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Abstract: Global Navigation Satellite Systems (GNSS) with weak anti-jamming capability are vul-
nerable to intentional or unintentional interference, resulting in difficulty providing continuous,
reliable, and accurate positioning information in complex environments. Especially in GNSS-denied
environments, relying solely on the onboard Inertial Measurement Unit (IMU) of the Micro Aerial
Vehicles (MAVs) for positioning is not practical. In this paper, we propose a novel cooperative relative
positioning method for MAVs in GNSS-denied scenarios. Specifically, the system model framework
is first constructed, and then the Extended Kalman Filter (EKF) algorithm, which is introduced
for its ability to handle nonlinear systems, is employed to fuse inter-vehicle ranging and onboard
IMU information, achieving joint position estimation of the MAVs. The proposed method mainly
addresses the problem of error accumulation in the IMU and exhibits high accuracy and robustness.
Additionally, the method is capable of achieving relative positioning without requiring an accurate
reference anchor. The system observability conditions are theoretically derived, which means the
system positioning accuracy can be guaranteed when the system satisfies the observability conditions.
The results further demonstrate the validity of the system observability conditions and investigate
the impact of varying ranging errors on the positioning accuracy and stability. The proposed method
achieves a positioning accuracy of approximately 0.55 m, which is about 3.89 times higher than that
of an existing positioning method.

Keywords: relative positioning; GNSS-denied environments; ranging; IMU; EKF; MAVs

1. Introduction

Micro Aerial Vehicles (MAVs), which refer to small Unmanned Aerial Vehicles (UAVs),
have gained popularity in aerial robotics due to their small size, agility, and versatility. It
is possible for MAVs to perform a wide range of tasks, including surveillance, inspection,
mapping, and environmental monitoring. However, achieving coordinated missions for
MAV formations is a challenging task, as it requires precise and reliable navigation and
positioning capabilities. Furthermore, such missions involve complex maneuvers and high
synchronization between multiple MAVs, and any errors or inaccuracies in navigation or
positioning can result in mission failure or even accidents. Therefore, developing robust
and efficient navigation and positioning methods is crucial for enabling MAVs to perform
coordinated missions effectively and safely.

Urban or forest environments are renowned for their complexity and heterogeneity,
which pose significant challenges to wireless communication systems due to issues such as
multipath propagation and shadowing [1]. In this context, Hermosilla et al. [2] proposed
the use of street-based urban metrics descriptions to quantify various spatial patterns
of urban types constructed at different periods, and provided eight different types of
urban environments (including urban, residential, and industrial areas) based on their
structural characteristics, such as building height distribution or vegetation coverage.
These differences may impact wireless signal propagation in different ways. For example,
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historic urban areas with lower building heights and narrower streets may experience
more severe multipath effects, while emerging industrial areas with taller buildings and
wider streets may face more severe signal blockage issues. As a result, there are numerous
challenges in receiving Global Navigation Satellite System (GNSS) signals in urban or
forest environments due to the weak anti-interference ability of GNSS [3]. Despite some
related studies [4–6] having reduced the error in GNSS-based positioning systems through
multi-information fusion technology, intentional interference may render GNSS unusable
in certain specialized fields, such as military applications. Therefore, achieving relative
positioning of MAVs in GNSS-denied scenarios has become a potentially fruitful area
of research.

The common methods for achieving relative positioning in GNSS-denied environ-
ments can be classified into the following three categories: visual positioning [7–17], inertial
navigation positioning [18–22], and radio positioning [23,24]. The development status of
each category of positioning technology is systematically discussed below, and the advan-
tages and limitations of each technology are analyzed, providing good inspiration for the
study of relative positioning methods for MAVs in GNSS-denied environments.

The visual localization methods can be broadly categorized into map-based localiza-
tion [7–11] and map-free localization [12–17], depending on whether prior visual maps
are utilized. (Note that visual refers to visual information, which is typically collected
using sensors such as cameras or laser scanners. Visual maps can be understood as maps
constructed based on visual information and used for visual localization and navigation.)
In the map-based localization, a pre-constructed visual map was used to aid in localization,
and the steps involved in map construction and updating, image retrieval, feature point
extraction and matching, and precise localization have been studied extensively [7–10].
The main focus of [7] was the construction of 3D maps, while reference [8] addressed
map quality issues by removing outliers and tracking lanes. Map matching problems
were mainly addressed in [9–11]. In contrast, map-free visual localization methods do not
rely on prior visual maps and instead estimate the pose of the object and surrounding
environment. This category can be further divided into Visual Simultaneous Localization
and Mapping (VSLAM) [12–15] and Structure from Motion (SFM) [16,17]. The VSLAM is
designed for real-time processing, making it well-suited for applications such as robotics
and autonomous vehicles, while SFM prioritizes accuracy and is more appropriate for
offline processing applications such as digital reconstruction of scenes [16]. Specific tech-
niques within these categories have also been put forward. For example, an efficient
distributed particle filter (EDPF) was proposed in [12] to address the difficulty of sampling
high-dimensional state spaces in range-only SLAM. Reference [13] proposed a weight-
optimized particle filter-based algorithm for monocular visual SLAM, which aimed to
improve the slow environmental interference repair speed of traditional filtering SLAM
algorithms. Three-level parallel optimization was adopted in [14], including the direct
method, feature-based method, and pose graph optimization. The method in [15] involves
two stages: the first stage implements a local SLAM process based on filtering techniques,
while the second stage utilizes optimization-based techniques for constructing and main-
taining a consistent global map of the environment, which includes addressing the loop
closure problem. To estimate the state of a MAV, the main filtering technique employed
is the Extended Kalman Filter (EKF). In terms of optimization techniques, three methods
are used: a local bundle adjustment technique to minimize the total reprojection error, the
minimization of the Perspective-n-Point (PnP) problem, and graph optimization to correct
the global map. In [16], 3D point clouds of close-range images were generated using SFM
technology. Homologous features between different images were found to determine the
shooting direction and position of each image. Finally, reference [17] used optimization to
enhance the convergence rate of SFM by retrieving maximum internal similarity between
images. The chosen images and query results were used to reconstruct a three-dimensional
scene and estimate relative camera positions with SFM.



