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Abstract: To diagnose mobility impairments and select appropriate physiotherapy, gait assessment
studies are often recommended. These studies are usually conducted in confined clinical settings,
which may feel foreign to a subject and affect their motivation, coordination, and overall mobility.
Conducting gait studies in unconstrained natural settings instead, such as the subject’s Activities
of Daily Life (ADL), could provide a more accurate assessment. To appropriately diagnose gait
deficiencies, muscle activity should be recorded in parallel with typical kinematic studies. To achieve
this, Electromyography (EMG) and kinematic are collected synchronously. Our protocol sMaSDP
introduces a simplified markerless gait event detection pipeline for the segmentation of EMG signals
via Inertial Measurement Unit (IMU) data, based on a publicly available dataset. This methodology
intends to provide a simple, detailed sequence of processing steps for gait event detection via
IMU and EMG, and serves as tutorial for beginners in unconstrained gait assessment studies. In
an unconstrained gait experiment, 10 healthy subjects walk through a course designed to mimic
everyday walking, with their kinematic and EMG data recorded, for a total of 20 trials. Five different
walking modalities, such as level walking, ramp up/down, and staircase up/down are included. By
segmenting and filtering the data, we generate an algorithm that detects heel-strike events, using
a single IMU, and isolates EMG activity of gait cycles. Applicable to different datasets, sMaSDP
was tested in healthy gait and gait data of Parkinson’s Disease (PD) patients. Using sMaSDP, we
extracted muscle activity in healthy walking and identified heel-strike events in PD patient data. The
algorithm parameters, such as expected velocity and cadence, are adjustable and can further improve
the detection accuracy, and our emphasis on the wearable technologies makes this solution ideal for
ADL gait studies.

Keywords: gait detection algorithms; EMG; IMU; segmentation; muscle activity

1. Introduction

Investigation of gait patterns is a valuable diagnostic tool that provides clinicians with
the ability to diagnose a range of impairments affecting a patient’s mobility, such as trauma,
stroke, or neurological conditions. Features extracted from these gait patterns, such as
key-event times, duration, and joint behaviour properties, are all quantifiable measures
that allow a clinician to benchmark and make informed decisions regarding the selection of
appropriate therapies.

The core element of gait assessment studies is the identification and analysis of gait
cycles. A gait cycle is comprised of two core phases for each limb: stance and swing. This
phase differentiation is associated with foot contact with the floor (stance) and swinging
motion of the limb through the air, preceding the following step (swing). Taking the
example of a right leg dominant subject, Figure 1 describes the gait cycle for a naturalistic
walking pattern. For more detailed explanations of the gait cycle, please refer to [1–3].
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Figure 1. Simplified stages of a typical gait cycle for a right leg dominant subject. A new cycle begins
with the right heel strike (HS) and both feet in contact with the floor. After a loading response, the
left foot is lifted off the floor following the left Toe-off (TO), and weight starts shifting on the right
foot from heel to mid-foot as the body moves forward. Once the body reaches mid-stance, the right
heel loses contact with the floor during the right Heel-off (HO) stage, and weight shifts towards the
right forefoot. To prepare for the right limb swing phase, the left foot contacts the floor again with a
left heel strike (HS), and both feet are in contact with the floor, which is called double support. The
right foot then enters the swing phase following the right Toe-off (TO), and the same stance process
happens on the left foot, with weight shifting from heel to toe, and the respective left Heel-off (HO).
The current gait cycle ends with the right HS, and a new cycle starts.

To record and study gait cycles, typical studies rely primarily and solely on the investi-
gation of biomechanics of a subject’s walking behaviours. Kinematic and kinetic analysis of
gait allows for the investigation of joint displacements, torques, motor behaviors, and gait
patterns, among others. However, alone, it is insufficient to fully characterize a subject’s gait
parameters. A purely anatomical/biomechanical exploration of gait disregards important
physiological aspects that may be affecting the pathological gait. To mitigate this issue,
any biomechanical studies of gait should be accompanied by synchronized muscle activity
recordings. Through the association of kinematic analysis with electromyography, a more
complete anatomical and physiological investigation of gait is made possible.

