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Abstract: Wearable sensors are an emerging technology, with growing evidence supporting their
application in sport performance enhancement. This study utilized data collected from a tri-axial
inertial sensor on the wrist of ten recreational and eight professional basketball players while they
performed free-throws, to classify their skill levels. We employed a fully connected convolutional
neural network (CNN) for the classification task, using 64% of the data for training, 16% for vali-
dation, and the remaining 20% for testing the model’s performance. In the case of considering a
single parameter from the inertial sensor, the most accurate individual components were upward
acceleration (AX), with an accuracy of 82% (sensitivity = 0.79; specificity = 0.84), forward acceleration
(AZ), with an accuracy of 80% (sensitivity = 0.78; specificity = 0.83), and wrist angular velocity in
the sagittal plane (GY), with an accuracy of 77% (sensitivity = 0.73; specificity = 0.79). The highest
accuracy of the classification was achieved when these CNN inputs utilized a stack-up matrix of
these three axes, resulting in an accuracy of 88% (sensitivity = 0.87, specificity = 0.90). Applying the
CNN to data from a single wearable sensor successfully classified basketball players as recreational
or professional with an accuracy of up to 88%. This study represents a step towards the development
of a biofeedback device to improve free-throw shooting technique.

Keywords: convolutional neural network; machine learning; IMU; accelerometer; gyroscope

1. Introduction

Basketball is one of the most popular sports played around the globe. More than
450 million people worldwide play basketball [1]. According to the Australian Sport and
Physical Activity Participation Survey published in 2021 [2], Australia has more than one
million participants in basketball, with increasing trends in participation amongst children.
Statistics show that around 20% of the total points scored in a basketball game are attributed
to free-throws (FT), accounting for 48% of the points scored in the final 5 min [3]. Accurate
FT shooting is an important contributing factor to team success, as it has been displayed
that the team with a higher FT percentage will win 80% of games [3]. Although FT shots
are the most standardized shot in the game and should be the easiest scoring opportunity
within the game, FT accuracy is variable. In the 2020–2021 NBA season, the top 100 FT
shooters ranged in success from 72.9% to 92.2%, with an average of 77.8%, whilst overall
team averages ranged from 72.5% to 83.9% [4]. Despite the increased prevalence and
importance of FTs towards the end of games, a correlation with decreasing accuracy has
been shown [5]. Thus, there is a clear opportunity to further study FT shooting to better
understand how it can be improved.

A few past studies have examined the parameters associated with successful FT shots.
For example, a previous biomechanical analysis [6] reported a better success rate when
the ball was launched at a 52-degree angle from horizontal, directed straight behind the
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center of the rim, and with approximately 3-Hz of back-spin. In terms of FT movement,
higher skilled players exhibited a smaller center of gravity excursion and different joint
kinematics at the wrist joint, when compared to those of lower skill [7–9]. Specifically,
well-trained basketball players demonstrated a greater degree of wrist motion (173 ± 5.1◦)
when compared to less skilled players (156 ± 10.2◦). Additionally, it has been noted that
a correlation exists between shot success and joint coupling relationships between the
knee, shoulder, elbow, and wrist [10,11]. In particular, these joint coupling relationships
are the most vital with regard to wrist sagittal plane motion for the production of ball
back-spin [7,11]. Hence, the tracking of wrist kinematics during FT shots should be focused
on in order to understand differences between skill levels.

Conventionally, biomechanical analyses require sophisticated equipment, such as
high-speed motion capturing cameras and force plates, and this approach is often con-
fined to a laboratory environment. In recent years, there has been significant progress
in the development of wearable electronics [12] and self-powered devices [13], including
innovations in energy harvesting [14]. Until more recently, advances in wearable sensing
technology have provided a lower cost solution for more realistic movement evaluation
in sports [15]. For instance, inertial sensors have been used to accurately detect specific
movements in Australian football, baseball, rugby, golf, swimming, cross country skiing,
racket sports and more [15]. These wearable sensors are also a viable tool for ascertaining
netball shooting kinematics, and do not affect the shooting technique [16]. It has been
found that the combination of accelerometer and gyroscope inputs with machine learning
algorithms can accurately classify sport movements [17–20], form the basis of training
systems [21], and classify skill level in running and volleyball [19,22]. When compared to
utilizing multiple wearable sensors, which likely jeopardizes user friendliness, application
of a single sensor model improves user compliance [23]. Past wearable sensor studies in
the field of basketball have mainly focused on ball handling, maneuver tracking and action
recognition [24–26]. To the best of our knowledge, there is not yet a classifier to differen-
tiate basketball players at different skill levels, which may be impactful for performance
enhancement, coaching and talent identification.

