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Abstract: As a typical application of geodesy, the GNSS/INS (Global Navigation Satellite System and
Inertial Navigation System) integrated navigation technique was developed and has been applied for
decades. For the integrated systems with multiple sensors, data fusion is one of the key problems. As
a well-known data fusion algorithm, the Kalman filter can provide optimal estimates with known
parameters of the models and noises. In the literature, however, the data fusion algorithm of the
GNSS/INS integrated navigation and positioning systems is performed under a certain norm, and
performance of the conventional filtering algorithms are improved only under this fixed and limited
frame. The mixed norm-based data fusion algorithm is rarely discussed. In this paper, a mixed
norm-based data fusion algorithm is proposed, and the hypothesis test statistics are constructed
and adopted based on the chi-square distribution. Using the land vehicle data collected through
the multi-GNSS and the IMU (Inertial Measurement Unit), the proposed algorithm is tested and
compared with the conventional filtering algorithms. Results show that the influences of the outlying
measurements and the uncertain noises are weakened with the proposed data fusion algorithm, and
the precision of the estimates is further improved. Meanwhile, the proposed algorithm provides an
open issue for geodetic applications with mixed norms.

Keywords: chi-square; covariance inflation; data fusion; multi-GNSS/IMU; mixed norms

1. Introduction

It is well known that GNSS is able to provide precise information of the position and
velocity under a favorable observation environment, and the positioning errors do not
accumulate over time. Thus, the GNSS technique has been applied in broad fields for many
years [1–3]. Although different satellite navigation and positioning systems can be selected
and the number of visible satellites is increasing, the performance of GNSS can be degraded
by the signal problems, such as the lock-lost and unknown interferences. On the other hand,
no signal is sent and received by INS, and it has been widely applied in the navigation
of kinematic carriers. INS can provide precise and short-term navigation and positioning
information, and the observation frequency is much higher than that of the GNSS receivers.
Moreover, INS has many other advantages such as anti-electronic jamming. Nevertheless,
the positioning errors of INS accumulate quickly over time [4], especially for the low-cost
IMU, hence it cannot independently undertake the task of long-term navigation under fast
kinematic conditions. Naturally, the properties of GNSS and INS are complementary, and
the integrated systems provide an ideal solution in kinematic positioning and navigation
applications [5–7].

One of the most imperative techniques for the GNSS/INS integrated navigation sys-
tems lies in the data fusion, and the most frequently used data fusion recursive algorithm
for the discrete linear system is the Kalman filter [8,9]. In the Kalman filter, the estimates
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are optimal when the models and statistical information of the noises are exactly known.
However, in the practical applications of the Kalman filter, the prior models and statistical
information of the noises can hardly be specified due to the complex environment and
uncertain circumstances. Thus, some outlying measurements and uncertain errors may
significantly degrade the performance of the filtering. Moreover, the conventional Kalman
filter is applicable for linear systems only, but more systems in practice exert nonlinear char-
acters [10]. Aimed at addressing the shortcomings of the conventional Kalman filter, many
types of filters were developed in practical applications. These improved filters mainly
consist of nonlinear filters, robust filters and adaptive filters, et al. The extended Kalman
filter (EKF) was proposed to deal with the nonlinear problem, and it is one of the most
commonly used nonlinear Kalman filters. Proximate with the EKF, other types of nonlinear
filters were proposed based on different norms, such as the particle filter [11], the unscented
Kalman filter (UKF) [12] and the cubature Kalman filter (CKF) [13,14], et al. The central
difference is that the Kalman filter (CDKF) can also conduct the nonlinear transformation
by polynomial fitting [15]. With these nonlinear filters, the applications of the Kalman filter
are extended further. The outlier detection method was developed to control the influences
of the outlying measurements with a relatively low efficiency [16]. Then, the detection,
identification and adaptation, namely, the D.I.A. methods were developed [17], but the
process of identification is still a difficult problem. Based on the robust estimation theory
and other robust algorithms, the robust filter was developed to weaken the influences of
the outliers by the covariance inflation factor [18].