Sensors 2023, 23, 4366 3 of 23

The inertial navigation positioning is an autonomous method that provides accurate
short-term navigation and positioning without relying on external information or emitting
radiation. However, the general positioning system is prone to an error accumulation due
to the second-order integration operation [18–22]. Various studies have been conducted to
address this issue. For instance, a 3D trajectory planning method based on Particle Swarm
Optimization-A star (PSO-A*) algorithm was proposed in [18] to solve the yaw problem of
intelligent aircraft. In [19], the nonlinear error model was considered, and internal mea-
surement information was utilized to correct the nonlinear error of inertial navigation. The
zero-velocity detection algorithm was adopted to compensate for the accumulated error of
pedestrian inertial navigation [20,21]. Additionally, reference [22] employed Convolutional
Neural Networks (CNN) to reduce the error of MEMS IMU sensors.

There are various wireless positioning methods based on radio technology, mainly
including infrared positioning [23], Ultra Wide Band (UWB) positioning [24], and radio
frequency identification (RFID) positioning [25]. In [23], the angle of an object equipped
with a positioning device was measured using an infrared laser beam emitted by a light-
house base station, and the position of the object was calculated. An indoor positioning
system based on improved adaptive Kalman filter (IAKF) was proposed in [24] that cal-
culated the distance between the tag and the base stations using the time it took for UWB
signals to travel, and then applied a triangulation algorithm to acquire the position of the
tag. Similar to [24], reference [25] differs mainly in the method of distance measurement,
using RFID technology to calculate the distance. In addition, Ref. [25] mentions that RFID
positioning tags can be classified into two types, active and passive, depending on their
power requirements. Passive tags mainly involve backscattering communication, and
therefore do not require direct power supply, but they have limited communication range
compared to active tags. Therefore, RFID technology is mostly used for indoor product
tracking. Furthermore, the design, installation, and maintenance of RF navigation systems
can be expensive and complex, which may pose challenges for deploying them in certain
applications, such as small unmanned aerial vehicles.

In addition, multi-technology fusion is an important means to improve the position-
ing performance. An important trend in VSLAM is to integrate visual sensor data with
other sensor data [26,27]. A method was proposed in [26] to integrate Inertial Measure-
ment Unit (IMU) and dynamic VSLAM, which avoided the static assumption of common
SLAM algorithms and solved the problems of fast vehicle motion and insufficient light.
This method exhibited higher robustness compared with pure visual dynamic SLAM
systems. In [27], a SLAM autonomous positioning algorithm combining magnetometer,
IMU, and monocular camera was proposed to address the initialization instability and
drift problem in the visual-inertial SLAM (VI-SLAM) algorithm. In wireless positioning,
UWB technology is a potentially productive area of research [28–30] in multi-information
fusion positioning due to its advantages such as strong penetration ability, low power
consumption, small impact of multipath effects, and high positioning accuracy [31–33].
In [28], UWB ranging was used in an indoor positioning scenario, and the position
was jointly estimated by fusing the ranging and IMU information through cooperative
positioning, which reduced the position drift of Inertial Navigation System (INS). A
relative positioning method based on trilateration was proposed for the multi-mobile
user mutual positioning scenario [29], where the UWB ranging and IMU information
were fused and integrated into a probabilistic framework for cooperative positioning
fault recovery. In [30], the pedestrian navigation was realized based on IMU and UWB
ranging, and a zero-velocity detection algorithm and single anchor point reference were
used. Due to the inherent error drift of IMU, relying solely on IMU for inertial navigation
positioning is uncommon. Typically, the fusion of multi-sensor information is required
to reduce the positioning errors [26–35].

Authors have two observations on the existing research on positioning methods.

• In the visual-based positioning research, the positioning accuracy is weakened in
low-light environments and line-of-sight limitations lead to poor system robustness.
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These factors pose significant challenges for MAVs to efficiently perform collaborative
tasks in diverse environments.

• In the research on IMU-based relative positioning, the multi-sensor fusion is mostly
employed to reduce the inertial drift. Solely relying on IMU for dead reckoning
cannot achieve long-term high-precision positioning [18–22]. When fusing with radio
information, there are restrictions on MAV cooperative formation tasks, such as the
existence of zero-velocity detection [31,33] and fixed reference anchor [33]. In addition,
there is a situation where two MAVs cannot be positioned [32].

Motivated by the above facts, this paper investigates a relative positioning method of
a two-MAV cooperative formation fusing inter-vehicle distance and IMU information in
GNSS-denied environments, which does not require the use of other auxiliary devices such
as odometers, except for the IMU and the devices used for ranging. The main contributions
of this paper are summarized as follows:

1. A novel method for relative positioning in GNSS-denied scenarios is proposed based
on ranging and IMU information. The method utilizes the EKF algorithm to jointly
estimate the relative positions of MAVs, providing continuous, precise, and reliable
information for the formation without being affected by the error accumulation
problem of IMU. Additionally, the method is capable of achieving relative positioning
for an arbitrary number of nodes without requiring an accurate reference anchor. This
innovative approach offers notable advantages over existing methods and has great
potential for applications in various fields of aerial robotics.

2. Theoretical derivations of the system observability conditions are presented, along
with the specific expressions. The conditions indicate that the system positioning
accuracy and reliability can be guaranteed when the flight trajectory of the MAV
formation satisfies the observability conditions. Failure to satisfy these conditions
may result in decreased positioning accuracy and reliability, as well as a possibility
of divergence.