Clinical gait assessment relies on a trained clinician’s visual and qualitative assessment
of a subject’s biomechanics. Several technologies have been developed over the past
decades to assist the clinicians visual inspection and validation of the subject’s mobility
patterns, joint angles and general gait analysis. Employed solutions for gait analysis range
nowadays from optical recording systems, to mechanical sensors and more advanced
artificial intelligence characterisation tools via physiological signals.

The common practice for conducting gait analysis is to capture a subject’s walking
behaviour through optical motion capture systems. These systems are highly precise and can
capture motion data with millimetre-level accuracy. However, they are restricted to laboratory
settings due to the requirement for a controlled environment and equipment setup, limiting
the ability to analyse natural walking patterns in real-life situations. Furthermore, the use of
these systems is expensive, time-consuming, and requires expert technical staff to set up and
operate the equipment. To address these challenges, wearable sensor technology has emerged
as a cost-effective and accessible alternative for conducting gait analysis. These sensors can be
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attached to the subject’s body or clothing and capture kinematic and physiological data during
natural walking in unconstrained settings. The use of wearable technology also provides
opportunities to conduct long-term monitoring of gait patterns, which can be used to assess
changes in a patient’s gait over time and evaluate the efficacy of treatment plans.

To identify the most appropriate sensors for gait event detection during Activities of
Daily Living (ADLs) and to pair with EMG analysis, a short review of available sensor
technologies was conducted. One of the earliest reported wearable technologies for gait
event detection uses foot-switches [4]. These sensors are usually embedded into the shoe or
insole, located underneath the heel and hallux of the individual, allowing for the recording
of two key gait events: Initial-Contact (IC), reported in healthy scenarios as the heel strike
(HS), and End-of-Contact (EC) or Terminal Contact (TC), reported in healthy scenarios as
the toe-off (TO). With current iterations such as insole pressure sensors (IPS) and force-
sensitive resistors (FSR) fitted into footwear (e.g., [5–7]), this technology is widely employed
today and used as a benchmark for other motion capture systems (see [8] for an up-to-date
review). A common issue with these IPS and FSR systems is the constant wear-and-tear of
the sensors due to associated shear forces in the sole or against the walking surface. This
leads to short sensor lifespans and sensing accuracy loss after sustained periods of usage.

Nowadays, the most commonly employed wearable technology for gait event de-
tection is accelerometry [8]. First described in [9], this method makes use of acceleration
sensors, strategically placed near a subject’s joints on predetermined sites. The choice of
placement will greatly influence the gait parameters extracted and takes into consideration
possible noise motion artefacts that contaminate the recordings (e.g., poor sensor adhesion
or loose clothing). With advances in wearable technology, typical accelerometer sensors
were adapted into IMUs (Inertial Measurement Units), sensors that are able to detect both
acceleration and angular velocity (through an integrated gyroscope) in all three dimen-
sions. Depending on the desired gait parameters, the IMU sensors are most often placed at
the foot [5,10–20] or shank/calf [3,6,10,11,17,21,22], but other studies present interesting
alternatives as knee/thigh [5,21,23–25], waist [26] or even head [27,28] placements.

During the aforementioned gait events (i.e., HS and TO), there are distinguishable peaks
in the vertical acceleration profiles that can be used to identify the timing of HS and TO. Upon
contacting the surface, the heel experiences a vertical force (ground-reaction force) and its
respective upward acceleration, which is identifiable when inspecting the recorded signal.
In addition to gait event detection, IMUs also present benefits in the detection of angular
displacements and velocities of different joints [6,15,20] as well as pedestrian tracking solutions
[13]. With state-of-the-art sensor synchronisation, current IMU solutions also provide accurate
position estimation for the subjects wearing the sensors, as described in [29]. Due to all these
features, comparison studies [5–8,11,20] often place the IMU as a preferable wearable solution
over the previously discussed alternatives (i.e., FSR and Optical systems). Even if the IMU is
not as accurate as the FSR or as thorough in limb position detection through optical systems,
the IMU sensor’s durability, robustness, cost, and applicability outweigh the benefits of these
other technologies in ADL gait detection applications.

