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Abstract: Parkinson’s disease (PD) is characterized by a variety of motor and non-motor symptoms,
some of them pertaining to gait and balance. The use of sensors for the monitoring of patients’
mobility and the extraction of gait parameters, has emerged as an objective method for assessing the
efficacy of their treatment and the progression of the disease. To that end, two popular solutions are
pressure insoles and body-worn IMU-based devices, which have been used for precise, continuous,
remote, and passive gait assessment. In this work, insole and IMU-based solutions were evaluated
for assessing gait impairment, and were subsequently compared, producing evidence to support
the use of instrumentation in everyday clinical practice. The evaluation was conducted using two
datasets, generated during a clinical study, in which patients with PD wore, simultaneously, a pair
of instrumented insoles and a set of wearable IMU-based devices. The data from the study were
used to extract and compare gait features, independently, from the two aforementioned systems.
Subsequently, subsets comprised of the extracted features, were used by machine learning algorithms
for gait impairment assessment. The results indicated that insole gait kinematic features were highly
correlated with those extracted from IMU-based devices. Moreover, both had the capacity to train
accurate machine learning models for the detection of PD gait impairment.

Keywords: Parkinson’s disease; gait analysis; instrumented insoles; IMU sensors; digital biomarkers;
sensor fusion; wearable sensors

1. Introduction

Gait is a basic characteristic of human life deeply tied to the quality of life [1]. While
it is usually taken for granted, gait as an activity is complex and rich in information. The
analysis of the human gait is the sequential analysis of movement, and it consists of the
estimation and assessment of the quantified characteristics of human locomotion. In a clini-
cal context, information regarding an individual’s gait, is paramount to diagnosing various
underlying medical conditions, especially neurological, further enabling the monitoring of
the progression of the symptoms, as well as the overall quality of life of patients [2]. More
specifically, in the case of PD, evaluating the extent of an individual’s gait impairment
is one of the most important aspects of the neurological examination [3]. At the same
time, it is also the most daunting. Gait disturbances exhibited in Parkinson’s disease are
multifaceted, with their manifestations being hard to identify, as they change and increase
in complexity, depending on the disease’s stage [1,3].
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The current standard practice for mobility evaluation in Parkinson’s disease is based
on in-person, observational, clinical assessments with the help of validated, standardized
questionnaires (such as the Unified Parkinson’s Disease Rating Scale— UPDRS) [4,5]. As
physicians are evaluating mobility based on their experience, this procedure is inaccurate,
and to a large extent subjective [2]. Moreover, the evaluation itself, normally performed
in a hospital, clinic, or physician’s office, cannot capture the full spectrum of a patient’s
symptomatology. Certainly, it cannot provide a holistic view regarding the magnitude
of the symptoms during the day, when the patients perform their daily activities in their
environment. Clinical mobility evaluation has not progressed enough through the years
because the most important factors physicians take into consideration are the time it takes to
evaluate the mobility of a patient [4], as well as the complexity of the equipment they use [2].

Ideally, mobility evaluation for Parkinson’s disease should be instrumented and based
on a continuous monitoring paradigm, that follows patients throughout their day, capturing
rich information in their natural environment. Monitoring patients during their normal
daily routines is essential for understanding their state, as well as the progression of
their symptoms, especially in diseases with complex symptomatology and fluctuating
motor symptoms [6]. Gait analysis in research settings has come a long way, facilitated
in part by advancements in affordable and easy-to-use instrumentation [2,5], as well as
new methods for gait analysis. Some examples include methods for IMU sensors [7,8],
pressure insoles [9], radars [10], cameras [11,12], etc. Through instrumentation, a plethora
of gait parameters has been identified (e.g., spatiotemporal, kinematic, kinetic, etc.) [4,5,13]
enabling the quantification of human gait of a diverse set of populations (e.g., healthy or
patient individuals, etc.) [4,14].

It is evident that there is a disparity in the quality of information acquired through
gait analysis between clinical and research contexts, hence there is a need for clinicians to
move forward and update their practices. Currently, two of the best approaches towards
this endeavor lie in the development and use of medical devices for clinical gait analysis
using instrumented insoles and IMU sensors. IMU sensors have recently been integrated
into clinical practice as the most frequently used type of sensor for gait analysis [15] and,
maybe more importantly, into the homes of patient populations, enabling reliable, real-
time, continuous monitoring [16]. On the other hand, pressure insoles are the second
most frequently used sensor for monitoring gait, although they are most often used as
the baseline for validating data from IMU sensors [15]. In any case, both types of devices
(insoles and IMU-based) are currently dominating the landscape of clinical gait analysis,
albeit, usually complimenting one another (i.e., insoles acting as the ground truth for the
IMU sensors), or being utilized in tandem as building blocks of various devices. The latter
approach provides even richer motion data by combining the strength of both sensors [15].