Hence, it is imperative moving forward that we utilize both inertial sensor and machine
learning algorithms in the skill analysis of basketball players. In this study, we sought to
classify the skill levels of basketball players using data collated via a single inertial sensor
on the wrist during FT.

2. Materials and Methods
2.1. Participants

This study involved a total of 18 participants, including 10 recreational basketball
players and 8 professional basketball players (Table 1). Recreational players were defined
by having no participation in any formal competitions, with more than 1 year of basketball
experience. Professional players were defined as a current player from an elite basketball
club in top-level league games. In this study, the professional participants were team
members from Sydney Kings in the Australian National Basketball League (NBL). To
be included in the study, participants had to be aged between 18–45 years, right hand
dominant and male. Female participants were excluded due to gender-related kinematic
differences during shooting maneuvers [27] and differences in standardized ball size [28].
Left hand-dominant participants were excluded to ensure consistency between the data
extracted and applicability to the majority of participants. Additionally, any subject who
had sustained any injury in the three months prior to the experiment was excluded due to
the risk of collating data consisting of abnormal or slightly compensated kinematics.
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Table 1. Participants’ demographics.

Recreational (n = 10) Professional (n = 8)

Age (years) 26.1 ± 1.7 24.3 ± 3.8
Body height (m) 1.70 ± 0.04 1.90 ± 0.10
Body weight (kg) 71.9 ± 10.5 94.5 ± 8.9

2.2. Experimental Procedures

The experimental procedures were reviewed and approved by the Human Research
Ethics Committee of Western Sydney University (Reference number: H14515), and written
consent was obtained from each participant prior to testing. A single tri-axial inertial sensor
(see sensor specification in the Supplementary Materials) sampling at 50 Hz was securely
affixed onto the midpoint of right third metacarpal bone with latex-free sports taping
(Figure 1). Data were logged in the sensor’s memory for further processing. After standard
calibration, each participant was asked to perform 30 FT attempts on a standard basketball
court. Specifically, the participants stood behind the FT line inside the FT semi-circle
on a standard basketball court, as per the rules and regulations set by the International
Basketball Federation. They were asked to make each attempt within 10 s, shooting 30
consecutive shots in a row, aiming to make as many successful shots as possible. Otherwise,
no instructions were given. A synchronized side view video was recorded to identify
events related to the FT attempts, e.g., commencement of the shot, time of ball release, and
shot success (in/miss).
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Figure 1. Wearable sensor positioned on the midpoint of right third metacarpal bone, containing a
tri-axial accelerometer and gyroscope.

2.3. Data Processing and Model Development

Firstly, we calibrated the acceleration data in each direction by multiplying the sen-
sitivity plus the mean, which is calculated from the static acceleration [29]. Then, we
multiplied the acceleration data with the magnitude of local gravity where we conducted
the experiment. Secondly, the acceleration and gyroscope data went through a moving
average filter to remove high-frequency noise. Thirdly, the acceleration and gyroscope data
were segmented into 6.4 s (320 points), which estimates a shooting time using a sliding
window (3.2 s, 160 points). Because each shooting time of every athlete differs, a sliding
window could maximize the shooting information. Finally, a short-time Fourier transform
(STFT) was applied to the segmented time signal to transform it into the frequency domain
after normalization. In STFT, we employed the Hanning window and set the window
length to 40 data points, which gave good frequency resolution. The overlap length was
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set to 30 data points to increase the time resolution. Then, the generated value matrices
(size: 30 × 40 × 3) were inputted into our convolutional neural network (CNN). CNNs
have become the go-to method for various image-centric tasks, including image classifica-
tion, object detection, and semantic segmentation, owing to their inherent properties. A
key feature of CNNs is their ability to utilize multiple layers of convolution and pooling
operations to capture a hierarchical structure of features. In our study, we transformed
input signals from the time domain into spectrograms that encompass both frequency and
time information. As spectrograms can be regarded as a form of images, employing a CNN
model is a well-suited approach for predicting basketball player performance levels based
on these representations.