3. Monte Carlo simulations were conducted, where the correctness of the system ob-
servability conditions was verified and the effects of different ranging errors on the
positioning accuracy and reliability were investigated. Moreover, the positioning
error was reduced by approximately 3.89 times compared to an existing positioning
method [32].

The rest of this paper is organized as follows. Section 2 describes the system model.
Section 3 presents a detailed description of the relative positioning method. Section 4 de-
rives the system observability conditions and provides the specific expressions. Section 5
presents simulation results, followed by Section 6 which concludes this paper.

2. System Model

In this paper, we consider a system model for relative localization of two cooperative
MAVs in GNSS-denied environments, as shown in Figure 1. The definitions of the reference
coordinate systems are explained as follows. The global coordinate system is the Earth-fixed
North-East-Down (NED) coordinate system, denoted as n, and assumed to be an inertial
frame. The origin of the body-fixed horizontal coordinate system (denoted as hi, i = 1, 2)
for MAV i (i = 1, 2) is located at its center of gravity, with x-y plane and z-axis paralleling
those of n, respectively, meaning that hi is obtained by rotating the n around its z-axis by a
yaw angle ϕ.
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It is worth noting that this paper does not use the typical body-fixed coordinate system
(denoted as bi, i = 1, 2) for the MAV i, which is represented by Euler angles with respect to
n. According to the 321-rotation sequence, the corresponding Euler angles are yaw angle
ϕ, pitch angle θ, and roll angle γ, respectively. The reason for using hi instead of bi is to
simplify the kinematic relationships and minimize the impact of unnecessary factors, such
as near-hovering states with small roll and pitch angles.

In the system model, MAV i can measure its own state variables, which include
acceleration, angular velocity, and velocity in hi. Furthermore, by means of wireless
communication, MAV i can also obtain velocity and distance information from the other
one in the system framework, where two MAVs utilize inter-vehicle distance information
to enhance the accuracy and robustness of relative positioning in the system framework.

The relative motion of two MAVs is described in h. Let pn
i denote the position vector of

MAV i in n, where the subscript i refers to the MAV number and the superscript n indicates
the vector is projected onto n. The projection of the relative position of MAV k (k = 1, 2, but
k 6= i) with respect to MAV i in hi can be expressed as:

phi
ik = Chi

n (pn
k − pn

i ) (1)

where Chi
n is the coordinate transformation matrix from n to hi (see Equation (2)). It is only

dependent on the yaw angle ϕi of MAV i, since x-y plane and z-axis of hi are parallel to
those of n, respectively.

Chi
n =

cos ϕi − sin ϕi 0
sin ϕi cos ϕi 0

0 0 1

 (2)

It can be inferred from Equations (1) and (2) that the z-component of the relative
position phi

ik corresponds to the difference in height (which can be measured by a barometric
altimeter) between MAV i and MAV k in n. Therefore, the system model can be simplified
from three-dimensional space to a two-dimensional plane in the horizontal direction.

Some of the parameters and symbols used in this section are shown in Table 1.
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Table 1. Descriptions of parameters or symbols in Section 2.

Parameters or Symbols Descriptions

n Earth-fixed North-East-Down (NED) coordinate system
h Body-fixed horizontal coordinate system
b Body-fixed coordinate system
ϕ Yaw angle
θ Pitch angle
γ Roll angle
‖·‖2 2-norm

pn
i ∈ R3 Position vector of MAV i in n

phi
ik ∈ R3 Projection of the relative position of MAV k with respect to

MAV i in hi
Chi

n ∈ R3×3 Coordinate transformation matrix from n to hi

3. A Ranging and IMU-Based Relative Positioning Method

We propose a relative positioning method that integrates the inter-vehicle distance
with on-board IMU information and employs the EKF algorithm for optimal position
estimation. The acquired data is transformed into the corresponding framework to estab-
lish the state differential equation. Based on the measurement information, the state of
the MAVs is updated. The system observability analysis is conducted before and after
the EKF algorithm’s prediction and update process to ensure the system positioning ac-
curacy. Specifically, in Section 3.1, the state differential equation between two MAVs is
simply derived, and the observation model and the overall system process are given in
Sections 3.2 and 3.3, respectively.

3.1. State Differential Model

The nonlinear state vector system for the localization model is defined as:{ .
x = f(x, u)
y = h(x)

(3)

where the vectors x ∈ Rn, u ∈ Rm, y ∈ Rl are the state vector, input vector, and output
vector of the system, respectively. f(x, u) is the system state differential vector function
containing the vector parameters x and u, and h(x) is the observation equation related to
the state vector x.

According to the discussion in Section 2, and considering the relative positioning
model of two MAVs, let p = R(p2 − p1) ∈ R2, which represents the projection of the
relative position of MAV 2 with respect to MAV 1 in h1, where R is the two-dimensional
case of Equation (2). Specifically, it is equal to:

R =

[
cos(∆ϕ) − sin(∆ϕ)
sin(∆ϕ) cos(∆ϕ)

]
(4)

where ∆ϕ = ϕ2 − ϕ1 is the yaw angle difference between MAV 1 and MAV 2.
Moreover, the other variables in the nonlinear system are defined below. The yaw

rate difference is denoted by ∆
.
ϕ = r2 − r1 (where ri is the yaw rate of MAV i, i = 1, 2).

The projections of velocity and acceleration of MAV i in hi are denoted as vi ∈ R2 and
ai ∈ R2, respectively.