Data from instrumented insoles and IMU sensors have been utilized in many appli-
cations for monitoring the mobility of impaired patients with Parkinson’s disease. Signal
processing and statistical techniques have been used, with data generated from instru-
mented insoles, for the evaluation of gait impairment symptoms exhibited in Parkinson’s
disease, as well as for quantifying weight-bearing, balance, and mobility of patients, in both
everyday scenarios and standardizing test setups (TUG test) [17,18]. Similarly, IMU-sensor
data have been used for extracting gait events and spatiotemporal gait characteristics,
such as initial foot contact (IC) and final foot contact (FC) in patients with Parkinson’s
disease [19–21]. Machine learning techniques have been implemented for the classification
of tasks such as differentiating between healthy subjects and patients, as well as for motor
status discrimination [5,22,23]. All in all, IMU sensors, alongside insole solutions, have en-
abled the development of medical devices [16,24], that are not only accurate and affordable,
but also easily and comfortably wearable.

Having seen the strides made recently by the research community in gait analysis,
along with the obstacles impeding their adoption by physicians during routine clinical
practice, there is a realization that there is a significant need for further evidence. This
work tries to fill this gap by evaluating both instrumented insoles and wearable IMU-
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based monitoring devices for assessing gait impairment in patients with Parkinson’s
disease. Specifically, the aim of this endeavor is to provide new insights by achieving the
following goals: First, to compare the performance of instrumented pressure insoles and
IMU sensors when applied to the same task. The accuracy and robustness of their outputs
will be evaluated separately. Second, to combine motion data acquired from instrumented
pressure insoles and IMU-based monitoring devices with the goal of providing a more
comprehensive assessment of gait characteristics in impaired patients. This sensor fusion
approach will augment the extracted gait features and offer physicians a highly detailed
representation of the patient’s motor symptoms. Third, to evaluate the strengths and
weaknesses of each system considering specific clinical use cases.

2. Materials and Methods

The evaluation of the IMU and the insole data for gait assessment of patients with
Parkinson’s disease was conducted using a dataset generated during a study employing
the “Smart-Insole Gait Assessment Protocol” [25]. The primary goal of the protocol was
the evaluation of motor symptoms exhibited in the lower extremities of patients with
Parkinson’s disease. The parts of the protocol that are relevant to this work, as well as
the participants that took part in the study, are described in Section 2.1. The insole- and
the IMU-generated data, along with the data processing pipelines, resulting in extracted
gait features are explained in Sections 2.2 and 2.3 respectively. The methods used for gait
impairment detection are presented in Section 2.5.

2.1. Test Protocol and Participants

For the study, 19 patients diagnosed with Parkinson’s disease were recruited and
subsequently requested to complete a set of 5 specialized tests, while wearing both a pair
of pressure insoles and a set of wearable IMU sensors. Each patient performed the tests in
both the ON and the OFF states. In all cases, the participants were recorded on video and
observed by neurologists, specializing in movement disorders. The neurologists evaluated
the performance of each participant based on the MDS-UPDRS questionnaire [26]. The
video recordings were used solely for the evaluation of the participants, as well as for
annotating the dataset. Information regarding the demographics of the participants, their
disease status, and medication is presented in Table 1. For the purposes of this work, data
generated during the “Walk Straight and Turn Test” (described in detail in [25]) were used,
along with expert ratings of the Item 3.10 (Gait) of the MDS-UPDRS questionnaire. During
the test, the participants had to walk in a straight line for 10 m, then turn around and
return to their original starting position. The test was repeated twice (per patient state)
and performed at three different speeds (slow, normal, and fast). The distribution of the
expected ratings of Item 3.10 (Gait) for the 19 patients is presented in Table 2.