So far, the wearable technologies presented here rely on external interactions of the
individual with the sensors (e.g., pressure applied on the IPS) or measurements of external
inferred parameters (e.g., the body part acceleration or angular velocity as measured by
the IMU) to identify key gait events. An alternative is to make use of the aforementioned
patient’s physiological signals, as muscle activity recordings through surface Electromyog-
raphy (sEMG), to estimate the timing of the events. sEMG provides a reliable non-invasive
solution to analyse muscle activity levels during varied motor tasks, and in a non-invasive
manner. sEMG can be used to diagnose motor activity, where the recorded muscle activity
is analysed to identify muscle deficiencies, and/or establish individual muscle function
levels during pre-defined tasks. This has been specifically used for the analysis of gait,
using analysis of the sEMG recorded from hip, knee and ankle flexor and extensor muscles,
reported in [2,7,24,25,30,31] with positive evidence for differentiating activity in different
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segments of the gait cycle. However, as it is a biological signal, sEMG is prone to high noise
and variability, depending on sensor location and other biological factors.

To interpret muscle activity features and classify these into gait events, studies often
return to the use of machine learning algorithms [7,24,25,31]. Unfortunately, as mentioned,
there are several factors that may interfere with the sEMG quality and the accuracy of
these classification algorithms, especially when recognising how volatile and different the
recorded signals can be across different individuals, and even in different muscles of the
same individual.

All these wearable solutions present promising results for gait event detection, through
varied technologies and algorithms. The complexity of such tools decides how viable it
is for applications of gait assessment during ADLs. A summary of the advantages and
disadvantages of the discussed technologies is presented in Table 1. Unfortunately, these
solutions seldom come with a clear methodology of how to apply these tools to detect
the most simple of gait events, rarely offering the algorithms to do so. In this method
paper, we propose a simplified method of heel strike detection for synchronised sEMG
segmentation through IMU data paired with sEMG recordings, applied to the diverse
and unconstrained dataset of [32]. This method allows for a joint biomechanical and
physiological investigation of gait. We further test sMaSDP with kinematic IMU samples of
data from [33], looking at Parkinson’s Disease (PD) gait.

Table 1. Summary of advantages and disadvantages of presented gait event detection solutions, in
terms of applicability, interface, robustness and cost.

Sensor Type Advantages Disadvantages

Optical Systems

Full-body kinematics. High marker detection
precision and accuracy. Accurate estimation of joint
position, angle, velocity and acceleration.
Synchronisation solutions with other gait assessment
hardware (EMG kits).

High cost and maintenance. High performance
requirements. Restricted experimental environments.
Multiple camera synchronisation and calibration.
Setup and collection learning curve. Imposes long
donning and doffing times of retroreflective markers,
as well as initial setup per subject.

FSRs and IPSs

Ideal for detection of key gait events as heel-strike and
toe-off. Low-cost solution, with lower number of
sensors required for event detection. Typical
benchmark for other gait assessment technologies

Low durability, sensor wearing out. Depending on
sensor application site, may impact the subject’s
walking style. Uneven terrain and uncharacteristic
gait behaviours may lead to accidental noise event
recordings.

IMUs

Simple configuration and multitude of solutions to
interface with other hardware (EMG kits). Low-cost
and high availability. Applicability to diverse gait
environments, especially when using wearable
solutions. Easy and quick donning and doffing of the
sensors to and across subjects.