It should be noted that the yaw rate ri and acceleration ai mentioned earlier refer to the
horizontal plane components in hi and cannot be equated simply with the actual measured
values ωi ∈ R3 and si ∈ R3 of the gyroscope and accelerometer. In particular, the latter
must undergo a conversion process, which can be expressed as:

ri =
sin γi
cos θi

·ωiy +
cos γi
cos θi

·ωiz, i = 1, 2 (5)
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ai =

[
cos θi sin γi sin θi cos γi sin θi

0 cos γi − sin γi

]
· si, i = 1, 2 (6)

where ωiy and ωiz represent the y-axis component (true pitch rate) and z-axis component
(true yaw rate) of ωi, respectively. γi and θi are the roll angle and pitch angle of MAV i,
respectively. Proofs of Equations (5) and (6) are provided in Appendix A for reference.

Let the state and input vector be x =
[
pT , ∆ϕ, vT

1 , vT
2
]T ∈ R7 and u =

[
r1, r2, aT

1 , aT
2
]T ∈

R6, respectively. The state differential equation of the system is simply derived as follows.
The derivative of the relative position p with respect to time t is (Note that in Equation (7),

the coordinate transformation matrix R does not act on v1. The reason is that, in the scenario
of mutual positioning between two MAVs, when calculating the relative position of MAV 2
with respect to MAV 1 in h1, there is no need to transform the velocity of MAV 1 in its own
coordinate system h1 by left-multiplying R):

dp
dt =

dR(p2−p1)
dt

= dR
dt (p2 − p1) + R d(p2−p1)

dt
= −r×i R(p2 − p1) + Rv2 − v1
= −r×1 p + Rv2 − v1

(7)

where the antisymmetric matrix r×i of cross product in two-dimensional case is equal to:

r×i =

[
0 −ri
ri 0

]
, i = 1, 2 (8)

vi is obtained by coordinate transformation of vn
i ∈ R2 in n, which is equal to vi = Rvn

i .
Taking the derivative of the velocity vi with respect to time t:

dvi
dt =

dRvn
i

dt
= dR

dt vn
i + R dvn

i
dt

= −r×i Rvn
i + ai

= −r×i vi + ai

(9)

According to Equations (7) and (9), and the definition of the yaw rate difference ∆
.
ϕ,

the state differential equation in Equation (3) can be written as:

.
x = f(x, u) =


−r×1 p + Rv2 − v1

r2 − r1
−r×1 v1 + a1
−r×2 v2 + a2

 ∈ R7 (10)

3.2. Observation Model

The observations involved in the positioning model are the distance information
‖p‖2 between two MAVs and the velocity vi of MAV i (where i = 1, 2). Converting the
distance information to ‖p‖2

2/2 can simplify the system observability theoretical analysis
in Section 4 without affecting the analysis results [36]. However, the distance observation
is still selected as ‖p‖2 in the experimental verification. The corresponding observation
model is expressed as:

y = h(x) =

‖p‖2
2/2

v1
v2

 ∈ R5 (11)
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3.3. Overall System Process

The system process as a whole is depicted in Figure 2. In the system framework
illustrated in Figure 1, the MAVs acquire their motion states through onboard sensors,
encompassing acceleration, angular velocity, and velocity, which are transformed into h1
via transformation Blocks T1, T2, and T3, respectively.
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Subsequently, a preliminary observability analysis is conducted to determine whether the
observability conditions presented in Equations (30)–(32) of Section 4 are satisfied. Provided
that the conditions are met, the positioning accuracy is adequately guaranteed. Otherwise,
the system fails to localize and awaits the next sampling interval to retry localization.

One important aspect of the system process is that the state differential equation is
constructed based on the MAVs’ states. In addition, the real-time distance measurement
between two MAVs and the target MAV’s velocity are obtained through radio communica-



Sensors 2023, 23, 4366 9 of 23

tion, with the measurement equation constructed accordingly. The EKF algorithm is then
used to estimate the optimal relative position of the target MAV.

A complete system observability analysis is performed based on the optimal position
estimation and the MAVs’ states, as shown in Equation (29). The result is expected to be
similar to that of the preliminary observability analysis, with the only difference being the
expression of the conditions.

Some of the parameters and symbols used in this section are shown in Table 2.

Table 2. Descriptions of parameters or symbols in Section 3.

Parameters or Symbols Descriptions

x ∈ R7 State vector
u ∈ R6 Input vector
y ∈ R5 Output vector
.
x = f(·) State differential vector function

h(·) Observation function

p ∈ R2 Projection of the relative position of MAV 2 with respect to
MAV 1 in h1

R ∈ R2×2 Two-dimensional case of Chi
n

∆ϕ Yaw angle difference between MAV 1 and MAV 2
∆

.
ϕ Yaw rate difference between MAV 1 and MAV 2

ri Yaw rate of MAV i
vi ∈ R2 Projection of velocity of MAV i in hi
ai ∈ R2 Projection of acceleration in hi
ωi ∈ R3 Gyroscope measurement
si ∈ R3 Accelerometer measurement

r×i ∈ R2×2 Antisymmetric matrix of cross product
vn

i ∈ R2 Velocity of MAV i in n

4. System Observability Analysis

Considering the nonlinear state vector system shown in Equation (3), the system
observability is analyzed by means of Lie derivative. The multiple Lie derivatives are
defined as follows:

L0
f h = h (12)

Li
fh = Lf

(
Li−1

f h
)
= J
(

Li−1
f h

)
· f, i ∈ N∗ (13)

where J
(

Li
fh
)

represents the Jacobi matrix of Li
fh. Furthermore, the observability matrix of

the nonlinear system is:

H =


J
(

L0
f h
)

J
(

L1
f h
)

...
J
(

Li
fh
)

, i ∈ N∗ (14)

When the observable matrix H has full rank, the nonlinear system is considered locally
weakly observable [37].

