to 20.0%, and 11.4% to
24.1%, respectively [9].

CNN models are highly effective for image classification. In addition, they can accu-
rately and automatically extract spatial features from time series data. In the past, CNN
models have been widely used for HAR based on IMU data. Recently, these have been
trained to predict GRFs. Two CNN models, CaffeNet and ResNet-50, were trained using
laboratory-derived stance phase GRF or moment data; they simulated IMU output during
running and sidestepping maneuvers obtained from nearly half a million legacy motion
trials. The proposed deep learning workbench achieved high correlations (>0.87) with
the ground truth [8]. LSTM networks have been used in GRF prediction because of their
advantages in extracting long-term dependence within time series. A hybrid model consist-
ing of a bidirectional LSTM and an MLP with three fully connected layers containing 128,
384, and 320 neurons was developed to predict continuous vertical GRFs across a range
of running speeds and slopes from sacral- and shoe-mounted accelerometer data. The
results indicated that the hybrid model predicted with a higher accuracy than the neural
networks implemented in the previous studies [14]. A transformer encoder was trained to
extract temporal and spatial features from IMU data to estimate GRF. Five IMUs worn on
the pelvis, left thigh, left ankle, right thigh, and right ankle were used to collect kinematics
data. The results showed that the average error of the predicted values was improved by
32% when compared to the RNN architecture and by 25% when compared to the LSTM
architecture, while using the transformer as a feature extractor [57].

4.2. Estimation of Joint Force and Moment of Lower Limb Based on IMUs

To determine joint forces and moments with IMUs, various biomechanical models,
including segmented 2D /3D models, were established for kinematics and kinetics calcula-
tions [80,81,116-118]. However, most of the biomechanical model-based methods require
the placement of IMUs onto each segment of the lower limb, making them too cumbersome
for application in daily continuous monitoring. Machine learning approaches have the
greatest potential to avoid subject-specific calibration and minimize sensor suite complexity.

The application of conventional machine learning algorithms in joint force/moment
estimation is constrained by extensive feature extraction requirements and longer data
pre-processing. Meanwhile, deep learning could simplify this process and perform better
and faster (which is essential for real-time estimations). An RF learning algorithm was
employed with two wireless IMUs to train and test the ankle power prediction model. The
results indicated that the accuracy of the intra-subject tests was 0.98 across the five speeds
of gait. Meanwhile, the accuracy of the inter-subject test was 0.92, which is marginally
lower than that of the intra-subject test. Although the estimation of the ankle joint power
using two IMUs and the RF algorithm was reasonably effective, it generally required a
considerable amount of feature extraction (256 features) and could not perform well in
peak power [65]. To overcome the shortcomings of the RF model, three state-of-the-art deep
neural architectures 