In terms of the model errors and the uncertain noises, a series of adaptive filters were
developed. For the adaptive filters, the function model-based and the stochastic model-
based adaptive filters are conventional solutions. Then, the multiple model-based and
the innovation-based adaptive estimation were developed and applied in the GNSS/INS
integrated navigation systems [19]. Furthermore, Chinese researchers developed a different
type of adaptive filter through the adaptive factor [20], and four different factors and detec-
tion statistics were constructed and applied in the kinematic navigation and positioning
field. Similarly, the finite impulse response filter was developed against the model errors.
This filter requires no noise statistics and is not so sensitive to the model errors [21]. The
centroid weighted Kalman filter is another improved filter aimed at the state model and the
observation model uncertainty, and the centroid weighted method is applied to optimize
the predicted state value [22]. By minimizing the estimated error in the worst case, the
H∞ filter was proposed to control the uncertain noises in the measurements. However,
the performance may be seriously degraded under an abnormal environment [23], and
may be improved if the outliers are controlled effectively. By integrating the advantages
of different state estimation filters, their combination becomes another way to improve
the filtering performance. For example, the applications of the particle filter are limited
by the problem of particle degradation, and this problem can be improved with the suit-
able and precise importance density function [24,25]. In order to solve this problem, the
Kalman filter, the EKF, the UKF, and the CKF are adopted to construct the importance
density function. Thus, the Kalman particle filter, the extended particle filter, and the
unscented particle filter were proposed and applied [26,27]. Based on the reduced INS
and the GNSS, an autonomous vehicle sideslip angle estimation algorithm was proposed
based on the consensus and the vehicle kinematics/dynamics synthesis, and a multi-sensor
framework was developed [28,29]. This framework provides an important and extendable
platform for multi-sensor integration; for example, the IMU and automotive onboard sen-
sors are integrated to estimate the yaw misalignment [30]. Under the above framework,
the vehicle dynamics/kinematics fusion algorithm was proposed and applied in the actual
experiments [31]. There are, of course, other filtering algorithms not discussed in this paper.

For the GNSS/INS integrated navigation systems, the current data fusion algorithm
is performed under a certain norm, and most improved algorithms were also developed
under this fixed frame. Therefore, performance of the conventional filtering algorithms
are improved and compared under this fixed frame as well. Under this background, in
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order to test and compare the performance out of the fixed frame, another algorithm should
be explored and developed. In literature, the multiple norm-based algorithm is rarely
discussed. In fact, different norms correspond to different performance of the filtering,
and mixed norm-based algorithms can combine the advantages of different algorithms. In
the fields of mathematics and computer techniques, the mixed norm-correlated algorithm
was discussed and applied in face recognition, et al., and the validity of the constructed
algorithm was demonstrated [32]. Accordingly, the mixed norm-based algorithm may
become a new and quite different way to improve the solution of the GNSS/INS integrated
navigation systems, and the algorithm with mixed norms may achieve a better performance
compared with the conventional filtering algorithm.

In this paper, a new data fusion algorithm is proposed and applied in the actual data
processing work of the multi-GNSS/IMU integrated systems. Contrary to the conventional
data fusion algorithms, the proposed data fusion algorithm for the multi-GNSS/IMU
integrated systems is implemented based on the mixed norms, and this improvement is
performed from the perspective of the application of different cost functions. In the pro-
posed algorithm, the measurements for the data fusion are addressed with the hypothesis
test, and the hypothesis test statistics are constructed based on the chi-square to distinguish
different circumstances. The application of different circumstances depends on the results
of the hypothesis test, and the different norm is adopted to estimate the state parameters
under different circumstances. Besides different cost functions, the covariance inflation
factor is duly applied according to the results of the hypothesis test to weaken the influences
of the outlying measurements.