As depicted in Figure 2, the net contains five layers with weight; the first four are
convolutional, and the remaining one is fully connected. The output from the fully con-
nected layer is fed to a sigmoid function, producing a distribution over two class labels. The
kernels of the second layer are connected to all kernel maps in the first layer. The neurons
in the fully connected layer are connected to all neurons in the previous layer. There is also
max-pooling layer following the second and fourth convolutional layer, respectively. The
pooling layer operates independently on the feature map extracted through the convolution
layer. To reduce overfitting and the number of extracted features, it decreases the spatial
size of the feature map and returns the essential features. In this study, the rectified linear
unit (Relu) function is selected as the activation function of the convolutional layer. An
early stopping rule is also applied to avoid the overfitting problem.
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Figure 2. Structure of the convolutional neural network.

The first convolutional layer filters the 30 × 40 × 3 input image with 64 kernels of
size 2 × 2. The output of the first convolutional layer is fed into the second convolutional
layer to be filtered with 64 kernels of size 2 × 2. Then, a max-pooling layer is set, followed
by the third and fourth convolutional layers, both with 64 kernels of size 2 × 2. Finally,
a max-pooling layer is connected to the fourth convolutional layer, after which the fully
connected layer with 64 neurons is added.

2.4. Statistics

We compared the raw 3-dimensional IMU data between the two groups using sta-
tistical parametric mapping. We used the remaining 20% of the data to evaluate the
performance of the CNN model by assessing the classification accuracy (i.e., (true positive
+ true negative)/(true positive + true negative + false positive + false negative)), sensitivity
(i.e., true positive/(true positive + false negative)) and specificity (i.e., true negative/(true
negative + false positive)). In addition, we extracted the features that were associated with
prediction accuracy, sensitivity, and specificity.

3. Results

Initially, the accelerometer and gyroscope data collected from the IMU were segmented
for each shooting attempt. Figure 3 displays the segmented accelerometer and gyroscope
data in the time domain for participants from the two groups, with the solid line repre-
senting the mean and the shadow indicating the standard deviation across athletes in each
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group. We investigated whether any differences between the two skill levels could be
detected utilizing traditional statistical methods. Statistical parametric mapping indicated
no significant differences in the acceleration and gyroscope data between the groups in
the time domain (p > 0.05). Based on these findings, we explored the use of frequency
domain information from the IMU data to predict basketball player performance levels.
Then, the spectrograms of each player’s shooting attempts from both the professional
and recreational groups were calculated using FFT. Considering that the spectrograms are
two-dimensional variables and could be regarded as an image, a CNN model was utilized
to predict the basketball players’ levels. Ultimately, we discovered that the CNN could
predict the two types of players depending on the direction and type of kinematic datasets.
A summary of the classification model’s results can be found in Table 2.
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Figure 3. Mean (bold line) and standard deviation (shaded) of raw accelerometer and gyroscope data
between recreational (blue) and professional basketball players (red).

Table 2. Results of the classification model.