2.2. Insole Data and Processing

The insole data were generated with a pair of Moticon ReGo instrumented insoles
(specifically, Model Insole 3), manufactured by Moticon ReGo AG (Munich, Germany). The
insoles were fitted inside a pair of off-the-shelf lightweight and flexible shoes. Figure 1
presents the position of the pressure and the IMU sensors in an insole, with each black
cell in the image representing a pressure sensor. Those insoles included 16 capacitive-type
pressure sensors, as well as a 6-axis Inertial Measurement Unit (IMU) sensor capturing
acceleration and angular velocity information. All the data derived from the pressure
insoles were calibrated at the initiation phase of the data collection by using a zeroing func-
tion provided by Moticon ReGo AG. The data recording was performed with a sampling
rate of 100Hz and each recording included a total of 51 features. From those 51 features,
25 correspond to features extracted from the left insole, and 25 from the right insole, with
the remaining feature being the timestamp of the data acquisition. Each instrumented
insole generated the following data: a pressure value for each of the 16 pressure sensors
(N/cm2), an acceleration (g) and angular velocity (dps) value for each of the x, y, and z
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axes, the computed center of pressure in the x, y coordinates. The center of pressure was
derived by a proprietary, validated, algorithm of Moticon ReGo AG. Moreover, it ranges
from −0.5 to 0.5 and it is related to the insole’s length/width, as well as the total force
computed by the instrumented insole (N) [27].

Figure 1. The instrumented insole (Moticon ReGo Model Insole 3) is used to generate the data for the
Smart-Insole dataset. Reprinted with permission from [28] Moticon ReGo AG.

Table 1. Demographic and medical information regarding the patients of the clinical study. Values
are presented as Mean ± Standard Deviation. “DCIP” stands for “Dopamine Continuous Infusion
Pumps”. “Lev. equiv. dose” stands for “Levodopa equivalent dose”. MDS-UPDRS Part III represents
the total score of the 3rd part. The control subset score refers to the total score of items 3.9 to 3.14 of
Part III of the MDS-UPDRS. Adapted with permission from [25]. 2022, Chatzaki et al.

Patient Information OFF State ON State DCIP

Number of participants 17 17 2
Gender ratio (M/F) 14/3 14/3 0/2

Age span (years) 29–76 29–76 63–72
Average age (years) 62± 11 62± 11 68± 5
Average height (cm) 172± 9 172± 9 162± 7
Average weight (kg) 78± 17 78± 17 72± 12

Disease duration (years) 10± 11 10± 11 17± 6
Lev. equiv. dose (mg) N/A 578± 174 1147± 671
MDS-UPDRS Part III 42± 21 30± 20 33± 28
Control subset score 8± 7 5± 6 9± 6

Table 2. The MDS-UPDRS 3.10 (Gait) Item expert rating distribution for the 19 patients that took part
in the study. In the first column, all available rating options for the MDS-UPDRS Item 3.10 are listed. In
the column corresponding to the OFF state rating distribution, there are only 17 patients rated in total.
The reason being that 2 patients were using the DCIP, thus they could not be rated in the OFF state.

Item Rating OFF State ON State

0 1 4
1 10 11
2 4 2
3 0 2
4 2 0
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The raw signals generated from the instrumented insoles were used to extract gait
features based on the model described in [17]. The model included a processing pipeline
that is briefly explained below. First, the raw signals went through a pre-processing step,
that implemented normalization and noise removal. Next, the main processing phase was
initiated, calculating for each gait cycle, the time duration between successive gait events.
The gait events in question can be seen in Table 3 and were identified based on a set of
conditions presented in [27] (also seen in Table 3). Finally, using the timing of the gait
events, the model produced, for each gait cycle, the set of gait features, listed in Table 4.

Table 3. Timing of gait events identified from the data of the pressure insoles, along with the
conditions for their identification. The column named “Time point” denotes the id of the time point
that the respective event occurred. The time points are used for the calculation of gait features as they
are described in Table 4.

Gait Event Time Point Insole Foot Placement Identification Condition

Right heel strike t01 Right foot (Heel > Force Threshold Heel) ∧ (Toe ≤ Force Threshold Toe)
Left toe off t02 Left foot (Heel ≤ Force Threshold Heel) ∧ (Toe ≤ Force Threshold Toe)

Right toe strike t03 Right foot (Heel > Force Threshold Heel) ∧ (Toe > Force Threshold Toe)
Right heel off t04 Right foot (Heel ≤ Force Threshold Heel) ∧ (Toe > Force Threshold Toe)

Left heel strike t05 Left foot (Heel > Force Threshold Heel) ∧ (Toe ≤ Force Threshold Toe)
Right toe off t06 Right foot (Heel ≤ Force Threshold Heel) ∧ (Toe ≤ Force Threshold Toe)

Left toe strike t07 Left foot (Heel > Force Threshold Heel) ∧ (Toe > Force Threshold Toe)
Left heel off t08 Left foot (Heel ≤ Force Threshold Heel) ∧ (Toe > Force Threshold Toe)

Table 4. The gait features extracted from the data of the instrumented insoles based on the timing of
the gait events [17]. Some of the gait features were also calculated as a percentage over the gait cycle.
The time points are the ones listed in Table 3.