The rest of this paper is listed as follows. First, the corresponding theory of the Kalman
filter and the H∞ filter is introduced, and the nonlinear H∞ filter is applied. Second, the
basic equations of the GNSS/INS integrated navigation systems are provided and discussed.
Third, different experiments are designed and performed with the actual data to test the
performance of the proposed filtering scheme. Last, the conclusions are summarized.

2. Kalman Filter and H∞ Filter

In the kinematic positioning and navigation fields, the Kalman filter is the basic data
fusion algorithm. Meanwhile, the Kalman filter provides the basic structure of the filter,
and many improved filters are developed based on the Kalman filter.

2.1. Iterative Solution of the Kalman Filter

Assume that xk is the parameter vector, Φk,k−1 is the transition matrix of xk, xk−1 is
the estimated state vector at the epoch k− 1, wk is the system noise, zk is the observation
vector, Hk is the observation matrix, and vk is the observation noise. Then the kinematic
model and the observation model are defined by:{

xk = Φk,k−1xk−1 + wk
zk = Hkxk + vk

(1)

In the conventional Kalman filter, the processes of time update and measurement
update are listed below [8]:

xk,k−1 = Φk,k−1xk−1 (2)

Pk,k−1 = Φk,k−1Pk−1ΦT
k,k−1 + Qk (3)

xk,k = xk,k−1 + Kk(zk − Hkxk,k−1) (4)

Kk = Pk,k−1HT
k (HkPk,k−1HT

k + Rk) (5)

Pk = Pk,k−1 − Kk HkPk,k−1 (6)
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where xk,k−1 is the predicted state vector at the epoch k, Pk,k−1 is the covariance matrix of
xk,k−1, Pk−1 is the covariance matrix of xk−1, Qk is the covariance matrix of wk, xk,k is the
estimated state vector at the epoch k, Kk is the gain matrix, Rk is the covariance matrix of
vk, and Pk is the covariance matrix of xk−1. In the conventional Kalman filter, it should be
noted that the extremum condition is defined as follows:

VT
k R−1

k Vk + VT
xk,k−1

P−1
k,k−1Vxk,k−1 = min (7)

where Vk and Vxk/k−1 are the residuals of zk and xk,k−1, respectively.

2.2. Principles of the H∞ Filter

With the given restricted parameter γ, the H∞ filter was proposed to overcome the
uncertain interference in the measurements [18]. Simultaneously, assume that yk is another
state vector, and yk = Lkxk, where Lk is usually a fixed matrix. Contrary to the conventional
Kalman filter, the exact statistical information of the noises need not be known. For the cost
function J:

J =

N
∑

k=1
‖xk − x̂k‖2

‖x0 − x̂0‖2
P−1

0
+

N
∑

k=1
(‖wk‖2

Q−1
k

+ ‖vk‖2
R−1

k
)

(8)

where x̂0 and x̂k are the estimated state vectors of x0 and xk, respectively, x0 is the initial
value of the state vector x, and P0 is the covariance matrix of x0. With this cost function, the
parameters are estimated when x̂k = argmin‖J‖∞. Performance of the filter is determined
by the threshold parameter γ, and improper value of γ may cause a negative definite
covariance or filter divergence. It should be noted that the H∞ filter can be robust to
some extent through changing the value of γ, but it breaks down in the face of outliers [18].
Therefore, the threshold parameter γ should be fixed appropriately according to the detailed
applications and performance.

