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A B S T R A C T   

Navigation and positioning based on sensor fusion has received great attention in low computational complexity, 
high positioning accuracy and good robustness for indoor mobile robots. This paper presents a multi-sensor 
fusion factor graph (MSF-FG) positioning method applying IMU, Odometer and LiDAR sensors. By taking 
advantage of the sensor characteristics and using factor graph theory, a MSF-FG positioning model is constructed 
to improve positioning accuracy and reduce computational complexity. In addition, an adaptive function is 
designed to improve the robustness of the system by dynamically adjusting the weight of each factor. Meanwhile, 
the proposed algorithm is derived by Gauss-Newton and Levenberg-Marquardt methods. Simulation and 
experimental results show that compared with the conventional inertial navigation system (INS) and extended 
Kalman filter (EKF) algorithms, the proposed MSF-FG positioning method not only reduces the mean location 
error by about 40%, but also reduces the computational complexity and enhances the stability of the system.   

1. Introduction 

Computer control and sensor technique promote the wide applica-
tion of mobile robots in large indoor scenarios such as supermarkets, 
airports, hotels, museums and exhibition halls [1–3]. Environment 
perception is a prerequisite for efficient interaction between mobile 
robots and the scenario, and accurate acquisition of the robot’s location 
is the key to ensuring the smooth completion of various tasks [4]. 
Therefore, the accuracy and reliability of mobile robot positioning 
navigation system have been widely concerned. 

Generally, GPS and base station positioning are widely known and 
used in outdoor positioning [5]. However, outdoor satellite positioning 
techniques cannot be applied for indoor scenarios due to the diversity of 
structure and layout as well as occlusion and obstacles. Thus, the robot 
needs lower positioning delay and higher positioning accuracy to com-
plete tasks under indoor scenario [6]. According to different application 
demands, indoor positioning technique is rich and diverse, including 
inertial navigation, WIFI, Bluetooth, RFID, UWB, Odometer, Ultrasonic 
and LiDAR positioning, etc. Among them, WIFI, UWB, Bluetooth and 
RFID all need to deploy positioning base stations, resulting in increased 
cost burden. Therefore, the Odometer, inertial measurement units (IMU) 
and LiDAR were selected for the actual project requirements to reduce 
setup work and cost. Odometer positioning is used in indoor robots 

because of its high positioning accuracy, low maintenance cost and high 
reliability [7]. However, the robot cannot eliminate tire slipping and 
other phenomena. LiDAR navigation can get the map information of the 
surrounding environment, but required to arrange laser reflective 
markers for navigation, otherwise the positioning accuracy is low, the 
reliability is low and the complexity is high. The INS has developed with 
the advantages of small size, long life and strong anti-interference 
ability. However, INS positioning errors not only accumulate over 
time, but also INS takes a long initial alignment time [8]. Since the error 
characteristics of various sensors are difficult to change, a method of 
multi-sensor fusion based on different characteristics of IMU and other 
sensors is developed[9–11], complementing redundant information to 
calibrate the robot positioning errors in real-time. Although the posi-
tioning accuracy is improved to a certain extent, the measurement in-
formation from different sensors is difficult to fuse effectively. Besides, 
real-time positioning suffers from delay and poor positioning stability. 

In recent years, multi-sensor fusion positioning technique applied to 
indoor mobile robots has been developed rapidly. In order to accurately 
locate the robot, the authors in [12]proposed an indoor positioning 
method for mobile robots based on radio RFID and Ultrasonic sensors. 
However, this method is limited to the robot application scenario, only 
suitable for robot pose calibration. To meet the demand for indoor ser-
vice robot positioning accuracy and stability, the authors in [13] 
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proposed an alternative indoor positioning method for mobile robot 
based on the fusion of secondary radar data, Ultrasonic and Odometer 
sensors. An auxiliary device with absolute position is used to improve 
the precision and stability of the robot positioning, but the method is 
complicated and the robot moving range is limited. The authors in [14] 
applied Odometer, IMU and LiDAR for real-time positioning based on 
Kalman filtering algorithm, but the location error is relatively large and 
the robustness is low. The authors in [15] designed a positioning system 
integrating vision and Odometer to simplify the tedious work at the 
early stage of robot operation and facilitate task execution in a dynamic 
environment. Although the system can satisfy the simple positioning 
accuracy task, the sensor fusion efficiency is very low and the stability is 
insufficient. Considering high computational complexity due to asyn-
chronous and non-linearity between different sensors, federated filter 
and EKF are mostly adopted at present [16,17]. The authors in [18] 
applied Doppler velocity log (DVL) as reference information to propose a 
new robust adaptive federal strong tracking Kalman filter to make GPS 
module correct the divergence error of INS and improve the reliability of 
the whole system. The authors in [19] fused three sensors of different 
frequencies (GPS, IMU and Odometer) based on EKF and a smoothing 
device to solve the problem of asynchronous data fusion and improve 
the noise anti-jamming ability. Interpolation or extrapolation can be 
used to fuse nonlinear information of different frequencies to minimize 
information loss. Although the stability of the system and the posi-
tioning accuracy at any time are improved, the whole state vector must 
be re-estimated every time the sensor information arrives, resulting in a 
large amount of calculation. In addition, the fusion framework needs to 
be rebuilt when sensors are not available, and increasing the number of 
sensors also reduces the fault tolerance rate. 