Lower accuracy. Wearable solutions are battery
dependent. High susceptibility to motion artefact
noises, depending on application site and surface
(directly on the skin or over clothing). Position
estimation requires multiple synchronised sensors.

Surface EMG

Valuable physiological information of muscle activity
patterns involved in gait. May be used to identify
personal muscle recruitment schemes used per
individual.

Extremely high inter-subject variability. Hard to
characterise gait by itself and requires significant
subject by subject adjustments.

2. Methodology

The following section details the steps, and associated scripts, to isolate sEMG activity
patterns in different unconstrained gait modalities, based on the kinematic dataset of [32].
This guide contains step-by-step information about using recordings from an IMU sys-
tem [34], with focus on an IMU sensor on the subject’s dominant leg foot, to identify heel
strike events and timestamps during different gait modalities. The presented pre-processing
and processing steps described for the gait event detection and sEMG segmentation are
demonstrated and discussed in the following separate subsections. The designed presented
algorithms were coded in MATLAB [35].
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The dataset provided in [32] contains unconstrained walking data from 10 healthy
subjects (five males, five females, ages between 18–31 years old), with no known neurologi-
cal disorders. Kinematic (through IMU system [34]) and sEMG recordings were collected
from each subject participating in the experiment. For the design of the sMaSDP algorithm
herein presented, special focus was given only to the sensors presented in Figure 2.

Figure 2. Schematic of the sEMG and IMU sensor placement locations. sEMG recordings were taken
from Tibialis Anterior (TA), Medial Gastrocnemius (mGAST), Vastus Lateralis (VL), Rectus Femoris
(RF), Semitendinosus (SEM) and Biceps Femoris Longus (BFL). The IMU sensor was attached on top
of the subject’s shoe, at the centre of the right foot.

In this experiment, subjects walk through a designed walking course, encompassing a
ramp, level ground and staircase sections, for a total of 20 trials per subject. In each trial,
the subject walks up and down the ramp and staircase, as well as a section of level ground
walking, providing recordings for five different walking modalities. For ease of referencing,
please consider the following acronyms:

• RA: ramp ascent.
• RD: ramp descent.
• SA: staircase ascent.
• SD: staircase descent.
• LGW: level ground walking.

To accompany and summarise the following methodology, Figure 3 details the required
steps and processes for the kinematic and sEMG data.
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Figure 3. Summary of method architecture: the diverse multi-step process, from the recorded
IMU signals, filtering of movement periods, segmentation into different walking modalities and
identification of HS moments. Steps labelled A to E establish a logical link between this architecture
and the results.

2.1. Interpolation and Kinematic Activity Segmentation

Kinematic data (KIN) and sEMG data were recorded at the synchronously, but they
have different sampling rates. Temporal synchronisation ensures that both recordings
have the same duration, but the number of samples captured for each signal during this
time varies due to the different sampling rates. The difference in sampling frequencies
between KIN and sEMG is primarily due to the sample capture and processing capabilities
of the recording equipment, as well as the amount of data generated per sample. Optical
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kinematic systems typically use a sampling frequency of around 120 Hz [36], which is
much lower than the typical frequencies of 1000 Hz or higher for sEMG systems. For IMUs,
research has shown that a capture frequency of 60 Hz is sufficient to record kinematic
events while maintaining acceptable processing requirements [37]. However, for sEMG,
the higher end of the sEMG signal frequency band can reach 500 Hz (see [38]). Therefore,
to capture all the nuances of the sEMG signal effectively, a sampling frequency of 1000 Hz
or higher is required according to the Nyquist frequency principle. In the dataset of [32],
sEMG was recorded at a sampling frequency of 1000 Hz, while the IMU was recorded at a
sampling frequency of 60 Hz. Consequently, sEMG data had approximately 17 times more
samples than IMU data.