In practice, more systems are nonlinear, and the linear H∞ filter should be transformed
to the nonlinear filter. In order to implement the nonlinear transformation, assume that
Pk,k−1HT

k = Pxz,k and HkPk,k−1HT
k = Pzz,k − Rk, and Pxz,k and Pzz,k are the innovation

covariance matrix and the cross-covariance matrix, respectively. Then, the covariance
matrix of the state vector in the nonlinear H∞ filter is given by:

Pk,k = Pk,k−1 − [Pxz,kPk,k−1]

[
Pzz,k − Rk + I PT

xz,k
Pxz,k Pk,k−1 − γ2 I

]−1[ PT
xz,k

PT
k,k−1

]
(9)

Through the above transformation, the linear can be implemented in the nonlinear filters.
Apparently, both the conventional Kalman filter and the H∞ filter are performed under

a single and certain norm, and this becomes the main difference between the conventional
filters and the proposed filtering algorithm of this paper.

3. Proposed Data Fusion Algorithm Based on the Mixed Norms
3.1. Multi-GNSS/IMU Integration and the Chi-Square-Based Hypothesis Test

In the kinematic positioning and navigation field, a single navigation technique can
hardly be suitable for all scenarios. Therefore, the integrated navigation technique becomes
the ideal choice for different scenarios. The combination of GNSS and INS is one of
the commonly used integrated navigation techniques, and it has been adopted in broad
applications. With the Multi-GNSS and the IMU, the loosely-coupled integration mode is
applied in this paper, and the CKF is applied to deal with the nonlinear problem. Errors of
the position, velocity, and attitude of the kinematic carrier, and the bias of the accelerometer
and the gyroscope are the parameters of the state vector x̂, namely,

x̂ =
[
∆Re ∆Ve ϕe εb ∇b

]
(10)
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where e and b denotes the variates defined under the earth frame and the body frame,
respectively. With the cubature Kalman filter, the iterative solution of the state parameters
is derived as follows:

xk,k = xk,k−1 + Kk(zk − Hkxk,k−1) (11)

Kk = Pxz,k,k−1P−1
zz,k,k−1 (12)

Pk,k = Pk,k−1 − KkPzz,k,k−1KT
k (13)

where the measurement vector zk consists of the position and velocity differences between
GNSS and IMU.

For the kinematic model and the observation model in Equation (1), the models are
usually known and exact when the measurements meet the Gaussian distribution. Assume
that zk (zk = Hkxk,k−1) and Pzk are the mean and the covariance of the measurements,
respectively, then the probability density function ρ(zk) of zk is given by:

ρ(zk) = N(zk; Hkxk,k−1, Pzk ) =
exp

(
− 1

2 (zk − Hkxk,k−1)
T(Pzk )

−1(zk − Hkxk,k−1)
)

√
(2π)m∣∣Pzk

∣∣ (14)

where m is the dimension of zk, and
∣∣Pzk

∣∣ is the determinant of Pzk . If no outliers exist, ρ(zk)
is suitable to depict the measurements. Otherwise, another probability density function
should be constructed. Therefore, whether the initial probability density function holds
or not can be treated as the condition to detect the outlying measurements. Considering
the probability density function, the expression (zk − Hkxk,k−1)

T(Pzk )
−1(zk − Hkxk,k−1),

namely, the square of the Mahalanobis distance from zk to zk, is adopted as the error
detection statistic [33]. Assuming (zk − Hkxk,k−1)

T(Pzk )
−1(zk − Hkxk,k−1) equals D2

M and
the quantile of a fixed confidence level is marked as χα, D2

M should obey the chi-square
distribution if the measurements are normal, and D2

M should be less than χα. Otherwise,
some outliers may exist and their influences should be eliminated or weakened. Therefore,
the chi-square hypothesis test based on the Mahalanobis distance is adopted to detect the
abnormal observation environment.

In the face of the outliers, the common strategy is to eliminate the corresponding measure-
ments or decrease the outlying measurements’ weights. Therefore, the robust estimation method
and the covariance inflation factor λij are introduced. λij is calculated based on the standardized
predicted residual, and the covariance matrix of the measurements is redefined by:

Rk = λijRk (15)

Consequently, aimed at the uncertain noises and the outliers, a new multi-GNSS/IMU
data fusion algorithm is proposed based on the mixed norms and the chi-square hypothesis
test, and the effects of the outlying measurements are controlled through the covariance in-
flation factor. Then, the proposed algorithm is applied and compared with the conventional
algorithms in the multi-GNSS/IMU integrated navigation systems.