The methods on the basis of graph optimization have been widely 
applied in unmanned mapping and navigation [20]. The authors in [21] 
studied the probabilistic fusion of multiple sensors under the framework 
of Hidden Markov model (HMM) of mobile device user positioning. 
Nevertheless, the proposed graph structure fused numerous sensors 
without considering the computational complexity and sensor stability. 
Factor graph is used as a new optimization method to deal with sensor 
asynchronous measurement information. The variable nodes in the 
factor graph are associated with the system state, and the correlation 
between factors and measured values enables the factor graph to have 
the “plug and play” capability of heterogeneous and asynchronous 
navigation information [22]. Factor graph encodes the posterior prob-
abilities of states over time for all available measurements given and has 
simple universality [23–24]. In this way, the problems related to multi- 
sensor fusion can be easily solved. The authors in [25] designed a factor 
graph positioning algorithm based on the fusion of IMU and visual 
sensor by using Kalman filter to ensure smooth solver can work normally 
under the condition of asynchronous navigation information. Although 
the positioning methods based on factor graph have good performance 
in processing asynchronous data, sensor faults can fuse the wrong 
location information[26]. In order to enable the factor graph method to 
deal with unstable sensors, the authors in [27] proposed a new factor 
graph positioning scheme by taking the prediction information as a prior 
consideration. Significant performance improvements and better 
tracking performance can be observed when severe sensor errors are 
suddenly encountered. However, once the sensor has large or small 
measurement information deviation due to its own reasons or environ-
mental interference, the effective information cannot be distinguished 
and extracted, and the degradation of sensor performance is not taken 
into account. Then, to compensate for the extra bias, the authors in [28] 
introduced the validity recognition algorithm considering the degrada-
tion and loss of sensor measurements. Possible sensor faults are detected 
according to different sensor characteristics, and the effect of sensor 
measurement deviation is alleviated by covariance adjustment. This 
method improves the robustness of the positioning system, but it is 
difficult to meet the needs of the environment with high positioning 
accuracy. The factor graph positioning algorithms proposed above are 

generally applied to the occasion where the positioning accuracy is not 
very high. 

In order to solve the problems of low positioning accuracy, high 
computational complexity and poor robustness of mobile robot indoor 
positioning system, a multi-sensor fusion positioning method based on 
factor graph is proposed in this paper. The main advantage of the sensors 
chosen for this method is that no additional infrastructure is required, 
resulting in accurate positioning and mapping at a lower cost. The block 
diagram of the proposed research is shown at Fig. 1. The main contri-
bution of this paper can be summarized as follows:  

1. Considering the sensor characteristics, three sensor factor node 
models, namely IMU, Odometer and LiDAR, were constructed.  

2. Combining three sensor factor nodes and variable nodes, a multi- 
sensor fusion factor graph positioning model was established. Be-
sides, the state estimation was optimized by using the information 
difference between the sensors.  

3. A dynamic adaptive function is designed to improve the robustness 
of multi-sensor fusion positioning system.  

4. The effectiveness of the proposed algorithm in sensor normal and 
abnormal working conditions was verified by simulation and 
experiment. 

The remainder of this paper is organized as follows. Section II pre-
sents the theory related to the factor graph algorithm and the designed 
positioning system. Section III introduces the sensors modeling for the 
multi-sensor fusion positioning system. Section IV describes the pro-
posed multi-sensor fusion positioning method using factor graph. Sec-
tion V provides simulation validation and field experimental test results. 
Conclusions are given in Section VI. 

Fig. 1. Block diagram of the proposed research.  
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2. The principle and positioning system 

This section introduces the methods of factor graph probabilistic 
modeling commonly used in the field of robotics, and the corresponding 
indoor mobile robot positioning system is described in this paper. 

2.1. Factor graph 

Probabilistic graph model can usually describe the conditional in-
dependence relationship between multivariate random variables [29]. 
Generally, the confidence of multivariate random variable X can be 
modeled by the probability density function (PDF) p(X) of variable X. 
When an observation set Z is given, the simple conditional probability 
density can be expressed as. 

p(X|Z) (1) 

where the unknown variable X is the pose of the robot. The process of 
obtaining conditional probabilities is called probabilistic inference. 

Unlike Bayesian network or Markov random field, factor graph can 
specify not only the probability density [30], but also any factor function 
ϕ(θ) on the set of variable θ, and can be represented by a binary graph 
consisting of variable X and factor node ϕ. The variable nodes in the 
factor graph are related to the system state, and the factor nodes are 
related to the measured value. For a given factor graph relation formula 
Ϝ = (Θ,Φ,ε), where ϕi ∈ Φ is the factor node, θi ∈ Θ is the variable node, 
and the edge between the variable nodes of the factor nodes is eij ∈ ε. In 
this way, the factor graph Ϝ = (Θ,Φ, ε) can be defined as the function 
factorization associated with all variables X, expressed as. 

ϕ(X) =
∏

i
ϕi(Xi) (2) 

For example, a function that can be factored as. 

ϕ(X) = ϕ1(x1, x2, x3)ϕ2(x3, x4, x5)ϕ3(x4). (3) 

The factor graph corresponding to (3) can be described in Fig. 2, 
where each hollow circle represents a variable node and each solid 
square represents a factor node. The lines between circles and squares 
represent the relationship between the corresponding variables and the 
factor node. 

2.2. Positioning system 

The indoor positioning system of mobile robot is integrated with 
IMU, Odometer and LiDAR sensors. The structure of positioning scenario 
and positioning system is shown in Fig. 3. The left part of Fig. 3 is second 
floor plan of the school office building. The mobile robot is in the lower 
left corner of the picture, and the orientation of the robot under the 
world coordinate system is indicated in the picture. The autonomous 
mobile robot can move in the indoor scenario according to the command 
and complete the corresponding marching tasks. The running area is 
marked in the red area. On the right side of Fig. 3 is the main principle 
frame of the robot positioning system. Firstly, the robot collects prior 
measurement information through three kinds of sensors (IMU, Odom-
eter and LiDAR) when building the map. Then, the original sensor data 
will be input into different measurement models while the robot is 
navigating and positioning. IMU gets information about the robot’s ac-
celeration and angle. Odometer sensor obtains robot velocity and 
orientation information. LiDAR receives robot location information 
from temporal and spatial correlation respectively. According to the 
prior information and sensor measurement model, the initial state esti-
mation and error constraint can be obtained. The navigation state in-
formation output by different sensor measurement models is formulated 
into sensor factors. Secondly, the sensor factors are input to the preset 
factor dynamic adaptation function as factor nodes, and the robot nav-
igation state is modeled as variable nodes. In this way, variable nodes 
and factor nodes are used to construct the factor graph model of posi-
tioning system. Finally, the information of each node is nonlinear fused, 
and the optimal state increment estimation of the robot navigation is 
obtained by Gauss-Newton (G-N) method and Gauss-newton and 
Levenberg-Marquardt (L-M) algorithm. Then the optimal pose of the 
robot under navigation is obtained. The multi-sensor fusion factor graph 
positioning model and the derivation of location estimation algorithm 
proposed in this paper will be introduced in the next part. 

