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Abstract: With the development of vehicle sensors, unmanned driving has become a research hotspot.
Positioning is also considered to be one of the most challenging directions in this field. Aiming at
the poor positioning accuracy of vehicles under GNSS denied environments, a lane-level positioning
method based on inertial system and vector map information fusion is proposed. A dead reckoning
model based on optical fiber IMU and odometer is established, and its positioning error is regarded
as a priori information. Furthermore, a map matching model based on HMM is built up. Three
validation experiments are carried out and experimental results show that the positioning error can
be reduced to less than 30 cm when driving for about 7 min, which proves the effectiveness of the
proposed method. Our work may provide a reference for the further improvement of positioning for
unmanned driving under GNSS denied environments.

Keywords: lane level positioning; vector map; GNSS denied; unmanned driving

1. Introduction

Unmanned driving technology has become a research hotspot with the development
and mass production of on-board sensors, which means that the vehicle can carry out
motion control by itself according to its own perception and understanding of the sur-
rounding environmental conditions, and reach the level of a human driver [1]. In order to
determine the position of the vehicle in the environment, the positioning module plays a
very important role in autonomous driving [2,3]. Traditional inertial navigation methods,
one of whose typical combinations is IMU (inertial measurement unit) and odometer can
achieve high-precision positioning in GNSS (Global Navigation Satellite System) denied
environment, but working for a long time will lead to error accumulation [4–6]. To solve
this problem, an integrated positioning method using other information to assist inertia is
proposed. Table 1 summarizes some representative integrated positioning methods.
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Table 1. Several representative integrated positioning methods applicable to GNSS denied environ-
ments.

Method Typical Work Advantage Disadvantage

SINS/OD [7] 1. High autonomy;
2. Low cost; 1. Error accumulation exists;

SINS/Altimeter [8] 1. Able to suppress divergence of altitude channel;
2. Low cost; 1. Low accuracy;

SINS/GMNS [9,10] 1. No accumulated error;
2. Work all-weather;

1. Vulnerable to interference;
2. Low reliability;

SINS + SMNS [11,12] 1. Low cost;
2. No accumulated error.

1. Difficulty in database collection;
2. Vulnerable to weather.

In order to promote positioning accuracy, the integrated positioning method based
on SINS/OD (Odometer) is proposed. However, it can only slow down the speed of error
accumulation, but cannot eliminate errors. Furthermore, in order to suppress the divergence
of the altitude channel, the integrated positioning method based on SINS/Altimeter is
proposed, but it still has low accuracy. Moreover, magnetic information is introduced
to improve the positioning accuracy so that the integrated positioning method based on
SINS/GMNS (Geomagnetic Matching Navigation System) has been developed. It can
work in all weather and its positioning error would not accumulate over time, but it is
sensitive to external magnetic field and has low reliability. In addition, the integrated
positioning method based on SINS/SMNS (Scene Matching Navigation System) also has
been proposed, which has the advantages of low cost and no accumulated positioning error.
However, it is difficult to collect the database and it is vulnerable to weather. Furtherly, the
inertial/visual integrated positioning method derived from this does not have the problem
of database collection, and it can achieve the mapping of the environment at the same
time, which is currently a research hotspot [13]. However, its computational complexity
is large, and it is still affected by the environment, which is not conducive to large-scale
promotion and application [14]. Beyond that, common sensors including lidar, camera and
millimeter wave radar have also been adopted [15–21]. Nevertheless, these schemes are
easily affected by the environment, resulting in larger error of positioning results [22]. As a
consequence, it is essential to seek an active positioning method that is not affected by the
external environment.

As a priori information, a vector map can provide position reference for an iner-
tial positioning system and is a very good auxiliary means [23]. With the development
of technology, digital maps become easy to obtain and store. Therefore, the integrated
positioning method based on inertial technology and map information fusion has great
application prospects in scenes such as underground parking lots and large-scale logistics
complex areas.