3.2. Theoretical Analysis of the Proposed Algorithm

On one hand, the hypothesis test process of the proposed data fusion algorithm is
similar with that of the conventional fault detection method, and they are both implemented
at each epoch with the fixed confidence level. On the other hand, it is quite different in
terms of the filtering calculation process. In the proposed algorithm, the filtering calculation
process is implemented according to the result of the hypothesis test. The null hypothesis
will be accepted if D2

M is less than χα, and the cubature Kalman filter should be performed
based on the Equation (7). Otherwise, the null hypothesis should be rejected, and the
nonlinear H∞ filter will be performed. For the static positioning, the position information
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of the GNSS points is calculated under the Least Squares (LS) estimation criterion, and the
solution of the LS estimation is given by:

xk,k = (HT
k R−1

k Hk + P−1
k,k−1)

−1
(HT

k R−1
k zk + P−1

k,k−1xk,k−1) (16)

For the LS estimation method, the basic criterion is to minimize the quadratic sum
of the measurement error, and the measurements at different epochs are regarded as
independent of each other. Namely, the current measurements cannot be affected by the
previous measurements. For the kinematic navigation and positioning, the Kalman filter is
more suitable to calculate the position of the moving carrier at different epochs. According
to the matrix identity transformation [34], the Equation (16) can be rewritten by:

xk,k = xk,k−1 + Kk(zk − Hkxk,k−1) (17)

Apparently, this equation is the same as for the Kalman filter. However, according
to the basic theory of the Kalman filter, the state vector at the current epoch is estimated
based on the previous state estimates and the current measurements. The current state
estimates will be affected by the previous measurements, especially when some outlying
measurements exist. Therefore, although the overall solution is calculated based on the
Equation (7), it is difficult to guarantee the optimal estimation at every epoch. In terms of
the data fusion for the multi-GNSS/IMU integrated navigation systems of this paper, the
state vector can be set to zero after feedback to the IMU data at each epoch. Thus, the state
estimation is implemented based on the certain fixed norm such as the Equation (7), the
Equation (8) and other applicable norms, and the influences of the outlying measurements
are well controlled with the Mahalanobis distance-based hypothesis test and the robust
estimation method at each epoch. In this paper, the calculation criterion of the multi-
GNSS/IMU integrated navigation systems is determined by the result of the hypothesis
test of the current epoch, and the mixed norms are adopted on the whole process of
the calculation. Consequently, the proposed estimation algorithm can be applied in the
data fusion of the multi-GNSS/IMU integrated navigation systems. The flowchart of the
proposed algorithm is depicted in Figure 1.
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Figure 1. Flowchart of the mixed norm-based filter applied in the multi-GNSS/IMU integrated systems.
After mechanization, the IMU can provide the initial position, velocity and attitude information, and the
GNSS can provide the initial position and velocity information. The position and velocity differences be-
tween IMU and GNSS are regarded as the measurements input into the filter. Square of the Mahalanobis
distance D2

M is adopted as the test statistics, and the hypothesis test is implemented at each epoch. If
the zero hypothesis is rejected, the CKF is implemented and the covariance inflation factor is applied to
control the bad effects of the outlying measurements. Otherwise, the H∞ filter is performed.
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4. Experiments and Analysis

The performance of the proposed data fusion algorithm is applied and tested in
the data processing of the multi-GNSS/IMU integrated navigation systems. The main
equipment of the multi-GNSS/IMU integrated navigation systems consist of two GNSS
receivers and an IMU, and the IMU consists of the three-axis accelerometers and the three-
axis fiber-optic gyroscope. The GNSS receivers are Trimble R8 geodetic receivers, and they
were set to receive the signals of multiple GNSS constellations. One of the receivers was set
as the reference station, and another receiver, together with the IMU, was set on the land
vehicle to detect its position, velocity, and attitude information. The equipment of these
integrated systems is plotted in Figure 2. The nominal RMSE (Root Mean Square Error) for
the GNSS receivers and the key technical specifications of the IMU are provided in Table 1.
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Table 1. Key technical specifications of the GNSS receivers and the IMU.