Fig. 2. Factor graph example.  

Fig. 3. Indoor positioning system.  
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3. Proposed Multi-sensor fusion factor graph positioning 
algorithm 

3.1. Sensor modeling 

This section mainly constructs sensor factors for IMU, Odometer and 
LiDAR based on the content in the previous section. Since different 
sensors have different principles and characteristics, each sensor needs 
to design a different measurement model and factor node formula. 

3.1.1 The system state model 

The state of the mobile robot positioning system is a set of physical 
quantities and all the variables of the sensor that completely describe the 
robot moving with time, such as location, orientation, velocity and 
sensor-related parameters. In general, the state at time k is represented 
as Xk. Assuming that the state changes through the discrete time dy-
namics model, the following expression is given by. 

Xk+1 = f (Xk,Vk, nk) (4) 

where nk is the random noise based on the characteristics of different 
sensors, and Vk contains all raw measurements from time 0 to k for all 
sensors such as the wheel encoder or IMU. 

A set of measurements Z1, Z2, …,ZK are assumed to be of the form 
Zi=Hi(Xi1, …, Xik, nik), where Hi is a known observation prediction 
function, and the subscript i represents different sensors. ZK contains the 
predicted value of the robot state at time k for only one of the sensors. 
The state of each sensor is in X1, X2,…, Xk. In reality, the measured 
values of sensors are uncertain. Thus, each sensor has a random variable 
noise nk. In this paper, the physical quantity measured by sensors is 
taken as the center, and three types of measured values are considered, 
as follows: 

a) The measured value of the robot at time k can be expressed as. 

Zk = Hk(Xk, nk) (5) 

b) Robot states involving two moments, and the measured values 
between the two states can be described as. 

Zok = Hk(Xo,Xk, nk), o < k (6) 

c) The robot’s observation of the known landmark information can 
be expressed as. 

Zk = Hk(Xk, l, nk) (7) 

For the second measurement method (6), the measured value is given 
by the motion estimation obtained after sensor observation at two mo-
ments O and K, just as the relative motion estimation between two pose 
nodes in graph optimization. For the third measurement method (7), 
only the relationship between LiDAR and pose is concerned after the 
initial value of landmark points is optimized. In this way, the measured 
values of all time sensors on the robot state can be represented. 

3.1.2 Prior information 

Prior information is the estimated value before judging the state 
variable. State p(X0) is then continuously modified according to the 
sensor information observed. Prior information can be divided into in-
dividual prior information of different sensors and different state vari-
ables. For LiDAR, the prior information is represented as the landmark 
information of a group of state variables. For IMU device, prior infor-
mation is represented as prior factor nodes constructed by navigation 
state variables x ∈ X0 and deviation variables. The probability density 
function of each prior factor can be expressed separately as. 

f Prior(x) = d(x) (8) 

By introducing (8) into Bayes’ theorem, prior information can be 

changed into exp
(
− 1

2‖erri(x − μx)‖
2
Σx

)
according to the Gaussian dis-

tribution, where μx is the average value of X0 and Σx is the covariance of 
X0. 

3.1.3 IMU measurement 

For the IMU, the discrete form of the equation of state can be 
described by continuous nonlinear differential equations and calculated 
by. 

Ẋ = HIMU ( X, c, f b,ωb) (9) 

where HIMU( • ) is the observation prediction function of the IMU 
state variable, f b is the specific force measured by the accelerometer, ωb 

is the angular acceleration measured by the gyroscope, and c is the 
calibration parameter used to compensate the IMU measurement by 
assuming the IMU error model. The IMU error model is usually esti-
mated together with the navigation state estimation. The process noise 
used to linearize (9) is a random walk error that follows a Gaussian 
distribution of zero mean values. Calibration parameter c is the deter-
ministic error of IMU error model. According to the nonlinear model 
(such as random walk and temperature nonlinear compensation), the 
time propagation of c can be described by. 

ċ = gc(c) (10) 

where g( • ) is the observation prediction function of IMU calibration 
parameters. The factor graph framework uses a simple Euler integral 
predictive function to convey state information. The IMU measurement 
Zi = {fb

i ,ωb
i } is related to the navigation state of two continuous time (ti 

and ti+1). The nonlinear optimization of IMU state equation only esti-
mates the state of the robot at a certain moment. The continuous formula 
of IMU measurement model is expressed as. 

X1+i = H
(
Xi, ci, ZIMU

i

)
+NIMU , c1+i = g(ci)+Nbias (11) 

Each navigation state X1+i in (11) is obtained from the current in-
ertial measurement ZIMU

i , the previous state Xi, and the calibration 
parameter c. Calibration parameter c1+i is updated on ci, and NIMU is the 
measurement noise of IMU. 

3.1.4. Odometer measurement 
The wheel speed Odometer mainly uses the pulse count of the 

encoder to measure the distance increment of the robot within the 
sampling interval and provide the velocity information of the robot. 
Therefore, the Odometer is calculated by integrating velocity. According 
to the geometric kinematics model, the Odometer measurement model 
can be calculated by. 

zOd
i = HOd(Xi)+NOd (12) 

where HOd(Xi) and NOd are the observation prediction function and 
measurement noise of Odometer respectively. If the robot has location 
drift, NOd will contain Gaussian noise and calibration parameters. 

3.1.5 LiDAR measurement 

The LiDAR measurement model is a Range-Azimuth-Elevation (RAE) 
model. According to the actual measurement equation and prior land-
mark points, the LiDAR measurement information can be integrated by 
time and space. For the measured values derived from the LiDAR, the 
factor graph model can illustrate the correlation between the data. In 
terms of time data association, each measurement information describes 
the changes of robot location and orientation on the ground plane be-
tween two moments. The LiDAR measurement model is expressed as the 
relative pose between the pose at moment i-1 and the pose at moment i, 
with no relationship to the roll, pitch and yaw. Hence, LiDAR can be 
regarded as a binary factor, and the measurement model can be defined 
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as. 