Positioning based on map matching is also a mainstream method of vehicle positioning
in the absence of satellite signal [24,25]. According to different reference information, it
can be divided into three categories: based on geometry, based on probability statistics
and based on road topology. Geometry-based methods can mainly be divided into three
types: point to point [26], point to line [27] and line to line [28]. The representative work
includes: Zeng et al. [29] proposed a method to describe the proximity of road network
and trajectory by curvature integral value. The similarity function of two adjacent GPS
points and corresponding candidate road segments was calculated according to the set
rules, and the proximity between them was regarded as the criterion of map matching.
Sharma et al. [30] restored the real track route of the vehicle through the GPS trajectory
data. The Fréchet distance was used to denote the matching degree between the GPS point
trajectory and the road network [31]. However, the positioning accuracy of this method
was 5.5 m, which could not meet the needs of automatic driving.
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Probability statistics-based methods give a certain probability value to each candidate
road segment through self-designed rules, so as to determine the optimal matching road
segment [32,33]. The representative work includes the following: Ochieng et al. [34] came
up with an improved probabilistic map matching algorithm to balance the inaccurate
positioning data and digital map data. The algorithm considered the error sources related
to the positioning sensors, the historical trajectory of the vehicle, the topology information
of the road network and the heading and speed information of the vehicle, and used
the probabilistic statistical method to identify the real road segment of the vehicle. Yue
et al. [35] proposed a cooperative probabilistic semantic map matching method to realize
semantic perception and cooperative localization. Semantic perception, probabilistic data
association and nonlinear model linearization were completed in an integrated framework.
A probabilistic semantic data association algorithm based on expectation maximization
was put forward. The test results in the public dataset showed that the method had good
robustness and accuracy.

Road topology-based methods mainly limit the number of candidate road segments
corresponding to each sampled point by using the historical sampled point parameters,
vehicle speed and the topological relationship of spatial road network. The representative
work includes the following: Quddus et al. [36] proposed an improved weighted topology
matching algorithm, which combined the weights of factors such as heading, projection
distance and correlation between segments, and selected the optimal segment with the
largest weight by calculating the weight of each sampled point and candidate segment.
However, the algorithm did not take the historical location point data into account, so the
matching and positioning accuracy were not high. Velaga et al. [37] came up with a map
matching algorithm based on weighted topology on the basis of Quddus’s work, taking the
two factors of curve restriction and road connectivity into account. The algorithm had high
matching accuracy in simple urban roads or suburban segments, but it could not achieve
ideal results in complex urban road networks such as overpasses and intersections. Yang
et al. [38] optimized Velaga’s method by taking the vehicle heading angle, the distance
from the sampled point to the candidate road segment, the connectivity of the road in the
road network and the turning restrictions as the weights. The influencing factors were
added to the weight function as much as possible, and the optimal road segment was
selected according to the weight value. However, the algorithm was still not suitable for
datasets with complex roads and low-frequency sampling. He et al. [39] further improved
the algorithm proposed by Yang. A matching algorithm based on weight function was
designed. Considering the density and complexity of the road network, the road segment
near each GPS point was selected as the candidate road segment. Before assigning the
candidate road segment to each GPS point, the confidence was calculated and considered
based on the density and complexity of the road around the sampled point, but the
algorithm could not correctly match the road segment when the vehicle was waiting for the
traffic signal, and it was sensitive to low-speed driving in a complex matching environment.
Sharath et al. [40] proposed a dynamic two-dimensional map matching algorithm based
on weight. The algorithm represented the road segment information as a grid array with
reference to the road centerline, and designed four weight coefficients: road connectivity,
vehicle motion state, vehicle steering prediction and proximity. It could only use GPS and
open source map data for lane level positioning, but the positioning accuracy was low, and
the average horizontal positioning accuracy was only 2.82 m.

With the development of intelligent transportation system (ITS), an integrated map
matching algorithm considering many factors such as sampled point trajectory shape,
road network topology and location and orientation system error is proposed. The most
common method is based on Hidden Markov model (HMM). HMM-based methods were
firstly proposed by Newson et al. in 2009 [41]. Many typical studies appeared later, such as
map matching combining spatial analysis and temporal analysis [42], and adding direction
analysis [43,44]. Recently, Xie et al. [45] designed an accurate off-line map-matching (OM2)
system, which contained three key modules: pre-processing, map-matching based on
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weight adaptation HMM (WA-HMM) and post-processing. Evaluation results showed
that the positioning accuracy and matching accuracy are 1.3 m and 98% separately. The
comparison of several typical map matching algorithms is listed in Table 2.