Sensor Bias Scale Factor Random Walk RMSE Sample Interval

Accelerometer 50 mgal 4000 ppm 55 µg/rt-Hz (velocity
random walk) __

0.01 s
Gyroscope 20 deg/h (rate bias) 1500 ppm 0.067 deg/h1/2 (angle

random walk)
__

GNSS receiver __ __ __ Position: 0.5 m;
Velocity: 0.05 m/s 1 s

The experiment dataset was collected with the above multi-GNSS/IMU integrated
navigation systems. The diagonal elements of the covariance matrix correspond to the
errors of the position, and the velocity was set as 0.25 m2 and 0.0025 m2/s2, respectively.
According to the technical specifications, the initial position and velocity bias are set to
1.0 m and 0.1 m/s, respectively. After mechanization, the observation information of the
IMU and GNSS is constructed and input into the filter. According to the dataset, the motion
trajectory and distance of the land vehicle is plotted in Figure 3.
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Figure 3. Motion trajectory and distance of the land vehicle in north and east directions. The trajectory shows
that the land vehicle moves in an almost straight direction, except for several turns. The red line denotes the
referential solution, and the blue line denotes the solution calculated with self-developed software.

In the experiments, two different cases were designed and organized to compare the
performance of different algorithms. Each case consisted of four different algorithms, and
these four algorithms were implemented with the same dataset, respectively. The GNSS
double-difference carrier phase results calculated from the commercial Inertial Explorer
software were adopted as the referential solution, and the results of all four algorithms were
compared with the referential solution, respectively. These four algorithms are listed below.

Algorithm 1: the cubature Kalman filter (CKF);
Algorithm 2: the H∞ filter based on the cubature Kalman filter (HF);
Algorithm 3: the mixed norm-based filter with the confidence level of 95% (MC-95);
Algorithm 4: the mixed norm-based filter with the confidence level of 99% (MC-99);
For the H∞ filter of the above algorithms in each case, the threshold parameter γ was

set to 2.

4.1. Case 1

In this case, the four designed algorithms were performed with the initial dataset,
respectively. In the filtering process of this paper, the predicted state vector consist of fifteen
elements, and the first three elements are the position error variables during the filtering.
The values of these three elements of the predicted state vector for different algorithms are
plotted in Figures 4–7.
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Figure 7. The position error variables of the predicted state vector for the MC-99.

Figures 4–7 demonstrate the position error variables of the predicted state vector for
different algorithms. It is found from the above figures that the values of these variables are
quite small. However, these are just the process variables, and can hardly demonstrate the
performance of different algorithms. Since the final position errors (namely, the differences
between the referential solution and the calculated solution) are easier to demonstrate the
differences of these algorithms, they are plotted to distinguish the performance of different
algorithms. Then, the differences from the referential solution of different algorithms are
demonstrated in Figures 8–11.
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As the land vehicle travels on the urban road, the complex environment may bring
some unpredictable influences to the signals, such as the shelter, the electromagnetic
interference, and other uncertain noises. When the land vehicle travels over the speed
bumps, the equipped sensors generate an abnormal vibration. This results in some apparent
disturbances, as demonstrated in Figure 8. Therefore, the apparent disturbance indicates
that the CKF algorithm is sensitive to the abnormal measurements, and the ability of
robustness for the CKF algorithm should be enhanced further. Compared with the CKF
algorithm, the performance of the HF algorithm plotted in Figure 9 manifests an apparent
ability of robustness. Since the dataset contains little disturbances, the null hypothesis is
accepted at most epochs, and performance of the algorithms 2–4 is mainly determined by
the H∞ filter. Accordingly, in Figures 9–11, the positioning errors of different algorithms
are similar, since the process of the H∞ filter is relatively stable. In practical applications,
the position of the carrier, together with its velocity and attitude, are important parameters
to help to make decisions. Therefore, the RMSE of the position (Px, PY, Pz), the velocity (Vx,
VY, Vz) and the attitude (Pitch, Yaw) for different algorithms are adopted to depict their
performance quantificationally, and the statistical information is presented in Table 2.