Z = H(Xi− 1,Xi)+Nlid (13) 

where Xi− 1 is the navigation state at the i-1 moment, Xi is the navi-
gation state at the i moment, and H() is the LiDAR relative pose obser-
vation prediction function (representing the relationship between the 
carrier’s pose at two moments). The IMU motion factor can also be 
regarded as a binary factor. In addition, from the perspective of spatial 
data association, each LiDAR observation quantity Zi has a corre-
sponding landmark point l. Bearing measurements can be obtained by 
observing l at a given Xi. In this way, external entities involving navi-
gation states and unknowns are called external factors, and another 
measurement model of LiDAR can be expressed as. 

Z = H(Xi, l)+Nlid (14) 

where H() is the observation prediction function, and noise Nlid is the 
LiDAR measurement error described by the zero-mean distribution of 
the covariance matrix Σ. The errors of LiDAR may arise from the 
reflection characteristics and motion distortion of the target material. 

3.2. Multi-sensor fusion factor graph model 

The purpose of the multi-sensor fusion factor graph positioning 
model established in this section is to provide a mobile robot indoor 
positioning solution by flexibly utilizing effective sensor measurement 
information. In addition to the configuration of sensor factor nodes, this 
section also designed the factor dynamic adaptation function. The factor 
dynamic adaptive function can detect the sensor state in real time and 
assign weight values of different factors to ensure the effective fusion of 
accurate pose information. This section primarily builds IMU nodes, 
Odometer nodes, and LiDAR nodes based on the measurements of three 
sensors, respectively. The designed factor dynamic adaptation function 
is applied to modify the sensor nodes into factor nodes. Then the factor 
nodes and the state variable nodes are used to build the factor graph 
positioning model. 

3.2.1 IMU factor 

Conceptually, the IMU measurement model (11) defines the factors 
of the relevant nodes in the factor graph. For example, IMU factor f IMU 

connects navigation nodes Xi and X1+i to bias node ci, and bias factor fbias 

connects bias nodes ci and c1+i. Based on the expression of error func-
tion, the conventional IMU factor and bias factor of IMU measurement 
can be obtained as. 

f IMU(X1+i,Xi, ci)=̇d
(
X1+i − H

(
Xi, c, ZIMU

i

) )
, f bias(c1+i, ci)=̇d(c1+i − g(ci))

(15) 

The IMU factor is related to the current state, previous state and bias. 
Adding a new variable node X1+i to the factor graph requires reasonable 
initial values that can be obtained by predicting function H( • ). c1+i and 
ci are represented as variable nodes in the factor graph. The corre-
sponding factor graph model with IMU and deviation factor is shown in 
Fig. 4 (a). The frequency of the IMU is usually very high, and direct 
estimation of the navigation state may result in considerable computa-
tion. The continuous IMU measurements are combined into an equiva-
lent IMU factor [31], as is the case with the bias node, as shown in Fig. 4 
(b). 

3.2.2 Odometer factor 

According to the Odometer measurement model and (12), the 
Odometer factor can be defined as. 

f Odom(Xi)=̇d
(
ZOdom

i − HOdom(Xi)
)

(16) 

which only connects the variable node Xi of navigation state, and the 
Odometer factor fOdom can be added to the factor graph together with the 
equivalent IMU factor fEIMU using the current pre-integral ΔXi, as shown 
in Fig. 5. 

3.2.3 LiDAR factor 

LiDAR estimates robot state changes by observing changes under the 
surrounding environment [32]. According to the measurement model of 
temporal data association of LiDAR, (13) representing the pose rela-
tionship of the robot at two moments can be obtained. Therefore, the 
LiDAR binary factor can be expressed as. 

f Lidar(xi− 1, xi) = d(zi − H(xi− 1, xi) ) (17) 

On the basis of the spatial data correlation measurement model, 
external factors can be obtained from the known landmark point l. (14) 
illustrates the relationship between states and landmarks. Assuming the 
conditional probability density function p(z|x,l) of the external factor, 
the external factor can be expressed as. 

f Lidar(zi, h(xi, l) ) = d(zi − H(xi, l) ) (18) 

Unknown landmarks are included in the factor graph as variable 
nodes and are added to the factor graph for optimization. Because LiDAR 
measurements are typically obtained at low frequencies, there may be 
some lag in state estimation. The interaction between LiDAR and other 
factors together constructs the improved factor graph model. Fig. 6 
shows an example of a factor diagram in LiDAR and other sensor 

Fig. 4. Factor graph in inertial navigation: (a) And (b) use different symbols to 
distinguish IMU rate nodes and usage. An equivalent IMU factor accommodates 
all consecutive IMU measurements between T1 and T3. Navigation and cali-
bration nodes are introduced only when a new factor fEIMU is added at a rate 
much lower than the IMU rate. 

X1 X2 X31
IMU

2
IMU

1 21
bias

2
bias

3

21
Od

Fig. 5. Factor graph of wheel speed Odometer and IMU sensor measurements. 
(fOdom denotes the factor node of the Odometer). 
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integrated navigation systems. 

3.2.4 Dynamic adaptation function 

For the navigation and positioning based on the multi-sensor fusion, 
the degree of interference resistance of sensors to external influences 
varies. Factor graph can solve the problem of sensor frequency, but it 
does not deal with the information deviation or abnormality of unstable 
sensor. Therefore, mobile robot jitter or decreased positioning accuracy 
may occur. To solve this problem, this section proposes a dynamic 
adaptation function to detect the positional information carried by the 
sensor factor at each moment. By changing the factor weight distribu-
tion, the possible measurement deviation and fault anomalies of sensors 
are detected in real time, which improves the robustness of the factor 
graph model. 

The dynamic adaptation function is designed to improve the accu-
racy of the final state information fusion. Sensor factors are judged by 
adaptation function before they are added to factor graph for optimi-
zation. The characteristic of dynamic adaptive function is to adjust 
different measurement confidence according to the characteristics of 
different sensors. The characteristics of sensors mainly refer to the sta-
bility of sensors, anti-interference ability and the comparison with other 
sensors to measure residuals. The designed dynamic adaptive function 
Ψ(b) can be expressed as. 