Input Feature Accuracy Sensitivity Specificity

AX 0.82 0.79 0.84
AY 0.71 0.68 0.74
AZ 0.80 0.78 0.83

GX 0.73 0.69 0.75
GY 0.77 0.73 0.79
GZ 0.74 0.72 0.76

AXAY 0.85 0.84 0.87
AXAZ 0.87 0.86 0.87
AYAZ 0.82 0.81 0.83

GXGY 0.82 0.81 0.83
GXGZ 0.80 0.77 0.82
GYGZ 0.81 0.78 0.83

AXGX 0.85 0.83 0.87
AYGY 0.84 0.82 0.85
AZGZ 0.83 0.82 0.85

AXAYAZ 0.87 0.86 0.88
GXGYGZ 0.86 0.84 0.88
AXAZGY 0.88 0.87 0.90
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From the result in Table 2, we found that the most accurate individual component was
upward acceleration, i.e., AX (accuracy = 82%; sensitivity = 0.79; specificity = 0.84). The
second component with the highest accuracy was forward acceleration, i.e., AZ (accuracy
= 80%; sensitivity = 0.78; specificity = 0.83), and the third was the wrist angular velocity
on the sagittal plane, i.e., GY (accuracy = 77%; sensitivity = 0.73; specificity = 0.79). Other
individual inputs presented lower accuracies, including AY (71%), GX (73%), and GZ (74%).
When two components combined as the input of the CNN model, the best classification
accuracy was 0.87 (0.86 sensitivity and 0.87 specificity) for AX and AZ, higher than the other
combinations. When the AX was with Ay or Gx, the accuracies were both 85%. The accuracy
remained similar when all three acceleration axes were conjoined (AX, AY, AZ); however,
the specificity slightly improved. The highest accuracy, sensitivity, and the specificity
of the classification were achieved when the three most accurate individual inputs were
employed in a CNN stack-up matrix, producing an accuracy of 88% (sensitivity = 0.87,
specificity = 0.90). From the above results, we observed that AX was a consistently key
input to achieve accurate classification. The entropy loss in the training and testing of the
model is illustrated in Figure 4. There was no overfitting or underfitting in our experiment.
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4. Discussion

The overall objective of the current study was to develop an advanced computational
model to classify the skill level of basketball players during FT shots using data from
a single inertial sensor. We obtained a satisfactory result, with classification accuracy,
sensitivity, and specificity greater than 85%.

Emerging evidence has shown that machine learning algorithms based on data from
wearable sensors can be applied in sports movements classification [17–20], which may
form the basis of biofeedback systems for sports performance enhancement [30]. We
utilized a CNN, which has been found to be more effective than other approaches, such as
random forest and support vector machines, in accurately classifying sports movements
using data from a single inertial sensor [20].

While conventional statistical approaches are unable to classify two groups through
sliding window data, the CNN demonstrates satisfactory classification accuracy in ana-
lyzing the spectrograms of the IMU data. When the IMU data are segmented and aligned
manually with video data, we could observe the preparatory rhythmic lower limb actions
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of the professional players to establish a comfortable stance or reinforce a rhythm before the
shot, while the lower limbs of recreational players remained relatively static. Additional
low frequency rippling components of AX, and AZ are observable in professional players,
yet were statistically insignificant for classification for two groups in the temporal domain.
Such rhythmic extension of lower limbs was also shown to be important to score a shot [31].
These rhythmic lower limb movements are expected to generate energy to increase ball’s
speed while shooting, as well as facilitate energy transfer from the lower body through the
trunk to the upper limb [32].

Our results showed that the classification performance is optimized by considering
inputs from AX, AZ and GY. Similarly to previous similar studies (e.g., Bulling et al. [17]),
combining both accelerometer and gyroscope can increase the classification rate of data.
AX and AZ refer to acceleration in upward direction (elevation) and forward translation,
respectively. Collectively, these two motions manifest in the trajectory of the ball to for-
mulate the primary ball movement. The results of this study indicate that the speed and
concise linear nature with which professional athletes shoot an FT can be distinguish them
from recreational players. This is consistent with a previous study [33] which found that
highly trained players shoot FTs faster than novice shooters (0.39 ± 0.09 s vs. 0.60 ± 0.14 s).
The study also demonstrated that professional athletes show fewer lateral deviations at
the wrist (holding the ball) throughout the entirety of the shot. It can be argued that
professional athletes exhibit smoother and more controlled wrist motion during an FT shot.
It has been well established that highly skilled athletes show differing kinematics to those
of a lower skill, and this study expands upon these differing kinematics [7–9]. Whilst the
inclusivity of GY only increases the accuracy by 1% (88%) (compared to 87% if only consider
AZ and AX), it increases the sensitivity by 1% and specificity by 3%. When adding GY into
account, we take into consideration the angular velocity occurring at the wrist joint. This
is related to wrist flexion at the end of the shot, known to be prominent in highly skilled
athletes as a compensatory technique to maintain shot consistency [34]. This increase in
specificity and sensitivity is anticipated to be due to the high importance of the wrist joint
in the shot technique of elite shooters [7].