Gait Feature Feature Calculation Percentage Calculation

Right single support a01 = t′02 − t05 a15 = a01/a09
Left single support a02 = t′01 − t06 a16 = a02/a09

Double support a03 = a06 + a10 a17 = a03/a09
Right side stance phase a04 = t06 − t01 a18 = a04/a09
Left side stance phase a05 = t′02 − t05 a19 = a05/a09

Right loading response a06 = t02 − t01 a20 = a06/a09
Right terminal stance a07 = t04 − t02 a21 = a07/a09

Right pre-swing a08 = t05 − t04 a22 = a08/a09
Right gait cycle duration a09 = t′01 − t01 Not calculated

Left loading response a10 = t06 − t05 a23 = a10/a09
Left terminal stance a11 = t07 − t06 a24 = a11/a09

Left pre-swing a12 = t′01 − t07 a25 = a12/a09
Left gait cycle duration a13 = t′02 − t02 Not calculated

Walking cadence a14 = 1/(t′02 − t01) Not calculated

2.3. IMU Data and Processing

The IMU-sensor data were generated by a set of 5 wearable sensors which are part
of the PDMonitor® medical device, manufactured by PD Neurotechnology Ltd. (London,
UK). The device includes five lightweight wearable sensors, or MDs (Monitoring Devices),
used to collect raw kinematic data. Each MD is 41mm × 30.6mm × 12.85mm and is based
on a 9-degree IMU sensor acquiring data with a sampling frequency of 59.5Hz. Two of
the monitoring devices are placed on the wrists, two on the ankles, and one on the waist
(Figure 2). The rest of the system components are described in detail in [24]. The intended
use of the PDMonitor® system is to monitor the symptoms of patients with Parkinson’s
disease but for the purposes of the conducted tests, the PDMonitor® system was not used
as intended but only for logging motion data and extracting gait features.
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(a) (b) (c)

Figure 2. Placement of the wearable IMU-based monitoring devices. (a): Placement of ankle sensors.
(b): Placement of wrist sensors. (c): Placement of the waist sensor.

Each recording, with one of the 5 sensors, of the PDMonitor® includes data correspond-
ing to values of 9 signals, along with a timestamp denoting the time each measurement was
conducted. In summary, the generated data are the following: a Unix timestamp logging
the time of data acquisition, along with an acceleration (g), angular velocity (dps), and
geomagnetic field (T) value for each of the x, y, and z axes.

From the dataset, only data captured from the 2 ankle IMU-based monitoring devices
were used for the purposes of this work. The gait features of interest did not require data
from either the wrist or the waist sensors. For gait analysis of healthy individuals, in general,
one ankle sensor would be enough, as their gait characteristics would be similar for both
feet. But, in this case, the wearers included patients with gait impairment, thus monitoring
both of their legs, individually, while walking was necessary. Moreover, a second ankle
sensor enabled the identification of the first and the last step of each participant during the
2 conducted testing scenarios.

The gait features were extracted from the IMU-generated dataset using a processing
pipeline comprised of 3 main steps. The first step was the identification of the walking
bouts for each participant through the gyroscope data, as can be seen in the second plot
of Figure 3. The walking bouts on the recorded signals were annotated manually based
on the time information of each test. It should be noted that gait detection from IMU data
could be also performed automatically.
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Figure 3. IMU-based gait region identification. In the first plot, the initial signal is shown. For the
detection of gait events in the specific dataset, the gyroscope’s Z−axis signal was employed. Next,
in the second plot, the result of the procedure for the detection of walking bouts appears, with the
region of interest highlighted. In our work, the regions were extracted manually. Finally, in the third
plot, the results of the peak detection method can be seen. The peak detection method was used to
identify gait events.

Next, gait events were detected after applying peak detection in the readings of the Z
axis of each of the ankles’ gyroscopes (using the MATLAB’s findPeaks method), presented
in the third plot of Figure 3). Those gait events were the maximum swing (MS), the toe-off
(TO), and the initial contact (IC). The MATLAB’s findpeaks function was used with three
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different threshold levels (parameter MaxPeakHeight), corresponding to three different gait
cycle events:

• The maximum swing (MS), found through peak detection based on the Z axis signal
of the gyroscope (sz), with a minimum peak distance of 0.5 s and a minimum peak
width of 0.1 s:

tMS = max
[
50, 0.3 ·max(sz)

]
(1)

• The toe-off (TO), identified using peak detection based on the inverted Z-axis signal
of the gyroscope (sz), with a fixed threshold, as follows:

tTO = 15 (2)