The first term of the observability matrix H is equal to:

J
(

L0
f h
)
= J(h) =

 pT 0 01×2 01×2
02×2 02×1 E2 02×2
02×2 02×1 02×2 E2

 =

[
pT 0 01×4

04×2 04×1 E4

]
(15)

Since the cross term of the last four rows and columns in the first term of the observ-
ability matrix H is the unit matrix, the rank of H cannot be increased by its corresponding
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observation functions. Therefore, only the distance observation corresponding to the first
row in Equation (11), denoted as h1(x) = ‖p‖2

2/2, needs to be considered.
The first-order Lie derivative corresponding to the distance observation h1(x) is equal to:

L1
f h1 = J

(
L0

f h1

)
· f = pT(−r×1 p + Rv2 − v1

)
(16)

Calculating the Jacobi matrix of the first-order Lie derivative, the second term of the
observability matrix H can be obtained:

J
(

L1
f h1

)
=


(Rv2 − v1)

pT ∂R
∂∆ϕ v2

−p
RTp


T

(17)

Given that the full rank of the observability matrix H is seven and the first term J
(

L0
f h
)

has rank five, calculation of the second-order Lie derivative is necessary. The second-order
Lie derivative is given by:

L2
f h1 = J

(
L1

f h1

)
· f

= (Rv2 − v1)
T(−r×1 p + Rv2 − v1

)
+ pT ∂R

∂∆ϕ v2(r2 − r1)

−pT(−r×1 v1 + a1
)
+ pTR

(
−r×2 v2 + a2

)
= vT

2 v2 − 2vT
1 Rv2 + vT

1 v1 + pT ∂R
∂∆ϕ v2r2 − pTa1 + pTR

(
−r×2 v2 + a2

) (18)

where the simplification is achieved using Equations (19) and (20). The result shows that
the yaw rate r1 of MAV 1 is completely cancelled out.

RTR = E2 (19)

RTr×1 = − ∂RT

∂∆ϕ
r1 (20)

The third term of the observability matrix H is the Jacobi matrix of the second-order
Lie derivative (see Equation (18)), which can be expressed as:

J
(

L2
f h1

)
=

[
∂L2

f h1

∂p
∂L2

f h1

∂∆ϕ

∂L2
f h1

∂v1

∂L2
f h1

∂v2

]
(21)

where the specific expressions of each term are derived simply as follows:

∂L2
f h1

∂p = vT
2

(
∂RT

∂∆ϕ r2 − r×T
2 RT

)
− aT

1 + aT
2 RT

= −aT
1 + aT

2 RT
(22)

∂L2
f h1

∂∆ϕ = −2vT
2

∂RT

∂∆ϕ v1 + vT
2

(
∂2RT

∂∆ϕ2 r2 − r×T
2

∂RT

∂∆ϕ

)
p + aT

2
∂RT

∂∆ϕ p

= −2vT
2

∂RT

∂∆ϕ v1 + aT
2

∂RT

∂∆ϕ p
(23)

∂L2
f h1

∂v1
= −2vT

2 RT + 2vT
1 (24)

∂L2
f h1

∂v2
= 2vT

2 − 2vT
1 R + pT

(
∂R

∂∆ϕ r2 −Rr×2
)

= 2vT
2 − 2vT

1 R
(25)
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It can be seen from the above simplified results that the yaw rate r2 of MAV 2 is
completely offset. In the event that the combination matrix A consisting of the Jacobi
matrixes of the zero-order, first-order, and second-order Lie derivatives corresponding
to the distance observation h1(x) has full rank, the rank of observability matrix H is
guaranteed to have full rank, indicating that the nonlinear system is observable.

A =

 pT 0
vT

2 RT − vT
1 pT ∂R

∂∆ϕ v2

−aT
1 + aT

2 RT −2vT
1

∂R
∂∆ϕ v2 + pT ∂R

∂∆ϕ a2

 ∈ R3×3 (26)

In light of the above discussion, the observable system needs to satisfy the follow-
ing condition:

|A| 6= 0 (27)

Multiplying each element in the third column of determinant |A|with the corresponding
algebraic cofactor, adding and expanding to calculate, we can obtain the following expression:

|A| = −pT ∂R
∂∆ϕ v2 ·

(
−aT

1 + aT
2 RT)R∆ϕ=π/2p

+
(
−2vT

1
∂R

∂∆ϕ v2 + pT ∂R
∂∆ϕ a2

)
·
(
vT

2 RT − vT
1
)
R∆ϕ=π/2p

=
(

pT ∂R
∂∆ϕ

(
v2aT

1 − a2vT
1
)
− 2vT

1
∂R

∂∆ϕ

(
v2vT

2 RT − v2vT
1
))

R∆ϕ=π/2p

(28)

Considering the properties of matrix R∆ϕ=π/2, when p 6= 0 and Equation (28) satisfies
the following inequality (where m is an arbitrary constant), Equation (27) holds, and the
nonlinear system is observable.

pT ∂R
∂∆ϕ

(
v2aT

1 − a2vT
1

)
− 2vT

1
∂R

∂∆ϕ

(
v2vT

2 RT − v2vT
1

)
6= mpT (29)

While the inequality (29) is not intuitive in revealing the motion constraints of MAVs,
it can be used to extract some more obvious conditions (as seen in Equations (30)–(32)),
which greatly aid our comprehension of Equation (29).

p 6= 0 (30)

vi 6= 0 or ai 6= 0, i = 1, 2 (31)

v1 6= nRv2 or (a1 6= 0 or a2 6= 0) (32)

Equation (30) serves as a prerequisite for Equation (29), which means that the relative
position between two MAVs cannot be equal to zero. Equation (31) indicates that the MAVs
cannot remain stationary. Both the conditions are obvious. Equation (32) shows that two
MAVs cannot fly in parallel unless at least one of the MAVs has a non-zero acceleration,
where n is an arbitrary constant.