Table 2. RMSE of different algorithms in Case 1.

Algorithm Px (m) PY (m) Pz (m) Vx (m/s) VY (m/s) Vz (m/s) Pitch (Degree) Yaw (Degree)

CKF 0.12 0.17 0.15 0.10 0.12 0.13 1.05 2.13
HF 0.11 0.14 0.13 0.03 0.04 0.06 0.97 1.98

MC-95 0.09 0.09 0.11 0.03 0.03 0.06 0.80 0.86
MC-99 0.09 0.10 0.11 0.02 0.03 0.05 0.82 1.27

Table 2 demonstrates that the RMSE values of the CKF algorithm are bigger than
those of the other algorithms, especially the RMSE values of the velocity and the attitude.
This indicates that the performance of the CKF algorithm is improved by the H∞ filter,
since the uncertain noises were well controlled. Compared with the HF algorithm, the
MC-95 and MC-99 algorithms performed better with the relatively smaller RMSE values.
In fact, for the MC-95 and MC-99 algorithms, the influences of the abnormal measurements
were weakened, and the IMU measurements became more accurate after the closed-loop
feedback. Compared with the MC-95 algorithm, the null hypothesis was rejected at more
epochs in the MC-99 algorithm. More measurements were detected and identified as
abnormal, and the weights of these measurements were degraded in the filtering. Therefore,
the parameters estimated through the multi-GNSS/IMU integrated navigation systems are
more likely to be precise and reliable.

4.2. Case 2

In this case, some significant outliers (40 m) were artificially added into the initial
GNSS measurements; thus, the second dataset was constructed. Then, the four designed
algorithms were implemented with the second dataset, respectively. Similarly, the position
differences from the referential solution are demonstrated in Figures 12–15, respectively.

In Figures 12 and 13, it is demonstrated that both the CKF and the HF algorithms
are seriously affected by the significant outliers. Compared with the CKF algorithm, the
HF algorithm exerts stronger robustness, and the influences of the significant outliers are
weakened further. For the algorithms with mixed norms, the amplitudes of the position
errors become much smaller, and no apparent outlying value is found in Figures 14 and 15.
This indicates that the effects of the outlying measurements are controlled effectively. In
contrast to the MC-95 algorithm, the MC-99 algorithm performs the hypothesis test with a
smaller quantile, and more outlying measurements are detected and identified. Therefore,
the MC-99 algorithm performs better with the relatively smaller error amplitudes, and the
filtering become more stable. It is worth noticing that the threshold should not be too small,
as the data utilization efficiency is decreased with an unreasonably small threshold, and the
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precision of the filtering may become inferior under this scenario. Therefore, the reasonable
threshold should be set according to the practical applications. Then, the corresponding
statistical information is provided in Table 3.
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Table 3. RMSE of different algorithms in Case 2.