Table 2. Comparison of several representative map matching algorithms.

Specific
Algorithm

Typical
Work Type Information

Source
Positioning

Accuracy

Line to line [24] Geometry-based GPS 5.5 m (80%)
Enhanced probability

statistics [29] Probability
statistics-based GPS —— (85%)

Weighted topology
matching [33] Road

topology-based GPS 2.82 m (84%)

HMM [38] Integrated map
matching GPS 1.3 m (98%)

It should be noted that the satellite positioning system also includes Beidou, Galileo
and GLONASS. However, the information provided by these satellite navigation systems is
the same as GPS. As a consequence, the matching process is similar regardless which global
navigation satellite system is used. Therefore, only typical map matching methods related
to GPS are introduced. It can be seen from Table 2 that the positioning error of typical map
matching methods based on GPS are several meters, which cannot meet the requirements
of automatic driving.

To summarize, currently, most of the map matching algorithms take GNSS data as
the analysis basis, and cannot complete the map matching work in a GNSS denied area,
such as “urban canyon” and underground garages [46]. Moreover, the existed integrated
positioning methods based on map matching select road segments through experience for
the reason that the positioning error of satellites does not exhibit certain mathematical laws.
Compared with MEMS (Micro-Electro-Mechanical System) inertial measurement unit, the
short-term accuracy of optical fiber inertial measurement unit is higher, but the long-term
error will still accumulate greatly. Using a high-performance fiber optic IMU makes a
major difference in terms of dead-reckoning, which together with the data from the vehicle,
makes the solutions easier when compared with low-cost MEMS-type IMUs. Inspired by
those ideas, a lane level positioning method for unmanned driving based on inertial system
and vector map information fusion applicable to GNSS denied environments has been put
forward. The main contributions are listed as follows:

(1) An integrated positioning method based on inertial technology and vector map
information fusion is proposed, which is applicable for GNSS denied environments
such as underground parking lots and large logistics complex areas;

(2) The matching strategies are established, and the inertial positioning error model is
used as a basis to select candidate road segments;

(3) Validation experiments have been conducted out in an underground parking lot, and
the results show that the positioning error for driving 5 km has been reduced from
the meter level to within 30 cm.

The remainder of this article is arranged as follows: Section 2 defines the coordinate
system; Section 3 introduces the scheme of integrated positioning method based on inertial
system and vector map information fusion; the dead reckoning principle and map matching
model are explained in Sections 4 and 5, respectively; Sections 6 and 7 introduce the optimal
path selection and evaluation method separately; experiments and analysis are carried out
in Section 8; conclusions are drawn in Section 9.

2. Definition of the Coordinate System

Vehicle body coordinate system (oxbybzb, b-frame): The origin is located in the center
of gravity of the vehicle, with xb axis pointing to the right along the horizontal axis, yb
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axis pointing forward along the longitudinal axis, and zb axis pointing upward along the
vertical axis, completing the right-hand set.

Navigation frame (oxnynzn, n-frame): xn points to the east, yn points to the north, and
zn points to the sky, which composes the right-hand coordinate.

Inertial frame (oxiyizi, i-frame): The origin is located in the center of Earth, with oxi and
oyi axes in the equatorial plane. oxi points to the vernal equinox and ozi is Earth’s rotation
axis, pointing to the Arctic.

3. Overall Design of the Lane Level Positioning Method

Figure 1 shows the overall scheme of the proposed positioning method, which mainly
contains three parts. Firstly, the sampled point sequence can be obtained by the inertial
navigation system, which consists of optical fiber IMU and odometer. Secondly, the map
matching model based on HMM is established, which contains data preprocessing and
candidate segment selection. The input of this part is the vector map and the sampled point
sequence. Its output are the candidate segments. Finally, the optimal path is solved based
on Viterbi algorithm, and the positioning results are given.
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4. Dead Reckoning Principle Based on Optical Fiber IMU/Odometer

Dead reckoning is a process of estimating the vehicle’s trajectory and the coordinates
of the current position relative to the initial position by using the navigation parameters
such as the carrier’s attitude and speed, which are shown in Figure 2.
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Taking n-frame as a reference, the attitude differential equation can be written as:

.
C

n
b = Cn

b (ω
b
nb×) (1)

where ωb
nb denotes the angular rate under b-frame relative to n-frame, (×) represents

the antisymmetric operation and (·) means the differential operation. Cn
b represents the

transformation matrix from b-frame to n-frame.
The output of the fiber optic gyroscope is the carrier’s angular rate under i-frame,

which can be expressed as:
ωb

ib = ωb
nb + Cb

nωn
in (2)

where ωb
ib means the carrier’s angular rate under i-frame, ωn

in is the angular rate under

n-frame relative to i-frame and Cb
n =

(
Cn

b
)T .