To use kinematics as an indicator for segmentation timestamps in the sEMG counter-
part, the kinematic signal requires upsampling to match the number of sEMG datapoints.
This process ensures that both KIN and sEMG recordings are synchronised in time and
samples, in order to use the kinematic datapoints to achieve pinpoint accuracy. A moving
average smoothing filter is then applied to KIN to remove unwanted oscillations and initial
motion noise from the signal. After the smoothing filter is applied, the kinematic signals
are upsampled via linear interpolation (Equation (1)):

y = y1 + (x − x1)
(y2 − y1)

(x2 − x1)
(1)

where y is the interpolated value, x is the sample datapoint to perform interpolation, y1 and
y2 are the first and second signal samples, and x1 and x2 are the first and second datapoints.

This pre-processed sEMG and the upsampled KIN data consist of two complete walk
trials, each including all five walking modalities previously discussed (RA, RD, SA, SD,
and LWG) for each subject. A minimal energy threshold and window is created to isolate
and timestamp meaningful movement identified using the IMU acceleration. Any signal
fragment discovered inside a passing window that is less than a certain energy level is
categorized as ‘0’. Similarly, if significant acceleration is generated beyond the threshold
regarded as evidence of the subject walking, it is recorded as ‘1’. As a result, a binary signal
is generated identifying data points of relevant walking activity.

2.2. Filtering Small Movement Artefacts and Separating Trials from a Single Recording

The core objectives of this section are to filter out movement and/or transition artifacts
from the IMU signal, considered as noise, and to identify the direction of movement, as the
walking modalities presented are dependent on the direction of the walking course. The
output of the previous section is a duty-cycle type wave, depicted as the grey square wave
in Figure 4A, which presents binary values of 1 when the subject is active and 0 when the
subject is standing still. The start and end of active periods define the timepoints at which
walking starts and ends. As the subjects complete the trials continuously without taking
unnecessary breaks between walking modalities, any detected activity below a threshold
of 6000 data points (or 6 s) is classified as a motion artifact or noise.

In the experiment, each recording consists of two trials. In a single trial, a subject
walks the course in a forward direction, rests at a designated location (B), and then returns
to the starting point (A) by walking in the reverse direction of the course. Each walking
direction (A-B and B-A) is defined as a “half-trial”. Therefore, a single recording has four
half-trials, with two being the subject walking from the starting point (A) to point (B), and
two where the subject walks in the reverse direction from point (B) to point (A). From the
complete recordings, four moments of activity are extracted and stored as an independent
variable to define the direction in which the subject walked the course.
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Figure 4. Summary diagram illustrating the different stages of the method, presented and linked
in Figure 3, for the duration of an HT (RD, LGW, SA): in Section (A), the x-axis acceleration of the
right-foot IMU is used to identify the initial HT start and end timepoints, marked with the green
circles; within the time range defined by the HT green circles, Section (B) now takes the y-axis position
data from the IMU to identify the sharp direction turns related to switches in walking modality,
represented here by the yellow triangles; lastly, within the isolated LGW modality between the yellow
triangles, Section (C) uses the z-axis acceleration from the IMU, and through our filtering and peak
identification algorithm, identifies the HS events, marked by the red triangles.

2.3. Initial sEMG Segmentation and Direction, Using the Timepoints Defined by the Four
Moments of Activity per Complete Trial

The extracted timestamps for the start and end of each half-trial are used to segment
the sEMG and KIN signals. The sEMG recordings provided in this dataset are in raw format.
The objective of this stage is to remove noise from movement artefacts, possible recording
interference, and isolate relevant frequency content from the data. To achieve this purpose,
a fourth-order Butterworth bandpass filter is designed to filter out any sEMG signals
outside the 10 to 150 Hz band. Additionally, a notch filter is used to remove powerline
interference at 60 Hz.
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The next objective is to cut both sEMG and KIN signals using the previously defined
half-trial timestamps. For this purpose, a timestamp with a safety margin of 2000 data
points (2 s) is used to ensure the inclusion of all relevant activity. sEMG and KIN are then
segmented into activity bins based on half-trials for all trials and all subjects.