• The initial contact (IC), found through peak detection based on the inverted Z-axis
signal of the gyroscope (sz), again with a fixed threshold, as can be seen below:

tIC = −5 (3)

The identified peaks as a result of the peak detection process can be seen in Figure 4.
Finally, through the timing of the gait events, (TMS for maximum swing, TTO for toe-off
and TIC for initial contact), as well as through further utilization of the gyroscopes’ and
accelerometers’ data, temporal gait features were extracted. In total, there were 141 features
extracted, including several spatiotemporal ones. It should be noted that we only employed
features that can be estimated from a single IMU sensor (i.e., right/left side stance phase,
single support, etc.), since this is a common practice in ambulatory settings. As a result,
features that require the use of both IMU sensors (for example, double support) were not
included in the feature set. Nevertheless, for each feature, the average value of both legs
was included in the feature set. For the comparison analysis of features generated from
data of both sources presented in Section 3.1, the features that were extracted from data of
IMU-based devices were averaged over both legs.

0 200 400 600 800 1000
Sample

100

50

0

50

100

150

200

de
g/

s

gS
z (t)

TO
IC
MS

Figure 4. A detailed presentation of the basic gait cycle events, identified through peak detection in
the readings of the Z axis of the ankle gyroscopes denoted as gs

z(t) in the figure. TO is the toe-off
event, IC is the initial contact event and MS is the maximum swing event.

2.4. Comparison of Extracted Features

The set of features that were extracted from the data of the IMU-based devices was
compared with the set of features that were extracted from the data of the pressure insoles.
As a pre-processing step, the features calculated from the data of the IMU-based monitor-
ing devices were scaled to the range of the corresponding features, calculated from the
instrumented insoles. Next, a number of cases in the dataset, from both systems, with no,
or very few steps (less than 3), were excluded from the subsequent analysis. As a result,
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there were a total of 95 cases (test sessions) included for further analysis. Finally, a number
of 4 outliers (4/95 or < 5%) with “abnormal” values were identified. Those outliers were
excluded from the calculated correlation coefficients.

The first analysis performed, concerning the collected data from both described sys-
tems (insoles and IMU-based devices), included the Pearson correlation coefficient between
the common features extracted from data of both sources. The second analysis, complemen-
tary to the calculation of the correlation values, included the assessment of the inter-rater
reliability. For this purpose, two methods were used. Initially, the intra-class correlation
coefficient (ICC) for single, fixed raters was calculated, assuming as separate data classes
the three different speeds (slow, normal, and fast) patients were instructed to perform the
relative tests with. Next, a Bland-Altman analysis was conducted to evaluate the agreement
between the two different systems, regarding the features extracted from the data generated
from them.

2.5. ML Methods for Gait Impairment Assessment

In addition to the statistical comparison of the gait features derived by the two sensing
systems, described in Section 2.4, a study has been performed, aiming to identify the
capacity of these features to train machine learning (ML) models for accurately predicting
gait impairment, in terms of MDS-UPDRS item 3.10 result estimation. More specifically,
features extracted from the data of the pressure insoles and the IMU sensors were used
to differentiate between patients with no gait impairment and patients that exhibited gait
impairment (MDS-UPDRS Item 3.10 > 0). For this analysis, only the “Normal” speed
data of the participants of the “Walk Straight and Turn Test” iterations were employed
along with the expert MDS-UPDRS Item 3.10 ratings. For this binary classification task, the
following algorithms were assessed and subsequently compared: Support Vector Machine,
Random Forest, Gradient Boosting, and AdaBoost. Three sub-analyses were conducted,
each one evaluating those algorithms using a different set of features. Those were:

• features extracted solely from insole data,
• features extracted solely from IMU data,
• features extracted from data of both systems.

The scope of the latter analysis was to identify the maximum accuracy ML models
could achieve for correctly assessing gait impairment. Such an ML model’s performance
can act as the “baseline” for identifying the loss of accuracy when using data from the two
sources separately.

3. Results

The following sections present the results of the analyses performed on the collected
data. First, the results regarding the comparison of the extracted features are presented,
with those of the gait impairment detection analysis following afterward.

3.1. Comparison of Extracted Features

The results of the correlation analysis described in Section 2.4 are presented in Table 5,
while correlation plots, corresponding to the left foot, are depicted in Figure 5. All correla-
tion results were excellent with only the right single support, being slightly lower. More
specifically, the calculated correlations were as follows. Left and right gait cycle duration
r = 0.98 and r = 0.97, left and right single support r = 0.94 and r = 0.86, left and right
stance phase r = 0.93 and r = 0.88, walking cadence r = 0.98 and finally number of steps
r = 0.94.