The odometer obtains the speed and displacement of the vehicle by measuring the
wheel speed information during the vehicle driving process, taking the speed constraint
into consideration; that is, there is speed only in the front direction. As a consequence, the
speed of the vehicle can be written as:

vb
D =

[
0 vb

D 0
]T

=
[
vb

DE vb
DN vb

DU
]T (3)

where vb
D denotes the vehicle’s speed and the superscript b indicates that it is under

b-frame. vb
D refers to the forward speed measured by the odometer and vb

DU is the vertical
component. vb

DN and vb
DE are the east and the north component of the vehicle’s speed

under b-frame, respectively.
Equation (4) can be obtained by converting vb

D to n-frame:

vn
D = Cn

b

 0
vb

D
0

 =

vn
DE

vn
DN

vn
DU

 (4)

where vn
D is the output velocity output by the odometer under n-frame. vn

DE, vn
DN and vn

DU
are the east, the north and the vertical component of the vehicle’s speed under n-frame
separately.
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The differential equation of dead reckoning can be obtained according to the odome-
ter’s output, which can be expressed as follows:

.
LD =

vn
DN

RMhD.
λD =

vn
DE sec LD

RNhD.
hD = vn

DU

(5)

Changing Equation (5) into vector form:

.
pD = MpvDvn

D (6)

where pD =
[
LD λD hD

]T, LD is the latitude calculated by dead reckoning, λD is the
longitude computed by dead reckoning and hD is the height determined by dead reckoning.

The following relationship comes into existence:{
RMhD = RMD + hD
RNhD = RND + hD

(7)

where RMD and RND are the radius of curvature in prime vertical in meridian circle and
prime vertical separately. On the other hand, MpvD can be obtained by Equation (8):

MpvD =

 0 1/RMhD 0
sec LD/RNhD 0 0

0 0 1

 (8)

In the attitude differential equation (Equation (1)), the speed of IMU is replaced by
the speed output by the odometer, and the latitude estimated by IMU is replaced by that
of dead reckoning. So, the attitude matrix differential equation of dead reckoning can be
obtained as follows: .

C
n
b = Cn

b (ω
b
ib×)− (ωn

in×)Cn
b (9)

Furthermore, Equation (10) also holds:
ωn

in = ωn
ie + ωn

en

ωn
ie =

[
0 ωie cos LD ωie sin LD

]T
ωn

en =
[
−

vn
DN

RMhD

vn
DE

RNhD

vn
DE

tan LD
RNhD

]T
(10)

where ωn
ie is the angular rate caused by the Earth’s rotation under n-frame and ωn

en denotes
the angular rate caused by the change of carrier’s speed. ωie denotes the velocity of the
earth’s rotation, which is usually taken as 15◦/h.

In combination with Equations (3)–(10), the attitude and position update of the vehicle
can be obtained.

5. Map Matching Model Based on HMM

HMM is often used in time series data modeling in various fields. Usually, the
observation sequence and transition relationship are known to solve the hidden sequence,
and the Viterbi algorithm is a typical solution algorithm. The model diagram applicable to
the application scenario of this paper is shown in Figure 3.

As shown in Figure 3, the observation sequence and the hidden sequence correspond
to the sampled point and the optimal road segments, respectively. The purpose of this paper
is to set up a reasonable transfer relationship, so as to solve the optimal road segments.
Different from the existing methods, we take the positioning error of the inertial system as
a priori information to select the candidate road segments. The specific implementation of
the model will be described in detail below.
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5.1. Selection of Candidate Road Segments

In order to limit the number of candidate road segments, only the road segments near
the sampled points sequence are taken as the hidden state set. The candidate road segments
set is obtained by establishing the positioning circle, which is shown in Figure 4.
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Assuming that point ot is the sampled point of dead reckoning system at time t, we
can obtain the positioning circle with point ot as the center and r as the radius. It can be
seen from Figure 4 that segment q1 and q2 intersect with the positioning circle, so they are
selected as candidate segments. Obviously, the value of the radius determines the number
of candidate road segments. In order to be more reasonable, the radius of the positioning
circle is designed according to the positioning error of the dead reckoning system.