As mentioned, per complete trial, four moments of walking activity are detected
(example in Figure 4A), related to walking the course twice in the forward and twice in
the reverse directions, as described previously between (A) to (B). Based on the extracted
timestamps and the experiment methodology, the sequence of modalities in the forward
direction is separated into RD, LGW and SA, and for the reverse course direction, separated
into SD, LGW and RA.

2.4. Walking Modality Identification within Each Direction of the Course and Trials

At this stage, sEMG and KIN signals for all trials are segmented and separated accord-
ing to the direction of the course the subject is walking along. The next step is to identify
the timestamps for each walking modality within the forward and reverse courses, and
isolate these in both the sEMG and KIN signals. Due to the design of the course, subjects
take a sharp turn at the transition between each modality (example on Figure 4B). This
is identified via the estimated position changes as recorded by the IMU. Focusing on the
y-axis, any time there is a peak transition, a new modality begins, according to the course
guide mentioned earlier. This, paired with safety margins, is then used to further segment
both sEMG and KIN into the individual walking modalities.

2.5. Using Acceleration Data to Identify the Moment of Heel Strike

Having the data segmented into different walking modalities, the next step is to
identify gait cycles within each walking modality. Through acceleration data in the vertical
direction (z-axis), the moment of HS can be identified. To do so, new filters are designed to
isolate the vertical peaks of acceleration witnessed when the heel strikes the ground, and
experiences the ground-reaction force. Two separate seventh-order Butterworth filters are
created: a high-pass at 9 Hz and a low-pass at 6 Hz. These remove a band where specific
motion artefacts lie, and isolate the striking moments. Being post-hoc, these filters are ideal
and do not impose any delays on the data.

The filtering process is as follows:

• the high-pass filter is applied to the raw KIN data, removing frequencies below the
20 Hz band, and potential movement artefacts.

• a half-wave rectifier is applied to the resulting filtered data, removing unnecessary
negative electrical oscillations imposed by the sensor readings.

• a low-pass filter is applied to the rectified data, serving as an anti-aliasing filter at
5 Hz, to remove oscillations from the signal.

The HS moment is identified as the highlighted peaks in the Filtering and Peak section
of Figure 4C. Extracting the timestamps of each of these peaks allows then for the isolation
of a complete stride, or gait cycle, from one heel strike moment to the immediate next of
the same limb. These timestamps are then finally used to segment the sEMG activity into
separate gait cycles.

3. Results

Figure 4C presents the identified the moments of HS, for a segment of level ground
walking, from a randomly selected subject. In the other walking modalities, there was a
noticeable shift in the amplitude of the ground-reaction force acceleration and an adjusted
cadence. Through simple adjustment of the expected acceleration peaks allowed for HS to
equally as recognisable and identified in these different walking modalities using sMaSDP.

Through the identified gait event timestamps, computed from the IMU data, indi-
vidual gait cycles are then extracted. Using the timestamps of each gait cycle, sEMG and
kinematic data is segmented per cycle. In Figure 5, an example of sEMG activity is pre-
sented for the same level ground walking segment of Figure 4. Within the isolated gait
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cycles, we can identify the muscle activity patterns from the segmented sEMG data, as
seen in Figure 6. Both biomechanical data and physiological data can be correlated at this
point, to best characterise this subject’s gait. The noticeable variability seen in the muscle
activity levels of Figure 6 highlights once more the necessity of a paired kinematic measure
associated with the this physiological data to best discriminate the witnessed motions. This
muscle activity variability also demonstrates the adaptability of our physiological neural
control signal, even in seemingly simple and rhythmic motions, as level ground gait.

Figure 5. Segmented sEMG from a single extracted gait cycle: top section diagram represents a full
gait cycle, as initially described (Figure 1), with the respective locations of the sEMG sensors; the
bottom traces are the segmented sEMG recordings for the respective gait cycle. Linked, as labelled, to
step D of the method architecture (Figure 3).