According to the system observability analysis in this section, we derived the motion
conditions that must be satisfied by MAVs (see Equations (29)–(32)), which means if the
relative motion between two MAVs in the system violates the observability conditions,
the positioning accuracy and reliability of MAVs cannot be guaranteed. In such a case, by
actively intervening in the relative motion of MAVs to satisfy the observability conditions,
MAVs in the system can still achieve mutual positioning.

Some of the parameters and symbols used in this section are shown in Table 3.
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Table 3. Descriptions of parameters or symbols in Section 4.

Parameters or Symbols Descriptions

Li
fh The i-th order Lie derivative of h with respect to f

J(·) Jacobi matrix
H Observability matrix
Ei The i-th order identity matrix
∂ Partial derivative

A ∈ R3×3 Combination matrix
|·| Determinant

5. Results

In this section, we employ computer simulations to demonstrate the performance of
the proposed relative positioning method. Section 5 is structured as follows: Section 5.1
describes the experimental setup, followed by Section 5.2 which verifies the system observ-
ability conditions. In Section 5.3, we investigate the impact of different ranging errors on
the positioning accuracy and stability. Finally, an error comparison experiment with an
existing method is conducted in Section 5.4.

5.1. Experimental Setup

Assuming two MAVs, A and B, in the system framework depicted in Figure 1, we use
the proposed relative positioning method to calculate the position of MAV B relative to
MAV A. The specific parameter settings for the simulation experiment are listed in Table 4,
where deg = π/180 and mg = 9.8× 10−3.

Table 4. Parameter settings.

Parameters/(Unit) Values

Filtering step/(s) 0.1
Total simulation duration/(s) 1000

Constant gyroscope drift/(rad/s) 0.05 deg/3600
Constant accelerometer bias/

(
m/s2 ) 0.1 mg

Barometric altimeter error/(m) 1
Ranging error/(m) 2

Velocity error/(m/s) 0.1
Noise matrix diag

(
0, 0, 10−8, 10−6, 10−6, 10−6, 10−6)

Initial error [2, 2, 2deg, 0.1, 0.1, 0.1, 0.1]T

Explanations for certain simulation parameters in Table 4 are provided below. The
gyroscope and accelerometer parameters are typical electrical parameters of commercial
IMU inertial sensors (such as MPU6050) commonly available on the market [38]. The
error of the barometric altimeter was referenced from [39], where an ultrahigh resolution
pressure sensor based on percolative metal nanoparticle arrays was designed. The sensor
has an ultra-high resolution of 0.5 Pa and high sensitivity of 0.13 kPa−1, and the pressure
range and sensitivity can be adjusted by changing the thickness of the PET membrane,
which extends the working pressure range to 40 kPa. In actual altitude tests, the altitude
measurement sensitivity was calculated as −0.00025 m−1 according to the slope of the
response curve. RMS noise analysis shows that the accuracy of the sensor can be as low
as 1 m. As a high-precision barometric sensor, the sensor can be used for high-resolution
barometric altimeters (Note that it is possible to have different pressure at the same height
but at different horizontal locations. However, in this work, we mainly focus on the relative
positioning of two MAVs, where two MAVs are generally not distant from each other. Thus,
it is reasonable to assume that the pressure difference of two MAVs only comes from the
altitude level) [39]. The ranging error in this paper is referenced from [40], which proposed
an improved through-the-wall (TTW) NLOS ranging method using UWB technology to
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achieve ranging errors of 0–2 m in NLOS environments. In addition, the noise used in the
simulation is close to actual noise, and an adaptive adjustment method is employed for
the noise matrix of the system to better adapt to the changes in noise characteristics and
maintain good filtering performance.

In accordance with the system observability analysis presented in Section 4, the
flight trajectory of the two MAVs needs to satisfy Equation (29) to guarantee the system
positioning accuracy and reliability. A trajectory satisfying the requirements of Equation
(29), called Trajectory 1, can be defined as follows: the straight-line AB rotates around the
geometric center O in the horizontal plane, while O undergoes sinusoidal motion. The
MAV height is measured using a barometric altimeter. The motion parameters are listed in
Table 5. Setting the rotational angular velocity of AB and sinusoidal angular velocity of O
to zero in Table 5, results in a straight-line flight of the MAVs in parallel, which is denoted
as Trajectory 2.

Table 5. Motion parameter settings.

Parameters/(Unit) Values

Rotational angular velocity of AB/(rad/s) 0.03
Sinusoidal angular velocity of O/(rad/s) 0.03

Linear velocity of O/(m/s) 20
Initial angle of MAV A/(rad) π/3
Initial angle of MAV B/(rad) π

5.2. Verification of the System Observability Conditions

Section 5.2 aims to validate the system observability conditions derived in Section 4
and evaluate the effectiveness of the proposed relative positioning method.

In Section 5.1 of the experimental setup, two trajectories for the MAVs are defined:
Trajectory 1 and Trajectory 2. Trajectory 1 satisfies the system observability condition shown
in Equation (29), while Trajectory 2 fails to comply with it. More specifically, Trajectory 2
violates the observability sub-condition shown in Equation (32).

Figure 3 shows the filtered error results for the two trajectories, while the correspond-
ing relative motion trajectories are presented in Figure 4. The average filtering errors for
x and y axes of Trajectory 1 are approximately 1.22 m and 0.57 m, respectively, with the
errors gradually converging to zero over time. In contrast, Trajectory 2 has significantly
larger average filtering errors of 6.23 m and 3.86 m for x and y axes, respectively, exceeding
those of Trajectory 1 by factors of 5.1 and 6.77. Furthermore, the errors of Trajectory 2 tend
to diverge over time. These results indicate that system observability conditions are critical
for ensuring the higher positioning accuracy and reliability, whereas failing to meet it, the
system accuracy and reliability cannot be guaranteed.