Ψ
(
errj

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, errj < bjL

1
1 + exp(δ⋅err(zk − ẑk) )

◦

, bjL < errj < bjU

Fault Detection, bjU < errj

(19) 

where errj represents the residual between the measured value of the 
j-th sensor and the predicted value, and bj is the threshold value for 
setting the j-th sensor. Fault Detection indicates that a sensor is mal-
functioning. The sensor error threshold is the expected value derived 

from the errors of other sensors. The location errors of IMU are 0.3 m 
and 0.1 m with probabilities of 0.3 and 0.6, respectively. The location 
errors of. 

LiDAR are 0.2 m and 0.2 m with probabilities of 0.7 and 0.4, 
respectively. Then, the location error thresholds of the Odometer are 
0.23 m and 0.14 m respectively. biU and biL are the upper and lower 
limits of the error adaptation function respectively, and δ can be set 
according to the accuracy and reliability of different sensors. When the 
sensor error is greater than the maximum limit, the sensor is further 
diagnosed by residual error, which is described by. 

errj = zk − H(X) (20) 

If the sensor works normally, eerj satisfies Gaussian noise with zero 
mean. Thus, a fault detection function λk is constructed by. 

λk = errj
T S− 1

k errj (21) 

where S− 1
k is the variance of errj, λk obeys the Chi-square distribution 

of degree of freedom m (λk χ2(m)), and m is the dimension of zk. 
Therefore, a Chi-square distribution (λk > χ2

α) can be used to determine 
whether a factor has been created. The preset detection threshold of χ2

α 
can be determined by false alarm rate α according to Neiman - Pearson 
criterion. When the detection sensor is normal, the combination of the 
adaptation function and the factor is essentially to modify the weight of 
the cost function so as to change the factor of the sensor, which can be 
described by. 

f j(Xi) = Ψ
(
errj

)
• f j(Xi) (22) 

The basic flow of dynamic adaptive function detection sensor is 
shown in Fig. 7. In the whole process, the sensor factors are output by 
adjusting the measurement information of the sensor through the dy-
namic adaptive function on the basis of maintaining the integrity of the 
cause sub-graph. Without increasing the computational cost, the overall 
accuracy of fusion results is improved. 

X X X X X X

Fig. 6. Proposed multi-sensor factor graph positioning model.(fLidar denotes the factor node of the LiDAR, fPrior
l is a priori for LiDAR landmark).  

Fig. 7. The factor dynamic adaptation function Flow chart.  
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3.3. Derivation of the proposed positioning algorithm 

Based on Bayesian networks [33], factor nodes and variable nodes of 
factor graph model represent sensor measurement and navigation state 
respectively. By calculating the maximum posterior estimate of the joint 
probability distribution function of navigation states over a period of 
time, the optimal estimate of navigation states for all available asyn-
chronous multi-sensor data can be obtained. A set of state variables with 
maximum posterior probability can be described as. 

X̂0:k = argmax
X0:k

p(X0:k|Z1:k) (23) 

where X0:k is the state variable at time t0 to tk, Z1:k is the measurement 
of all available sensors, and X̂0:k is the maximum posterior probability 
estimate calculated by maximizing the probability value on the right. 
According to Bayes’ formula, (23) can be transformed into. 

p(X0:k|Z1:k)

=
p(Zk|X0:k)p(Xk|Xk− 1)

p(Zk)
• p(X0:k− 1|Z1:k− 1)

= p(X0)
∏k

i=1

p(Xi|Xi− 1)p
(
Zi|X1:k,i

)

p(Zi)
(24) 

Because joint probability distribution functions can be decomposed 
based on prior information and individual process and measurement 
models. Taking the state variable with the maximum posteriori proba-
bility density as the estimator, the factorization can finally be written as. 

p(X0:k|Z1:k) =
∏k

i=1

[
p(Xi|Xi− 1)p

(
Zi|X1:k,i

) ]
(25) 

The formula (25) is similar to the factorization process from global 
function to local function in factor graph. Therefore, applying factor 
graph to integrated navigation system is reasonable and feasible. In the 
factor graph, assuming that f(•) represents the local probability distri-
bution function [34], the probability formula of Bayesian trans-
formation can be written as. 

p(X0:k|Z1:k)∝
∏k

i=1
fi
(
X1:k,i

)
(26) 

where X1:k,i is a subset of the set of states, and the local function fi is 
related to the error function erri. Thus, fi can be expressed as. 

fi
(
X1:k,i

)
= d

(
erri

(
X1:k,i, Zi

) )
(27) 

where d(.) represents the cost function. According to Density func-
tion of multivariate Gaussian distribution and applying the Gaussian 
noise model, (27) can be written as. 

fi
(
X1:k,i

)
= exp

(

−
1
2
‖erri

(
X1:k,i,Zi

)
‖

2
Σi

)

(28) 

where ‖.‖2
Σ represents Mahalanobis distance, and Σi represents the 

covariance matrix of measured noise at time ti. Therefore, calculating 
the maximum posterior probability estimate is equivalent to minimizing 
∑k

i ‖erri(X1:k,i,Zi)‖
2
Σi

. 
Combining the Gaussian noise model with the factor dynamic 

adaptation function, the maximum posterior estimate of the state vari-
able can be described as. 

X̂0:k = argmin
X0:k

1
2
∑k

i
‖Ψ

(
eerj

)
erri

(
X1:k,i,Zi

)
‖

2
Σi

(29) 

In a practical multi-sensor fusion positioning system, the error 
function can be expressed as the state estimate minus the actual 
measured value. Since many sensor measurements in multi-sensor 
fusion positioning system have nonlinear characteristics, the function 

of state variable estimation becomes nonlinear least square problem. 
Next, Gauss-Newton iterative method is used to solve the optimization 
problem in this paper. To ensure that the calculation method is more 
universal, the LM method is usually chosen. Thus, nonlinear problems 
can be transformed into linear problems by Taylor series expansion. The 
optimal state increment estimate can be expressed as. 

Δ̂0:k = argmin
Δ0:k

‖J(X̂0:k)Δ0:k − b(X̂0:k) ‖
2 (30) 

where Δ0:k is the state increment matrix from t0 to tk, b(X̂0:k) is the 
residual matrix measured by the sensor, and J(X̂0:k) is the discrete Ja-
cobian matrix that can be decomposed into the equivalent upper trian-
gular matrix by QR or Cholesky [35]. When Δ̂0:k computes the result by 
iteration, the new state estimate can be updated byX̂0:k + Δ0:k. Then, the 
updated state is used as the linearization point in the next iteration. 
Table A1 of Appendix shows the pseudo-codes of the navigation state 
update algorithm based on factor graph. 