In prior basketball research, the focus has predominantly been on predicting postures
or actions using deep learning algorithms rather than classifying players into skill groups,
which limits the potential for providing feedback to improve basketball skills. For example,
one study utilized a deep learning model to recognize basketball shooting maneuvers and
achieved an average precision rate of 98.8% [25]. Another study employed a CNN-based
algorithm to identify common basketball actions in video streams, attaining an accuracy
rate of up to 95.6% [26]. In a third study [24], the authors recognized jump shots in a series
of arbitrary basketball motion sequences using a CNN model applied to IMU signals in
the time domain, obtaining recall and precision values over 0.97. Although these studies
demonstrate high accuracy in posture or shot recognition, they do not offer additional
bio-feedback information about the differences between varying levels of basketball perfor-
mance. In contrast, our research aims to identify the key factors that contribute to different
levels of basketball play, rather than focusing solely on individual shooting actions.

Our primary recommendation for future research is the development of a biofeedback
device that track the identified features of wrist joint movements related to FT shooting
success. In doing so, it will allow real-time, externally focused feedback which has been
shown to be optimal for motor learning in sports [35]. Wulf et al. (1998) have developed
growing evidence to support the use of externally focused feedback, that is, feedback
that focuses on the effect of the movement relative to the goal, manipulated through
the apparatus. In the context of this topic, external feedback involves features such as
wrist motion speed or acceleration, for example, that contribute to the outcome of an
FT shot (in/miss). Wulf et al. [35] confirmed that externally focused feedback provided
immediate after or during a trial is more effective for motor learning compared to delayed
feedback. This parallels the findings of Shea and Wulf [36], who additionally found that
external feedback prompted smoother movement, lower errors, and skill improvements
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that were retained after the concurrent feedback was removed. Thus, there is a need to
develop a biofeedback device for training FTs through utilizing machine learning, as this
is a solution allowing instant motion analysis and feature extraction to provide real-time,
external feedback. Shankar et al. set the foundation for this in their study, finding that
data-analyzed feedback from a single wrist-worn inertial sensor could refine shooting
kinematics and consistency, leading to improved accuracy in one semi-professional athlete
shooting FTs [37].

A strength of this study was the inclusion of the professional athletes, who then
proceeded to win the NBL championships in the same year and following year. Recruiting
these participants highlights exemplary FT shooting and contributes to the strength of the
classifier (88% accuracy). There are, however, limitations to this study. First, only two skill
levels were included in the current classification, which does not accurately represent the
spectrum of players, e.g., novice and semi-professional players. The classifier accuracy
may be compromised when applied to a broader scope of athletes who may lie between
recreational and professional levels. Additionally, this study had a relatively small sample
size (n = 18). Ideally, we would expand the sample size; however, difficulties arose when
recruiting participants due to the international prevalence of COVID-19. We could expect
that an increase in participant numbers may further increase the robustness of the model.
However, despite the small sample size, the algorithm has displayed success in skill level
classification. Furthermore, due to the methodology of our study, we have only focused on
one aspect of basketball shooting, that of FT shots. This does not directly impact our results,
as the purpose of the study was in fact to differentiate skill levels during FT shooting.
However, this concept can be applied to other basketball maneuvers, including jump shots,
3-point shots, lay-ups, etc. In doing so, it will allow for skill classification based on a
plethora of shooting maneuvers, broadening the applicability of the framework to the
entire shooting game.

5. Conclusions

Our established machine learning algorithm on data from a single wearable sensor
can successfully classify basketball players between novice and professional with up to 88%
accuracy. This study is a step towards creating a biofeedback device to improve FT shooting
technique. By utilizing reverse engineering, the sensor and machine learning algorithm can
provide real-time feedback to improve FT shooting technique and train novice athletes to
develop the skill set of a professional.
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