Complimentary to the correlation analysis, an assessment was conducted to evaluate
the inter-rater reliability. The assessment was performed using two different methods,
namely the calculation of the intraclass correlation coefficient (ICC) for single, fixed raters
and the Bland-Altman analysis. Again for the inter-rater reliability, the features calculated
from the data of the IMU-based system were scaled to the range of the corresponding
features, calculated from the insole system. The results of the inter-rater reliability analysis
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are presented in Table 5 as well, while Bland-Altman plots are depicted in Figure 6. For
the case of the intraclass correlation coefficients, the ICC values were calculated, as already
mentioned, assuming as separate data classes the three different speeds (slow, normal,
and fast) patients were instructed to perform the “Walk Straight and Turn Test” with. The
results listed in the aforementioned table are as follows. Left and right gait cycle duration
ICC = 0.98 and ICC = 0.96, left and right single support ICC = 0.91 and ICC = 0.83,
left and right stance phase ICC = 0.92 and ICC = 0.91, walking cadence ICC = 0.97
and finally number of steps ICC = 0.91 According to [29], ICC values greater than 0.9 are
considered excellent reliability, and values greater than 0.75 as good reliability.

Table 5. Correlation and intra-class correlation between the set of common features extracted from
data of pressure insoles and IMU-based sensing devices.

Gait Feature Pearson Correlation (r) Intra-Class Correlation (ICC)

Walking cadence 0.98 0.97
Right gait cycle duration 0.97 0.96
Left gait cycle duration 0.98 0.98

Right single support 0.86 0.83
Left single support 0.94 0.91

Right side stance phase 0.88 0.91
Left side stance phase 0.93 0.92

Number of steps 0.94 0.91
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Figure 5. Correlation between the extracted gait kinematic features from the data of the instrumented
insoles and the IMU-based devices. Note that the orange crosses represent outliers. The outliers were
not taken into account in the calculation of the regression line or the correlation values presented in
the text. (a): Walking cadence. (b): Left single support. (c): Left gait cycle duration. (d): Left side
stance phase.
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3.2. ML Methods for Gait Impairment Assessment

As discussed in Section 2.5, for this analysis only the “Normal” speed data of the
participants of the “Walk Straight and Turn Test” iterations were utilized. The results for
the three feature groups (Insoles Only, IMUs Only, Insoles and IMUs) are presented in
Table 6 listing for each classifier the AUC, Accuracy, F1-Score, Precision, and Recall metrics.
The results indicate that all algorithms exhibited excellent performance differentiating
between healthy and gait-impaired individuals, no matter the feature set they used or the
performance metric is chosen in evaluating them. Nonetheless, the features extracted from
the data of the pressure insoles, as well as the combination of features extracted from both
devices’ data, resulted in a slightly better performance of all algorithms than the features
extracted solely from the IMU data.
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Figure 6. Bland-Altman analyses between the extracted gait kinematic features from the data of the
instrumented insoles and the IMU-based devices. The upper and lower limits of the Bland-Altman
analyses were calculated using the formula ±1.96 · SD, respectively. (a): Walking cadence. (b): Left
single support. (c): Left gait cycle duration. (d): Left side stance phase.

More specifically, when considering the AUC as the primary metric for the evaluation,
the SVM model outperformed the rest of the models in all three analyses. Its performance
in the analysis utilizing features extracted from data of both IMU and pressure insoles
was 93%, while dropping by 1% and 8% when omitting pressure-related and IMU-related
features, respectively. The performance reduction is lower when considering the accuracy
(≈4%) or the F1-score (≈4%), indicating that both the IMU-based and the pressure-based
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features present similar capacity for training machine learning models for the classification
between healthy and PD patients.

Table 6. Classifiers were trained using the features extracted from the data of instrumented insoles,
the features extracted from the data of the IMU-based devices, and a combination of features extracted
from both aforementioned data sources. In the table, “SVM” stands for Support Vector Machine, “RF”
for Random Forest, “GB” for Gradient Boosting, and “AB” for AdaBoost.