The above is the fusion of factor information using Gaussian Newton 
iterative method, and the LM algorithm is also available when the Jacobi 
matrix is a singular matrix. The computational procedure of the factor 
graph-based navigation state estimation is as shown in Table A2 of 
Appendix. 

4. Simulation and analysis 

In this section, the error analysis of the navigation positioning results 
is presented in a simulated environment with normal and abnormal 
sensor work respectively. INS and EKF are experimentally compared 
with the proposed method for evaluating the MSF-FG method. The 
whole simulation was performed on a PC with i5 CPU @ 2.30 GHz 
processor and 8 GB RAM, and the development environment was 
MATLAB version 2019b. The three sensors (IMU, Odometer, and LiDAR) 
used in the three positioning methods were operated at different output 
frequencies. The parameters of the three navigation sensors are shown in 
Table 1. 

4.1. Sensors operating in normal condition 

For the proposed method, the priority of the IMU factor is set higher 
than other factors in order to ensure real-time performance, and the 
equivalent IMU factor is used to join into the factor graph. During the 
simulation program running, the dynamic adaptation function is made 
to adjust the robot state variables. Just for example: The IMU factor has a 
high reliability for mobile robot orientation change, and the Odometer 
factor has a high reliability for robot velocity change. In addition, the 
LiDAR binary factor is more reliable in correcting robot pose changes. 
The confidence degree of external factors of LiDAR is determined ac-
cording to the observation function of environmental conditions, and 

Table 1 
Parameters of navigation sensors.  

Sensor Parameter Value Frequency 

IMU Gyro(Accel) range 
Gyro bias 
Gyro random walk 
Accel bias 
Accel random walk 
Resolution 

± 500 /sec; ±16 g 
1.6 de /h 
0.3 de /h 
0.6 mg 
0.09 m 
0–500:0.0175 / 

200 ~ 800 
Hz 

LiDAR Scanning angle 
Measurement range 
Measuring speed 
Repetition accuracy 
Maximum angular 
resolution 
Measuring method 

360 
0.2 to 60 m (reflector) 
11,520 
< 12 mm 
0.014 / 25,200 
Pulse Ranging Technology 
(PRT) 

10 ~ 50 Hz 

Odometer Encoder 
Position accuracy 

6000p/R 
0.02 m 

50 Hz  
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the pose resetting weight is the highest. 
Based on the proposed method and the sensor parameters in Table 1, 

a real typical robot motion trajectory (True) is designed in this paper 
shown in Fig. 8. The INS method in the trajectory comparison plot is an 
autonomous navigation system that uses inertial sensitive devices, 
reference orientation, and initial location information to determine the 
location, orientation, and velocity of the carrier in inertial space. Mag-
netometers were not selected in INS because robot in indoor activities is 
strongly influenced by magnetic fields. EKF is a positioning algorithm 
that combines the motion model of a mobile robot with an observation 
model. EKF uses a combination of relative and absolute positioning to 
achieve more accurate positioning [36]. Nowadays EKF is usually used 
in unmanned engineering projects. To confirm the performance of the 
proposed method, three methods are compared mainly in terms of 
positioning accuracy and computational complexity. The positioning 
accuracy in this paper includes the root mean square error (RMSE) and 
the mean location error. 

In the comparative plot of the navigation results shown in Fig. 8. The 
INS through the pre-integration principle of positioning [8], the longer 
the robot operates the larger the pose error is due to gyroscope drift, 
accelerometer error, and noise uncertainty. The EKF trajectory curve can 
follow the real curve well, but turn earlier than the real trajectory. 
Therefore, the EKF method has unstable positioning accuracy. The 
proposed method is much smaller than the error of EKF at the turn, as 
shown in Fig. 8(b) and (c), and the relative error is relatively stable all 
along. 

To further test the positioning accuracy of the proposed method, 
RMSE was made for all three methods in terms of location and velocity 

as shown in Table 2. From Table 2, it can be seen that the proposed 
method is more accurate than the other two methods in every item. The 
RMSE change of the three methods with time can be intuitively seen in 
Fig. 9. The error curve plot better illustrates the performance of different 

Fig. 8. Ground truth (black), and the estimated navigation trajectory using 
three methods. 

Table 2 
Comparison of RMSE among three positioning methods.  

Type RMSE in the Location RMSE in the Velocity 

X (m) Y (m) X (m/s) Y (m/s) 

INS  0.313  0.216  0.117  0.050 
EKF  0.519  0.50  0.053  0.066 
MSF-FG  0.094  0.189  0.019  0.028  

Fig. 9. Comparison of RMSE among different methods under normal operation 
of various navigation sensors: (a) location RMSE, (b) velocity RMSE. 
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methods for sensors information fusion under the normal operation of 
various navigation sensors. 

The results of the error analysis show that the INS method error 
gradually becomes larger when each navigation sensor has good per-
formance. The EKF method has unstable positioning accuracy. However, 
the proposed method has small and stable positioning error. Therefore, 
the MSF-FG method outperforms the EKF and FG methods. Overall, the 
location and velocity errors in X-direction are smaller than those in Y- 
direction. The proposed method effectively corrects the offset errors 
caused by IMU/Odometer or errors caused by other reasons. Thus, the 
positioning accuracy of the integrated navigation system is improved. 

Due to the simplicity of the algorithm and the small amount of data, 
the computing time for INS positioning is almost negligible. The dif-
ference between EKF and MSF-FG mainly lies in the efficiency of 
nonlinear fusion for different sensors and the computational complexity 
of both methods is O(n).’n’ is the number of steps to update the algo-
rithm state. Therefore, the computational complexity of the two 
methods is mainly reflected in the computing time of state estimation. 
This paper compares the computing time of different data set sizes, as 
shown in Table 3. The times in Table 3 are the average computation 
times for 100 robot state estimation experiments. Compared to the 
proposed method, the EKF the computational cost is greater. Although 
the EKF trajectory is smooth and hopefully better, the entire state vector 
is estimated each time making the delay larger. When applying iterative 
EKF, large augmented state vectors get more and more time-consuming 
and do not achieve the desired real-time performance. Compared with 
EKF, MSF-FG saves more than 30% of the computing time. The proposed 
method is proven to process data more efficiently and has good 
scalability. 