For the purpose of avoiding experimental randomness, Monte Carlo simulation ex-
periments were conducted to investigate the error statistical characteristics of Trajectory 1
and Trajectory 2. Figure 5 presents the results of 100 Monte Carlo simulation experiments
for error statistics. The upper and lower dashed lines of the error curves represent the
+3σ and −3σ boundaries, respectively, while the solid lines represent the error mean. The
boundary values represent the positioning accuracy, and the boundary range represents
the positioning stability. The specific data for Figure 5 is listed in Table 6. It can be con-
cluded from Figure 5 and Table 6 that the positioning accuracy and stability of Trajectory
2 are worse than those of Trajectory 1, and the positioning error of Trajectory 2 exhibits a
diverging trend.
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Table 6. Mean statistical data from 100 Monte Carlo simulation tests.

Parameters +3σ Boundary Mean −3σ Boundary

Trajectory 1 x 1.62 m −0.04 m −1.69 m
y 2.07 m 0.02 m −2.03 m

Trajectory 2 x 8.47 m 2.44 m −2.59 m
y 4.19 m 1.39 m −3.41 m

Trajectory 2
Trajectory 1

x 5.23 / 1.53
y 2.02 / 1.18

The simulation experiments in Section 5.2 demonstrate that the system has smaller
positioning errors when it satisfies the observability conditions, versus larger errors with a
divergent trend when it fails to meet the conditions. The result further confirms the validity
of the system observability theoretical analysis in Section 4.

5.3. The Influence of Different Ranging Errors on the Positioning Accuracy and Stability

In this section, we investigate the impact of different ranging errors on the positioning
accuracy and stability of the proposed relative localization method, which integrates
ranging and IMU information. The ranging errors for Trajectory 1 are set to four levels:
1 m, 2 m, 4 m, and 8 m. The results of a single experiment’s positioning errors are shown in
Figure 6. Since Trajectory 1 satisfies the system observability conditions, the corresponding
positioning accuracy is within 2 m after approximately 100 s, despite the different ranging
errors, and the system remains stable.
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Figure 6. The positioning errors corresponding to different ranging errors, where four ranging error
levels of 1 m, 2 m, 4 m, and 8 m are set.

Subsequently, 100 Monte Carlo simulations are conducted, and the simulation results
are presented in Figure 7. It can be visually observed that the larger the ranging error, the
worse the system’s positioning accuracy and stability. However, increasing ranging errors
did not cause the positioning accuracy and stability of the proposed system to deteriorate
significantly, meaning the system did not diverge, but only increased the error. Specifically,
the average boundary value increased from about 2 m to around 3 m as ranging errors
increased from 1 m to 8 m. These experimental results indicate that different ranging errors
have a limited impact on the system’s positioning accuracy and stability.

5.4. Error Comparison with an Existing Positioning Method

In Section 5.4, we compare the performance of the proposed method with an existing
method introduced in [32].

To demonstrate the rationality of the parameter settings in the comparative experiment,
we offer the following explanations: The UWB ranging error in [32] was set to 2 m, and
the IMU used was the 9-DOF MPU-9150, with assumed displacement errors of 0.2 m
and orientation errors of 0.1 rad. The rationality of the parameters has been previously
confirmed in [32]. Therefore, we adopt the ranging error of 2 m from [32]. In addition, the
IMU data used in this paper is from MPU-6050, whose data parameters are essentially the
same as those of MPU-9150. Based on these considerations, we conclude that our parameter
settings are appropriate for the purposes of our simulation.
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The experimental results of the two methods are shown in Figure 8. It can be observed
that the average positioning error of the proposed method in this paper is approximately
0.55 m, while that of the method in [32] is about 2.14 m, which is approximately 3.89 times
the error of the proposed method. In contrast, the relative positioning method proposed in
this paper, which fuses ranging and IMU information, achieves better positioning accuracy.
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At the initial startup phase of the positioning system, EKF may have uncertainty about
the initial state, that is, the initial estimate of the system state may not be accurate enough,
which may lead to large errors. As time goes on, since the system has started to operate,
through measurement updates and filtering, the state estimate of the system will gradually
become more accurate, and the error will gradually decrease until it stabilizes.

6. Conclusions

In this paper, we have presented a novel cooperative relative positioning method
for MAVs in GNSS-denied scenarios. Within the framework of the system model, we
have employed the EKF algorithm to fuse ranging and IMU information, addressing the
problem of IMU error drift and enabling high-precision and robust MAV positioning. In
addition, our proposed method has the following several distinctive features: it eliminates
the requirement for precise reference anchors, expands the application scope of the system,
and solves the problem of limited number of nodes in MAV formation. Furthermore,
we have theoretically derived the system observability conditions and provided specific
expressions that guarantee the system positioning accuracy when the system satisfies the
observability conditions. We have verified the correctness of the observability theoretical
analysis through simulations and investigated the influence of different ranging errors on
the positioning accuracy and stability. Finally, we have demonstrated the superiority of the
proposed method through simulation comparisons with an existing method.

We have verified the proposed method through simulation experiments. To ensure that
the experiments are as close to reality as possible, the system parameters considered in this
paper are taken from the official datasheet of the sensor and previous research [32,38–40].
However, there is still a certain gap between simulation and reality, mainly in the follow-
ing aspects:

1. The presence of obstacles, wind conditions, and other environmental factors may
affect the performance of MAVs in practical applications.

2. Simulated noise cannot fully reflect the noise experienced by MAVs in actual applications.
3. There may be a certain difference in air pressure at the same altitude but different

horizontal positions due to the influence of factors such as atmospheric pressure,
temperature, and humidity, which may result in some spatial variations. In addition,
the scale of pressure gradient varies across different regions. As a result, the barometric
altimeter readings may be affected and may introduce some measurement bias.