Metric
Insole IMUs Insoles & IMUs

SVM RF GB AB SVM RF GB AB SVM RF GB AB

AUC 0.92 0.92 0.91 0.85 0.85 0.86 0.89 0.76 0.93 0.93 0.90 0.83
Accuracy 0.89 0.91 0.88 0.88 0.85 0.85 0.86 0.83 0.88 0.89 0.87 0.87
F1-Score 0.88 0.90 0.88 0.88 0.84 0.85 0.86 0.83 0.87 0.89 0.87 0.87
Precision 0.89 0.90 0.89 0.89 0.84 0.85 0.86 0.84 0.88 0.89 0.88 0.88

Recall 0.89 0.91 0.88 0.88 0.85 0.85 0.86 0.83 0.88 0.89 0.87 0.87

Along with the aforementioned analysis, a machine learning explainability framework,
the Shapley Additive Explanations (SHAP) [30], has been utilized to assess the importance
of each feature to the output (prediction) of the aforementioned classifiers. The results are
presented in Table 7. Based on Table 7, when utilizing features from both systems, 5 out of
10 most important features were derived from the IMU data. Thus, despite the fact that
instrumented insoles are commonly considered the gold standard for gait monitoring, the
discriminating power of the IMU-based system was showcased for classifying healthy and
impaired individuals, in terms of gait disorders manifested due to Parkinson’s disease.
Additionally, based on the relative SHAP values, loading response times appear to play an
important role in the machine learning models derived from features extracted from data of
both IMU-based and insole systems. The results indicate that gait quality degradation due
to Parkinson’s disease mainly involves changes in both the left and right loading response
times, thus in the pre-swing times for both feet as well.

Table 7. This table presents 3 sets of features used as inputs to the described machine learning
classification algorithms. The first set includes features extracted from the data of the insoles, the
second includes features extracted from the data of the IMU-based system, and the third includes a
subset of the combination of the previous two sets. In the third set the designation “ins.” refers to the
insole-based system, while “IMU" to the IMU-based system. Those sets are presented in decreasing
order of importance from top to bottom. The feature importance values were calculated using the
Shapley Additive Explanations (SHAP) framework.

Insole Features IMU Features Insole & IMU Features

F01 Right loading response (%, std) Accel. max energy (asym., std) Right load. response (%, std, ins.)
F02 Left loading response (%, mean) Walking cadence (asym.) Left pre-swing (mean, ins.)
F03 Pre-swing variability Range of shank’s motion Total accel. energy (asym., IMU)
F04 Left loading response (%, std) Total gyroscope’s energy Total accelerometer’s energy (IMU)
F05 Left pre-swing (mean) Normalized stride length Pre-swing variability (ins.)
F06 Right loading response (std) Cumul. accelerometer’s energy Normalized stride length (IMU)
F07 Left loading response (std) Norm. walking speed (asym.) Right load. response (std, ins.)
F08 Right terminal stance (%, mean) Maximum rotation Left load. response (std, ins.)
F09 Left single support (std) Number of steps (count) Range of shank’s motion (IMU)
F10 Right terminal stance (mean) Contact time (asym.) Norm. walk. speed (asym., IMU)

4. Discussion

Neurological disorders involving movement impairment, like Parkinson’s, have a
major effect on the quality of life of patients. Objective measurement applied to movement
disorders, especially when pertaining to monitoring gait, can result in physicians better
assessing the symptoms of patients and subsequently mitigating them or, more generally, in
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better managing their condition. Sensing devices, mainly those enabling remote, continuous
monitoring, can assist patients and physicians through the frequent collection of movement
data. These data can feed machine learning models which can, in an automated fashion,
assess the condition of patients based on specific endpoints, such as gait impairment, and
raise warnings upon the identification of any possible abnormal condition. Sensing systems
can utilize various types of sensing devices, such as the pressure insoles and the IMU
sensors used in this work.

When it comes to gait assessment, pressure insole systems can deliver, quality data
which can result in the extraction of a large set of gait-related features. Such systems
provide the flexibility to collect data from repeated foot strikes in any environment without
restrictions placed by the setting. Plantar loading parameters obtained from insole pressure
sensors have shown high reliability across multiple trials of the same individual, with low
variability between steps [31], and high repeatability between testing days [32]. Analysis
of ground reaction force parameters indicated that these measures are also reliable over a
range of walking speeds and stride frequencies when collected using pressure sensors [33].
However, a comparison of the two most popular insole pressure measurement systems
shows that the accuracy and precision of these systems may be sensitive to the levels of
applied pressure, calibration procedure, duration of pressure application, as well as to
the insole’s age, and a result its deterioration [34]. Although insole systems have many
advantages, they are accompanied by a few significant drawbacks. First of all, insoles lead
to a poor user experience and satisfaction, due to the low battery life and raised temperature
levels on the surface making contact with the wearers’ feet. As a result, systems based on
pressure insoles are not usually recommended for home-based environments, but rather
for clinical settings, in which case their use is limited to a given scenario and time duration.
Another drawback, adding to the poor user experience of insoles, is that patients, frequently,
feel uncomfortable when they fit them in their footwear. On top of that, pressure insoles
must be specifically selected for each individual patient, according to their foot size, thus
reducing their re-usability in general.