4.2. Sensors operating in abnormal condition 

In this section, the performance of the proposed method is tested in 
the case of abnormal sensor operation. When the experiment is carried 
out on complex ground, the robot may have wheel slippage or equip-
ment failure caused by turning or variable velocity, and the OD output is 
abnormal. The LiDAR positioning data is abnormal when the robot en-
counters a glass obstacle or moves in a similar environment. The 

following experimental scheme aims to verify the effectiveness and 
robustness of the proposed MSF-FG method. 

The following experimental scheme was designed to verify the 
effectiveness and robustness of the MSF-FG method. The positioning 
state of the sensors during the experiment is shown in Fig. 10. The 
number “0′′ indicates that the sensor performance is degraded or inter-
rupted. The number ”1′′ indicates that the sensor is working normally. A 
state of ‘0′ in Fig. 10 means that the Odometer or LiDAR sensor is 
abnormal. “L-L” indicates the loss of LiDAR signal. “L-D” indicates the 
degradation of LiDAR performance. “O-L” indicates the loss of Odometer 
signal. “O-D” indicates the degradation of Odometer performance. 
During the experiment, the sensor noise was increased or the sensor was 

Table 3 
Computation costs of the two methods for different data set sizes.  

Data size  

Methods 

5.7 GB 2.6 GB 

Computing Time (s) 

EKF  0.874  0.326 
MSF-FG  0.328  0.215  

Fig. 10. Sensor positioning random state.  

Fig. 11. Comparison of RMSE among different methods under abnormal 
operation of various navigation sensors: (a) location RMSE, (b) velocity RMSE. 

Table 4 
Comparison of RMSE among three positioning methods.  

Type RMSE in the Location RMSE in the Velocity 

X (m) Y (m) X (m/s) Y (m/s) 

INS  0.14  0.425  0.789  0.063 
EKF  1.244  0.456  0.125  0.327 
MSF-FG  0.23  0.101  0.072  0.061  
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set to fault when the state of the sensor was ‘0′. Fig. 11 compares the 
location and velocity errors of the different methods in case of sensors 
performance degradation or even interruption. In addition, Table 4 
summarizes the RMSE of the velocity and location errors in both ori-
entations. the computational cost of each method is shown in Table 5. 

The error analysis results show that the overall error increases for all 
methods in the case of degraded or even interrupted sensor perfor-
mance. The RMSE for EKF positioning is up to 3.5 m. the RMSE for INS 
positioning is up to 1.0 m. The RMSE for MSF-FG positioning is up to 0.4 
m. The MSF-FG method still has a higher accuracy than INS and EKF. 
Compared with the sensor under normal operation, it can be found that 
the RMSE of location and velocity of the remaining two methods have 
increased due to the degradation of sensor performance, but it does not 
have a great impact on the MSF-FG method proposed in this paper. 

The proposed method offers better navigation accuracy and greater 
robustness than the other two methods due to the introduction of a 
dynamic adaptation function before fusing the sensor input information 
and the anomaly information of the performance variation. Comparing 
Table 3 and Table 5, the EKF runtime increases when there are signifi-
cant outliers in the measurement information, or even when some sen-
sors fail. The reason for this problem is that the nonlinear information 
increases significantly in this experiment and the processing of invalid 
data is more complicated. MSF-FG extracts the valid information in 
advance, so the running time is almost unaffected by the outliers. 

5. Experiments for validation 

The proposed method was tested with a robotic experimental plat-
form as shown in Fig. 12. The platform consists of 2D LiDAR, IMU and 
four-wheel drive chassis including Odometer. The parameters of the 
navigation sensors are shown in Table 1. The model type of Odometer is 
60LCB040C-J00000 (Hollysys Electric Technology Co., Ltd.). And the 
model type of IMU is SABER CLASSIC (Atom Robotics Co., Ltd). The 
model type of the LiDAR is R2000 (Pepperl + Fuchs Ltd). The experi-
ments were conducted on an IPC having an Intel i7-7500 single-core 
processor. The processor has a clock frequency of 2.40 GHz and a 
memory capacity of 16 GB. The IMU and Odometer data provide highly 
accurate ground truth location and orientation data. In addition, the 
sampling frequency of Odometer and IMU is 50 Hz, and LiDAR operates 
at 20 Hz. 

The surfaces selected for robot operation include smooth ground, 
many different obstacles, and indoor environments with similar land-
marks. The environment may make the performance of Odometer and 
LiDAR may be reduced or even fail. And when sensors are not available 
in complex environments, the proposed method still achieves accurate 
navigation solutions. The gyroscope drifts only 0.1 degree in one hour 
during the motion of the robot. The level of uncertainty in the relative 
rotation between LiDAR scans calculated by Iterative Closest Point (ICP) 
is much higher than the uncertainty of the gyroscope. Hence, the posi-
tioning credibility of LiDAR is reduced when the robot is rotating. 

In order to show the advantages of the proposed positioning algo-
rithm, the experiments were conducted under the same sensor condi-
tion. The selected sensors are also in line with the actual needs of 
logistics company. The experiment was made under the ROS system, the 
cartographer algorithm was used for slam and navigation. The experi-
mental dataset was used to obtain a comparison plot of the trajectory of 
the proposed method with the other three methods, as shown in Fig. 13. 
To distinguish the performance of the MSF-FG method in real experi-
ment further, the four places with obvious location errors in Fig. 13 are 
labeled and shown in Fig. 14. Areas (a) and (b) in Fig. 14 refer to the 

Table 5 
Computation costs of different methods under the abnormal.  

Methods EKF MSF-FG 

Computing Time (s)  0.851  0.386  

Fig. 12. Experimental robot platform.  

Fig. 13. Real trajectory comparison of the three methods in the experi-
mental field. 