5.2. Initial Distribution Probability

By designing the positioning circle, the candidate road segments that meet certain
conditions are selected as the hidden state set in HMM. On the premise of knowing the set
of hidden states Q, it is essential to compute the initial distribution probability to obtain the
complete parameter of HMM. The initial distribution probability means the possibility of
observing the first sampled point in each segment at the initial time, which can be expressed
by the Euclidean distance to each candidate segment. Figure 5 explains its principle.
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As shown in Figure 5, the road segment e3e4 is equal to MN. o1, o2 and o3 are three
sampled points obtained by the dead reckoning system. Their coordinates are (x1, y1),
(x2, y2) and (x3, y3), respectively. M and N are the two endpoints of the road segment,
whose coordinates are (m1, n1) and (m2, n2) separately. When calculating the Euclidean
distance from the sampled point to the candidate road segment, it is mainly divided into
two cases: the foot point of the dead reckoning sampled point is on the road segment or on
the extension line on both sides of the road segment. When the point is o1 in Figure 5, its
foot point is P, which is on the line MN. Consequently, the Euclidean distance from o1 to
the candidate road segment is the length of h1, which can be computed by Equation (11):

h1 =
|x1(n2 − n1)− y1(m2 −m1)− (m1n2 −m2n1)|√

(m2 −m1)
2 + (n2 − n1)

2
(11)

When the projection of the sampled point is on the extension line of the candidate
segment, for the reason that the extension line of the road segment has only mathemat-
ical meaning and no physical meaning, and does not exist in the actual vector map, the
Euclidean distance between the positioning point and the foot point on the extension line
of the line segment cannot be used as the distance between the sampled point and the
candidate segment. At this time, the distance from the sampled point to the candidate
segment is calculated according to the distance between the sampled point and the nodes at
both ends of the candidate segment. Taking o3 for example, it is obvious that its projection
h3 is smaller than h2. Therefore, the Euclidean distance between o3 and the candidate
segment is h3, which can be calculated by Equation (12):

h3 =

√
(x3 −m1)

2 + (y3 − n1)
2 (12)

After obtaining the distance information, the initial distribution probability function is
defined as:

∏ = 1/h (13)

where h is the Euclidean distance between the sampled point and the candidate segment.

5.3. Transition Probability

Transition probability describes the probability of transition from one state value to an-
other at the current time. In our proposed method, transition probability p

(
it+1 = qj|it = qi

)
means the probability of transition from segment qi to qj. it+1 means the sampled point at
time t + 1. The frequency of the sampled points sequence obtained by the dead reckoning
system is 10 Hz, illustrating that the average distance between two adjacent sampled points
is about 1.4 m~2.2 m. Furthermore, the average length of road segments in the vector map is
generally more than 10 m. As a consequence, the correct matching segment corresponding
to the sampled point at the current time is the same or directly connected with the matching
segment at previous time. So, the transition probability of the situation that two adjacent
sampled points belong to the same candidate segment can be calculated by Equation (14):

p(it+1|it) =
Dmean − d(ot → ot+1)

Dmean
(14)

where Dmean denotes the average length of the candidate segments set, d(ot → ot+1) means
the distance between two adjacent sampled points.

On the contrary, the transition probability of the situation that the two adjacent sam-
pled points belong to two directly connected segments can be computed by Equation (15):

1− p(it+1|it) =
d(ot → ot+1)

Dmean
(15)
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5.4. Observation Probability

The observation probability P
(
ot
∣∣it = qj

)
is defined as the probability that the sampled

point it belongs to the candidate segment qj, which can be expressed as Equation (16):

p
(
ot
∣∣qj
)
=

1/d
(
ot → qj

)
N
∑

l=1
1/d

(
ot → qj

) (16)

where N means the number of candidate segments, d
(
ot → qj

)
represents the Euclidean

distance between the sampled point it and the candidate segment qj.