As a proof of concept, this algorithm was applied to another unconstrained walking
dataset [33], to PD patient data, where subjects performed a series of walking tasks in a
therapy scenario. PD patients have known abnormal gait patterns, as irregular stepping
and shuffle gait. In the dataset of [33], patients were fitted with an IMU placed on their
dominant foot, following a similar placement as seen in [32] and Figure 2. Unlike the
dataset [32] used to design our algorithm, the experiment with the PD patients did not
collect sEMG recordings, and the focus in this scenario is only on the kinematic gait data.
With fine tuning of cadence and velocity parameters, through adjustments of the peak
detection section, all the moments of HS are detected over an entire trial (over 1 min).
Results for the sMaDSP detection of the HS events, from a randomly selected trial and
subject of this dataset, are presented in Figure 7.
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Figure 6. Observations with mean and standard deviation of muscle activity extracted from 12 LGW
gait cycles from a randomly selected trial and subject. Analysing this activity in different walking
modalities allows for quantification of the variability in each muscle and the impact on the person’s
mobility. Linked, as labelled, to step E of the method architecture (3).

Figure 7. HS detection on unconstrained Parkinson gait, computed from IMU data from the publicly
available dataset of [33,39]. The presented data were recorded from a PD patient, supervised by a
therapist. Within this recording the PD patient walks freely in three separate modalities: straight
walking, “random walking” and ADL walking. HS events are here detected for all modalities.

4. Discussion and Conclusions

Tracking patients’ performance levels at their own homes and through their daily
lives is of massive benefit for the design of smarter continued therapies. With the ambition
of continued, supervised at-home therapies and improved rehabilitation, it is essential
that researchers are provided with simple guides on using the technology and appropriate
methodology to provide them the foundation for exploring therapeutic mobility. With
advancements in sensor design, it is now possible to bring these tools to our everyday lives,
and gait assessment to activities of daily living.

Even in the ADL scenario, as demonstrated, kinematics alone may not provide suf-
ficient information to therapists to fully assess patients’ mobility. Integration of muscle
activity levels, associated with recorded movements and gait events will benefit not only
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diagnosis but performance assessment. With simplification of the acquisition and pro-
cessing algorithms, as well as selection of appropriate wearable sensors, a platform that
integrates both kinematics and sEMG for home use becomes feasible. With this report, a
simplified guide for kinematic and sEMG recording segmentation, and gait event detection
was presented and fully documented. Codes and algorithms, that work with the dataset
of [32] are made available alongside this method. To adapt to other datasets, users can
easily adjust expected cadence or filter level variables, improving detection and allowing
the study of different walking modalities, providing an initial framework for researchers to
explore and adjust to their needs and data.

Synchronising both sEMG and kinematic information is the step forward to better
characterise movement, and it is crucial that both signals are analysed concurrently. Analy-
sis of non-invasive sEMG recordings in ADLs should be prioritised to define the patterns
of muscle activity that generate movement. The same level of “wearable” exploration that
kinematics and gait cycle has received over the past decades, needs to be pursued for the
sEMG case.

With adjustable parameters, our sMaSDP algorithm can be adapted to further ADLs
scenarios, and potentially applied to patient’s smartphones, for a continuous kinematic
recording. Due to its simplicity and focus to aid newcomers to the gait studies area, this
algorithm can also be combined with machine learning in future iterations, to allow ad-hoc
heel strike identification.
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IC Initial Contact
IPS Insole Pressure Sensors
IMU Inertial Measurement Unit
KIN Kinematics
LGW Level Ground Walking
MDPI Multidisciplinary Digital Publishing Institute
PD Parkinson’s Disease
POS Position
RA Ramp Ascent
RD Ramp Descent
SA Stairs Ascent
SD Stairs Descent
T Trial
TC Terminal Contact
TO Toe-off
TS Time Stamps
VEL Velocity
WM Walking Modality
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