Fig. 14. Comparison of real trajectories with local magnification in Fig. 13. (a) 
is a zoomed-in plot of the start and end points. (b) shows the robot moving 
normally. (c) shows the robot turning left or right. (d) shows the robot 
turning around. 
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starting point of robot motion, the end point, and the point of robot 
round-trip error comparison. The turns are responsible for a large 
portion of the Odometer and LiDAR errors, as shown in Fig. 14(c) and 
(d). The arrows in the trajectory plot indicate the direction of the robot’s 
route. According to the enlarged part, it is obvious that the starting 
trajectories of the three methods are almost similar, but the final tra-
jectories are separated. The EKF method gradually shifts with the robot’s 
trajectory, and the INS method shifts more, while the method proposed 
in this paper basically matches with the real trajectory. The robot nav-
igation positioning applies the MSF-FG method. Since the real trajectory 
curve cannot be obtained in the experiment, twelve error reference 
points are set to verify the performance of the proposed method. The 
mean location error in robot navigation is shown in Table 6. After the 
robot has run the trajectory several times, the starting point is used as a 
comparison point to test the position error of the method. Since EKF and 

INS have a large error during the application in practice, sometimes even 
run out of the map. Large errors can cause problems with robot colliding 
with walls. So we compare the trajectory of MSF-FG to calculate the 
relative mean error of the other two methods, as well as the error of 
returning to the origin. According to the analysis of experimental results, 
the proposed MSF-FG method can reduce the mean location error by 
twice. 

In addition, the particle swarm optimization (PSO) [37] method is 
selected for comparison to better show the superiority of the proposed 
method. As shown in Fig. 13, The PSO pose estimation is not consistently 
stable, a little better than EKF but not as accurate as the proposed 
method. As shown in Table 6, the mean location error of POS is twice as 
large as that of the proposed method, especially the starting point error 
is larger. 

Therefore, the fusion information positioning results obtained by 
using the proposed method are better than the EKF and POS fusion re-
sults. The experimental trajectory curves and average error datas are 
basically consistent with the simulation results. The proposed method is 
more adaptable to more complex indoor environments, and not only 
does the positioning accuracy meet the tasks such as normal robot work, 
but also has stronger robustness. 

As shown in Fig. 12 and Fig. 15, the selected sensors and the mobile 
robot used in the experimental test are developed for the requirements 
of a logistics company. The experimental scenario is specified by the 
logistics company as required. The method proposed in this paper not 
only meets the needs of the logistics company, but also can provide 
technical support for indoor robot navigation and positioning. 

6. Conclusion 

To summarize, this paper presented a MSF-FG indoor robot posi-
tioning approach based on IMU\Odometer\LiDAR sensor fusion to 
improve positioning accuracy, reduce computational complexity and 
enhance the robustness of the system. According to the characteristics of 
three different sensors, the sensor factor node models are established 
respectively. Combining with the factor graph method, a MSF-FG posi-
tioning model was constructed to achieve fusing the asynchronous or 
disordered nonlinear measurement information from multiple sensors 
and the plug and play function. The relationship between navigation 
state and sensor measurement was explained in our proposed posi-
tioning model. Besides, to make the system more robust, a dynamic 
adaptive function was designed by dynamically adjusting the weight of 
each factor. Finally, the optimal pose of the robot was estimated by using 
Gauss-Newton and Levenberg-Marquardt algorithms. The results reveals 
that the MSF-FG method can control RMSE below 0.25 m regardless of 
whether the sensor is normal or not. Compared with INS and EKF, the 
proposed method reduces the RMSE by at least 40%. Furthermore, the 
proposed methodology improves the computing time by more than 30% 
compared to EKF. The proposed positioning technique can not only 
make the application of multi-sensor fusion more mature, but also 
satisfy the diversified demands of indoor navigation and positioning 
services. In our future work, we will improve the proposed framework to 
explore the multi-floor space positioning for different indoor application 
scenarios. 
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Table 6 
Comparison of location error among three positioning methods.  

Type Mean location error Starting point error 

X (m) Y (m) X (m) Y (m) 

INS  0.37  1.04 0.82  1.97 
EKF  0.32  0.56 0.18  0.91 
POS  0.26  0.35 0. 37  0.44 
MSF-FG  0.07  0.18 0.06  0.13  

Fig. 15. Experimental scenario specified by a logistics company.  

Table A1 
Gaussian Newton Iteration Algorithm.  

Input: set of original state variables X0:k, 
all measurements Z1:k,  
Set the initial value of the state increment matrix 
stopping threshold η 
Maximum iterations m0 

Init:X0:k←0 
for t ←1 : k do 

fEIMU(Xt ,Xt− 1, ct)←d(Xt − HIMU
t (Xt− 1 ,ct ,ZIMU

t )) fbias(ct ,

ct− 1)←d(ct − g(ct− 1)) for j←1 to Nsensors do 
fsensorsj ←d(Zj

t − Hj
t(Xj

0:k,t)) end for 
Ψ
(
eerj

)
←Zj

t ,H
j
t(Xj

0:k,t) end for 
Then, the nonlinear multivariate function is linearized. 
J(X̂0:k),b(X̂0:k)←

∑k
t=1‖Ht

(
X0:k,t

)
− Zt‖

2
ΣThen determine whether J(X̂0:k) is too large 

or a singular matrix. 
while ‖J(X̂0:k)Δ0:k − b(X̂0:k)‖

2
> η orm < m0do 

Δ̂0:k← argmin ‖J(X̂0:k)Δ0:k − b(X̂0:k)‖
2 

m←m + 1 end while 
X̂0:k←X̂0:k + Δ̂0:kOutput: Optimal set of state variables X̂0:k  
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Table A2 
Levenberg-Marquardt iterative optimization Algorithm.  

Input: initial estimate X0:k,  
quadratic polynomial cost function g(), 
stopping threshold η 

Init:t←0, λ←10− 3 

while λ > η do 
A,B ← Linearization of g(X) at Xt 

Δ← Solve for (AT A + λdiag(AT A))Δ = AT b 
if g(Xt + Δ) < g(Xt) then 

Xt+1 = Xt+Δ 
λ←λ/10 else 
Xt = Xt λ←λ× 10 t ← t + 1 

end while 
Output: the latest estimate of the set of state variables X̂0:k  
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