Algorithm Px (m) PY (m) Pz (m) Vx (m/s) VY (m/s) Vz (m/s) Pitch
(Degree)

Yaw
(Degree)

CKF 0.51 0.52 0.55 0.18 0.16 0.15 1.29 2.36
HF 0.37 0.39 0.47 0.05 0.07 0.08 1.01 2.05

MC-95 0.13 0.12 0.20 0.04 0.06 0.06 0.86 1.49
MC-99 0.11 0.10 0.12 0.04 0.05 0.05 0.84 1.34

In this case, the influences of the significant outlying measurements become the main
factor that affects the precision of the estimates, and it is suitable to test the robustness of
different algorithms. In Table 3, the RMSE values indicate that the precision of different
algorithms are degraded by the significant outliers, and the RMSE values of the CKF and HF
algorithms are several times bigger than those in Case 1, respectively. In terms of the errors
of the position, the velocity and the attitude, influences to the velocity and the attitude
of the significant outliers are lighter than those in the position. RMSE values of both the
MC-95 and MC-99 algorithms are much smaller than those of the CKF and HF algorithms,
since the advantages of the H∞ filter and the robust estimation method are combined in the
mixed norm-based filtering. Comparing the CKF and the mixed norm-based algorithms, it
is demonstrated that the precision of the velocity and the attitude are improved with the
mixed norm-based algorithms. For the MC-95 algorithm, considering Tables 2 and 3, it
can be summarized that it is more likely to achieve a better attitude estimation precision
with the mixed norm-based algorithms. In this case, the outlying measurement often has
an affect not only at the current epoch, but also at the following several epochs. Namely,
the significant outliers may cause some new outliers, and the influences at the following
epochs usually become lighter than the initial significant outliers. In the hypothesis test, the
smaller the threshold, the more outliers can be detected and identified, and the influences
of the outliers can be weakened further with the smaller to some extent. Consequently,
the MC-99 algorithm performed better than the MC-95 algorithm in this case. Moreover,
along with the development of the intelligent PNT (Positioning, Navigation and Timing),
more sensors and other available information are integrated and applied in the vehicle
positioning, such as the camera [35], the high definition map [36], the laser radar [37], et al.
The integration of multiple sensors combines the advantages of different sensors, but the
data fusion should always be addressed carefully. Meanwhile, as these above two cases
have demonstrated, the proposed data fusion algorithm provides another way to improve
the performance of the multi-sensor integration systems, and it can provide some useful
references in the practical applications of the parameter estimation.

5. Conclusions

For the data fusion algorithm of the multi-GNSS/IMU integrated navigation systems,
the conventional filtering algorithm and most improved algorithms are developed under
a single certain norm. In this paper, a different way to improve the performance of the
filtering is explored, and a new multi-GNSS/IMU data fusion algorithm with mixed norms
is proposed. In the proposed algorithm, the hypothesis test statistics are constructed
based on the chi-square distribution to distinguish different scenarios, and the filtering
algorithm under different norms is implemented according to different scenarios. The
detailed conclusions summarized from the experiments of this paper are listed below.

(1) Compared with the conventional cubature Kalman filter, the H∞ filter manifests a
better ability of robustness, since the influences of the uncertain noises are controlled
effectively, and the precision of the estimated parameters are improved. However, the
performance of the cubature Kalman filter and the H∞ filter is affected significantly
by the outlying measurements.

(2) Besides the filtering algorithms, collecting a valid and stable dataset is still an im-
portant way to achieve a better filtering solution. A relatively higher precision of
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the velocity and the attitude estimated in the multi-GNSS/IMU integrated navi-
gation systems is achieved with the H∞ filter, regardless of the existence of some
outlying measurements.

(3) By integrating the advantages of the robust estimation and different filtering algo-
rithms, a better performance is achieved with the mixed norm-based algorithms.
In this paper, the results of these experiments indicate that it is more likely to
achieve a better attitude estimation precision with the mixed norm-based algorithms,
but a reasonable threshold for the hypothesis test should be set according to the
detailed applications.

(4) In this paper, the cubature Kalman filter and the H∞ filter are selected to construct
the mixed norm-based parameter estimation algorithms. Therefore, it is still an open
issue to construct different algorithms with different norms, and can provide another
way to improve the filtering performance in practical data processing applications.
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