6. Optimal Path Selection Based on Viterbi Algorithm

The Viterbi algorithm recurses the state value probability at each time, and takes the
last time as the termination condition to obtain the joint probability of the optimal path at
the previous time, which can be described as Equation (17):

Pjoint = Π · PT · PO (17)

where Pjoint is the logarithmic joint probability; PT and PO are transition probability and
observation probability, respectively.

According to the known candidate road segment set Q = {q1, q2, · · · , qN} and sam-
pled point sequence obtained by dead reckoning system I = {i1, i2, · · · , iT}, based on
the Viterbi algorithm, through local state recursion and state backtracking, the real road
segment that the vehicle has traveled can be obtained. Algorithm 1’s pseudo code is shown
as below.

Algorithm 1: Viterbi Algorithm

Input: Collection of candidate road segments Q = {q1, q2, · · · , qN},
Sampled points set I = {i1, i2, · · · , iT}
Output: Optimal Segment Sequence Q′ =

(
q′1, q′2, · · · , q′T

)
1: Let P denote the highest score;
2: Let Q [ ] denote the set of the optimal segments;
3: t← 1
4: Set i
5: for j← 1 to N do
6: P1 = Πj

7: q′1 = qj
8: Q = Q + q′1;
9: end for
10: for t← 2 to T do
11: for j← 1 to N do
12: Pj = Pj

T · P
j
O

13: q′t = qj
14: Q = Q + q′t
15: end for
16: end for
17: return Q′ =

(
q′1, q′2, · · · , q′T

)
After the optimal matching road segments are obtained, the sampled point needs

to be projected on the road segment to obtain the final positioning result. In this paper,
the sampling frequency of the sampled point obtained by the dead reckoning system is
10 Hz, which belongs to high-frequency positioning data in the field of map matching.
Therefore, the vertical projection method is finally used to project the sampled point to the
optimal matching road segment. When the pedal is on the road segment, then it is the final
estimated position corresponding to the sampled point. When the pedal is on the extension
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line of the road segment, then the end point of the road segment closest to the sampled
point is the final estimation position.

7. Evaluation Method

Combined with the established model, three evaluation methods are used to evaluate
the correctness of the model. Firstly, the driving route of the test vehicle has been planned
in advance, so the real road segments that the test vehicle traveled are manually marked as
the ground truth. In addition, they are matched with the optimal matching path identified
by the Viterbi algorithm. For comparison, the correct rate of road segment matching is
measured by defining the recall rate, which can be written as:

Recall =
|TP|

|TP|+ |FP| × 100% (18)

where |TP| is the number of the correctly identified road segments; |FP| is the number of
the wrongly identified road segments on the contrary.

In order to measure the projection accuracy of the sampled point in the optimal
matching road segment, the correct matching percentage (CMR) is defined as:

CMR =
NT

NT + NF
× 100% (19)

where NT is the number of correctly matched points and NF is the number of wrongly
matched points.

The positioning error of the whole method is defined as Equation (20):

PE =
S1

N3
(20)

where S1 is the sum of the distance between the sampled pointed and the ground truth
after or before matching, N3 is the total number of sampled points.

8. Experiment and Discussion

Based on the above analysis, this section carries out the verification experiment. The
verification experiments are implemented in the park of an automobile company in Beijing,
and the vector map, which is shown in Figure 6, is also provided by the company. The
specific forms of the vector map are high-precision longitude and latitude coordinate pairs,
which are collected and calibrated by laser radar and a high-precision optical fiber inertial
measurement unit. The accuracy of the vector map can reach the centimeter level. The
segments concluded in the red box in Figure 6, shown in Figure 7, are the underground
garage, where the proposed positioning scheme is verified.

The vehicle used in the experiment and the detailed device configuration are shown
in Figures 8 and 9, respectively. The specific parameters of the optical fiber IMU used in
the validation experiments are listed in Table 3. The odometer used in the experiment is
provided by the vehicle itself.
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unit, 4©: CAN module, 5©: MOXA module, 6©: Acquisition computer.



Drones 2023, 7, 239 14 of 20

Table 3. The specific parameters of the optical fiber IMU used in the validation experiments.