On the other hand, inertial measurement unit (IMU) sensors are used in all aspects of
human gait analysis, since they are small, robust, accurate, and affordable. Systems based
on IMU sensors can be used to collect movement data in a more flexible and user-friendly
manner, as they can be easily deployed and have longer battery life. They, also, provide rich
information, as they allow for the accurate acquisition of 3D movement data, including the
orientation of the tracked individual [35,36]. Moreover, while insoles are limited to being
embedded in footwear, IMU sensors are not, and can be used in various configurations
and numbers on an individual’s body [22,37], from smart devices and clothing items to
fitness trackers [38] and medical devices [24]. Additionally, due to their non-obstructive
characteristics, and long battery life, IMUs are suitable for long-term recording sessions.
Thus, IMU-based sensing devices may be considered more suitable for the development of
remote monitoring, continuous, home-based systems, with an improved user experience.

This work set out to evaluate the correlation of a specific set of gait features when
extracted from two different systems, one based on pressure insoles, and one based on IMU
sensors. The results of this comparison included both the statistical correlations between
the extracted features from the two sources (insoles and IMUs), as well as an assessment
of the importance of those features in building classification models for evaluating gait
impairment. The results can be summarized in the following main findings. First, the
study found a relatively high correlation between the common derived features from both
systems (insoles and IMUs), indicating a small drop in accuracy when switching from
pressure-insole-based devices to IMU sensor-based devices. However, it’s important to
note that the features extracted from these two types of devices are neither exhaustive nor
identical. Therefore, results may vary significantly when additional features are included.
For instance, our analysis did not include double support and loading response features
estimated from IMU sensor data, as we only considered features that could be estimated
from a single IMU sensor. Second, the study conducted a feature importance analysis to
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assess the discriminating power of each individual feature. The analysis indicated that
features from both sources (pressure insoles and IMU sensors) were important in training
machine-learning classification models. Third, the study found that the performance of
different machine learning models for gait impairment detection was similar, regardless of
the feature set used. Fourth, using features from instrumented insoles, IMU-based devices
placed on the shanks, or a combination of both, can lead to accurate detection of gait
impairment with AUC values of 0.92 (Support Vector Machine), 0.89 (Gradient Boosting),
and 0.93 (Support Vector Machine or Random Forest), respectively, when considering the
highest scoring model. The models were constructed using only a subset of data generated
during the “Walk Straight and Turn Test,” specifically those corresponding to the test
iteration conducted with patients walking at a normal speed. This scenario is considered
closer to real-world, practical ambulatory settings, which makes the developed models for
gait impairment detection potentially more clinically relevant.

Finally, there are 2 points pertaining to the statistical analysis conducted for this work,
and in particular, to the correlations, that should be discussed. First, for both, left/right side
stance phases and single support, one can observe that the correlation resulting from the
left foot data (r = 0.94) is higher than the correlation from the right foot (r = 0.84), with the
latter still being excellent. This abnormality should be mainly attributed to the fact that the
“Walk Straight and Turn Test” included in the analysis necessitates for the participants to
perform a turn and not to, simply, walk in a straight line (i.e., compared to a treadmill test).
Alternatively, it may have resulted due to specific unusual characteristics of the walking
patterns of the participants. Second, it should be noted that in our study neither system
could be considered as the ground truth, and the differences notwithstanding, it is clear
that there is a very strong agreement between them, with the main kinematic features being
highly correlated.

5. Conclusions

In conclusion, this work indicated that data from both instrumented insoles and
IMU-based systems resulted in the extraction of highly correlated gait kinematic features.
Moreover, data from both sources can be used to build accurate Machine Learning models,
although models utilizing features from the data of the pressure insoles did have slightly
better performance compared to those utilizing features only from the IMU-based system’s
data. Nonetheless, the relative difference is small and it does not affect the capacity of
the two systems to be used for gait assessment. In summary, IMU-based devices can
be recommended for use by patients in home environments, for the evaluation of gait-
related symptoms, without significant deviations in their accuracy, compared to systems
based on pressure insoles. Concluding, although the results are promising, further studies
are required in order to compare the feasibility, and the performance, of both aforemen-
tioned methods in ambulatory care, while patients perform their daily activities in their
natural environment.
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