4. In practical applications, the airflow generated by the movement of MAVs may have
an impact on the flight stability and control of MAVs.

These factors are difficult to model accurately in simulation experiments. Therefore,
actual verification will direct our research in the future.
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Appendix A.

Appendix A.1. Proof of Equation (5)

The relationship between the Earth-fixed North-East-Down coordinate system n and
the typical body-fixed coordinate system b is shown in Figure A1. The following unit
vectors are defined:

n1 ,
[
1 0 0

]T , n2 ,
[
0 1 0

]T , n3 ,
[
0 0 1

]T (A1)
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Figure A1. The relationship between the Earth-fixed North-East-Down (NED) coordinate system n
and the body-fixed coordinate system b.

The unit vectors along onxn, onyn, and onzn axes in n are represented by n1, n2, and n3,
respectively. The following relationships are satisfied by the unit vectors along obxb, obyb,
and obzb axes in b:

bb1 = n1, bb2 = n2, bb3 = n3 (A2)

Furthermore, the unit vectors along obxb, obyb, and obzb axes in n are represented by
nb1, nb2, and nb3, respectively.

The schematic diagram of the rotational relationship from the Earth-fixed North-East-
Down coordinate system n to the body-fixed coordinate system b is shown in Figure A2.
Assuming on1n2n3 is a right-handed Cartesian coordinate system, the following three
rotations are performed: First, the on1n2n3 system is rotated about the positive on3-axis by
an angle ϕ, resulting in the ok1k2k3 system, which shares the same oz axis as the on1n2n3
system. Next, the ok1k2k3 system is rotated about the positive ok2-axis by an angle θ,
resulting in the oe1e2e3 system, which shares the same oy axis as the ok1k2k3 system. Finally,
the oe1e2e3 system is rotated about the positive oe1-axis by an angle γ, resulting in the
ob1b2b3 system, which shares the same ox axis as the oe1e2e3 system. The rotation sequence
and the sign of each rotation angle can be denoted as ‘(+3)(+2)(+1)’, or simply ‘321’ by
omitting the plus sign, where the numbers 1, 2, and 3 represent the rotations about ox,
oy, and oz axes, respectively, and the plus sign in the parentheses indicates the positive
direction of rotation according to the right-hand rule.
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Figure A2. Define Euler angles by the 321-rotation sequence. (a) Yaw angle ϕ; (b) Pitch angle θ;
(c) Roll angle γ.

Assuming that the body angular velocity is bω =
[
ωxb ωyb ωzb

]T , the relationship
between the attitude change rate and the body angular velocity is given by the following
equation [41]:

bω =
.
ϕ·bk3 +

.
θ·be2 +

.
γ·bb1 (A3)

where,
bb1 =

[
1 0 0

]T (A4)

be2 = Rb
e · ee2 = Rb

e · n2 = Rx(γ) · n2

=

1 0 0
0 cos γ sin γ
0 − sin γ cos γ

0
1
0


=
[
0 cos γ − sin γ

]T

(A5)

bk3 = Rb
k·kk2 = Rb

k · n3 = Rx(γ)Ry(θ) · n3

=

 1 0 0
0 cos γ sin γ
0 − sin γ cos γ

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 0
0
1


=
[
− sin θ sin γ cos θ cos γ cos θ

]T

(A6)

According to Equations (A3)–(A6), the following equation is obtained:ωxb
ωyb
ωzb

 =

1 0 − sin θ
0 cos γ sin γ cos θ
0 − sin γ cos γ cos θ




.
γ
.
θ
.
ϕ

 (A7)

Then we can obtain the following expression by applying the inverse transformation
to Equation (A7): 

.
γ
.
θ
.
ϕ

 =

 1 0 − sin θ
0 cos γ sin γ cos θ
0 − sin γ cos γ cos θ

−1 ωxb
ωyb
ωzb


=

 1 sin γ tan θ cos γ tan θ
0 cos γ − sin γ

0 sin γ
cos θ

cos γ
cos θ

 ωxb
ωyb
ωzb


(A8)

where,
.
ϕ =

sin γ

cos θ
ωyb +

cos γ

cos θ
ωzb (A9)
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Since the yaw angles in both coordinate systems (h and b) are identical, the yaw rate in
the horizontal body-fixed coordinate system h is the same as that given by Equation (A9).
Therefore, Equation (5) is confirmed.

Appendix A.2. Proof of Equation (6)

According to the relationship between the direction cosine matrix and the equiva-
lent rotation vector, the transformation matrix from b to n in Figure A2 can be obtained
as follows:

Cn
b =


cos ϕ − sin ϕ 0

sin ϕ cos ϕ 0

0 0 1




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ




1 0 0

0 cos γ − sin γ

0 sin γ cos γ


=


cos ϕ cos θ − sin ϕ cos γ + cos ϕ sin θ sin γ sin ϕ sin γ + cos ϕ sin θ cos γ

sin ϕ cos θ cos ϕ cos γ + sin ϕ sin θ sin γ − cos ϕ sin γ + sin ϕ sin θ cos γ

− sin θ cos θ sin γ cos θ cos γ


(A10)

In this paper, we use the fixed-body horizontal coordinate system h, whose yaw angle
is the same as that of the typical fixed-body coordinate system b, and x-y plane is parallel to
that of the NED coordinate system n. Therefore, the transformation matrix from b to h is
equivalent to Cn

b with ϕ = 0, which is given by:

Ch
b =

 cos θ sin θ sin γ sin θ cos γ
0 cos γ − sin γ

− sin θ cos θ sin γ cos θ cos γ

 (A11)

Since this paper considers the two-dimensional case, according to Equation (A11), the
transformation matrix of Equation (6) can be obtained.
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