Device Parameter Value

Fiber optic
gyroscope

Range ±400◦/s
Bias stability ≤0.1◦/h (1 σ)

Bias repeatability ≤0.1◦/h (1 σ)
Random walk coefficient ≤0.02◦/

√
h

Scale factor nonlinearity ≤100 ppm
Scale factor repeatability ≤100 ppm

Bandwidth ≥200 Hz

Accelerometer

Range ±20 g
Bias stability ≤0.2 mg (1 σ)

Bias repeatability ≤0.2 mg (1 σ)
Random walk coefficient ≤100 ppm
Scale factor nonlinearity ≤100 ppm
Scale factor repeatability ≥200 Hz

In addition, the test vehicle is equipped with a high-precision inertial navigation
system whose output trajectory is regarded as the ground truth to measure the error of the
proposed method. Its gyroscope and accelerometer bias are 0.01◦/h and 50 ug, respectively.

A total of two validation experiments have been carried out, and the specific conditions
are described as follows:

Case 1: The vehicle starts from the northeast corner of the map and drives along the lane line
to the southwest corner of the map. The vehicle drives eight laps in the underground
garage. The red line in Figure 10 represents the track of the vehicle. A curve is selected
in the lower right corner of Figure 10 and enlarged locally for better visualization.

Case 2: The vehicle drives one lap in the underground garage. There are more curves and
more complicated road conditions.
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In both cases, the vehicle’s speed is about 30 km/h.
The initial positions of the two cases are the positions when the satellite signal is

missing, which can be judged according to the flag of the data. The trajectories obtained
by the inertial system of the second and eighth lap in case 1 are selected for verification.
Similarly, the trajectory in case 2 is also selected for verification. For convenience, we define
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that S1 and S2 denote the trajectories obtained by the inertial system of the second and
eighth lap in case 1, respectively. S3 represents the trajectory in case 2. The frequency of the
trajectory obtained by the inertial system in this paper is 10 Hz.

Based on the characteristics of inertial system error accumulation over time, the radius
of the positioning circle of S1, S2 and S3 is set to 5 m, 10 m and 5 m, respectively. The
candidate road segment set is obtained according to the inertial trajectory, positioning circle
and vector map. Among them, the set of candidate segments corresponding to S2 are shown
in Figure 11. The number of sampled points, actual driving distance, inertial calculation
distance, positioning circle radius and the number of candidate segments corresponding to
the three trajectories are summarized in Table 4.
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Table 4. Some parameters of three experiments.

Trajectory Number of
Sampled Points

Real Driving
Distance (m)

The Radius of the
Positioning Circle (m)

Number of
Candidate
Segments

S1 1457 420 5 67
S2 1368 420 10 78
S3 2230 550 5 71

It can be seen from Table 4 that the radius of the positioning circle directly affects the
number of candidate segments and indirectly affects the execution time of the algorithm.
Obviously, the sampled points corresponding to trajectory S2 are the least, but the candidate
segments are the most for the reason that the radius is the largest. Furthermore, the number
of sampled points of trajectory S3 is obviously more than S1, but there is little difference
between the candidate segments, illustrating that one candidate road segment contains
many sampled points. It also proves the rationality of the principle of transition probability.

After obtaining the candidate segments set, it is necessary to further calculate the initial
distribution probability, transition probability and observation probability, so as to obtain
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the optimal matching segments set. The initial distribution probability and observation
probability are calculated based on the Euclidean distance from the sampled point to the
candidate road segment, which has been described in Section 5. The parameters required to
calculate the transition probability are summarized in Table 5. As can be seen from Table 5,
the distance between adjacent sampled points corresponding to trajectory S2 is greater than
trajectory S1 and S3. The potential reason may be that the error of trajectory S2 is relatively
large, because the test vehicle has been driving for a long time in the underground garage.

Table 5. The parameters required to calculate the transition probability.

Trajectory Average Length of
Candidate Segments (m)

Average Distance between Adjacent
Sampled Points (cm)

S1 27.0 30.8
S2 30.2 49.8
S3 27.7 26.3

The Viterbi algorithm is used to optimize the path of the candidate segments set of
three experiments, and the optimal matching segments set is obtained. Among them, the
optimal matching segments corresponding to trajectory S2 is shown in Figure 12. Finally,
the final location results can be obtained by projecting the sampled points onto the optimal
candidate road segments.
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In the process of optimal segment matching, there will be mismatching. The black
circle in Figure 12 represents a typical example. The place represented by the black circle is
a trigeminal intersection, which is composed of two segments into one segment. Figure 13
shows the specific situation of the black circle. As can be seen in Figure 13, the red points
denote the sampled points; on the other hand, the black points represent the projection
points. It can be seen from the trajectory of the red points that the test vehicle is driven in a
straight line. However, the result of our algorithm is from straight line to curve, which is
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definitely unreasonable. In more detail, when approaching the curve, the sampled points
are closer to the curved segment than the straight segment, which directly causes the wrong
matching result.
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In general, the current model depends on the distance to select the road segments,
which has limitations. As a consequence, the wrong matching result specifically provides
ideas for the improvement of the model. For instance, if the direction information of the test
vehicle were taken into consideration, the situation shown in Figure 13 would not occur.

According to the evaluation method proposed in Section 7, the results of the three
experiments are summarized in Table 6. Based on the gyroscope and accelerometer in
Table 3 and the odometer provided by the vehicle, we can obtain the driving trajectory of the
carrier. Comparing this trajectory with the ground truth, we can compute the positioning
error of the inertial system, which is the ‘PE before matching’ in Table 6. Obviously, without
map matching, the positioning errors of three experiments are 0.59 m, 1.03 m and 0.84 m,
respectively. Then, we use the proposed integrated positioning method to estimate the
vehicle’s driving trajectory, which is compared with the ground truth. As a consequence,
the corresponding positioning error of the proposed method can be obtained, which is the
‘PE after matching’ in Table 6. It is not difficult to see that the positioning errors of the
proposed integrated positioning methods corresponding to trajectory S1, S2 and S3 are
0.12 m, 0.24 m and 0.18 m, respectively.

Compared to inertial system, the positioning error is greatly reduced, demonstrating
the effectiveness of the proposed method. In addition, the proposed method is not affected
by the environment. As long as the vector maps are collected in advance, they can be
reused, facilitating large-scale promotion and application in GNSS denied environments
such as underground parking lots and large logistics complex areas.
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Table 6. Comparison of positioning accuracy of three test experiments.

Trajectory Recall CMP PE before
Matching (m)

PE after
Matching (m)

Time of
Running (s)

S1 100% 100% 0.59 0.12 29.38
S2 94.4% 98.57% 1.03 0.24 20.18
S3 100% 99.1% 0.84 0.18 47.43

Furthermore, it can be seen that the recall corresponding to trajectory S1 and S3 is
100%, which represents that all the optimal road segments are the actual driving segments
of the test vehicle. Actually, the inertial positioning errors of these two trajectories are
small because the test vehicle does not travel for a long time. The positioning errors after
matching have been reduced to lower than 20 cm, which also exactly proves the superior
performance of the proposed method when the inertial error is small. For trajectory S3,
more complex road conditions directly lead to lower accuracy. On the other hand, the
inertial error of trajectory S2 is large, so the recall is 94.4%, which is smaller than others.

The experimental results show that the proposed method can achieve lane level
positioning accuracy under the GNSS denied environments. In terms of running time,
the number of sampled points play a decisive role, which also brings a new problem. If
there is a need for real-time performance, the proposed algorithm still needs to be further
optimized.

9. Conclusions

At present, most map matching algorithms take GNSS trajectory as a priori infor-
mation to estimate the real driving trajectory of vehicles, which is not applicable under
GNSS denied environments. However, the error of inertial system will accumulate over
time and it cannot provide good performance for a long time. Aiming at the demand of
unmanned driving for high-precision positioning, this paper puts forward a lane level
positioning method based on inertial system and vector map information fusion. The
trajectory obtained from dead reckoning and vector map are regarded as priori informa-
tion; lane level positioning results are obtained based on the established map matching
model. Experimental results show that the positioning error of the proposed method is
less than 30 cm when driving for about 7 min, which meets the application requirements
of unmanned driving. However, the proposed method can be optimized by adding head-
ing information to avoid false matches and improving real-time performance. Moreover,
further optimization and evaluation of the proposed method through longer distance and
more reasonable probability function will be carried out in the next work.
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