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workloads in women’s division I
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Women’s collegiate basketball is a fast-growing, dynamic sport that spans 8 or
more months, with athletes competing in 30 + games in a season. The aim of
this study was to quantify and profile the external load of practices and games
during a Power-5 DI Women’s Collegiate Basketball season. Specifically, Average
PlayerLoad (PL), PlayerLoad per minute (PL*min−1), High Inertial Movement
Analysis (High-IMA), and Jumps were quantified using Catapult Openfield
software during four distinct training periods of the year: 8-hour preseason, 20-
hour preseason, non-conference, and conference game play. Weekly variations
and acute to chronic workload ratios (ACWR) were also examined. Eleven
subjects participated in daily external load monitoring during practice and
games via Catapult’s ClearSky T6 inertial measurement units (IMU). Averages,
standard deviations, and confidence intervals were calculated for training period
comparisons, and Cohen’s d was calculated as a measure of effect size. Findings
include normative values to provide context for the demands experienced
across an entire season. PL was significantly higher during non-conference play
than during any of the other three training periods (p < 0.05). Descriptive data
enumerate percent change and ACRW variations throughout the season. These
data can be used to describe the physical demands across a season and provide
physical profile guidelines for coaches.
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Introduction

Women’s collegiate basketball has increased in popularity, with a concurrent increase in

player fitness demands and game performance expectations. The DI Women’s Basketball

season in the National Collegiate Athletic Association (NCAA) spans from August to

March with 30 + regular season games. Teams can begin mandatory on-campus workouts

in August, and official pre-season practices in late September, with game play beginning

in November. To ensure athlete safety and promote academic success, the NCAA has

guidelines regulating practice duration and athlete requirements. NCAA regulations are

sport season-dependent, and these include offseason, preseason (which can be broken

into 8-hour preseason and 20-hour preseason), non-conference game play, and conference

game play. The offseason includes summer, while preseason includes early fall (where no

official games are played), also referred to as the 8-hour period and the 20-hour period.

In the 8-hour period, NCAA guidelines limit required training to eight hours of activity

per week; four of those hours may be used on the court for basketball activity, while the
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other four can be used for other activities such as strength and

conditioning. Once teams have been approved to start official

practices, usually about a month before the first game, they move

into a 20 h per week pre-season period. During this time,

coaches can use those 20 h at their discretion, but athletes are

required to take two days off per week. Once teams begin

playing games, only one day off per week is required. This

portion of the season is termed non-conference game play, or the

non-conference schedule, because teams play outside of their

designated conference and include any DI schools that agree to

play each other. During this portion of the season, games can be

played any day of the week and travel schedules are highly

variable. During conference play, teams compete on the same

two days of the week, creating a more consistent schedule; one

day off per week is still required. Often athletes are participating

in mandatory workouts for at least 7 months of the year, and in

many cases, more. Training blocks of this length are challenging

to periodize and many coaches struggle to appropriately

stimulate player fitness without increasing risk of burnout or

overuse injuries. Issues such as sudden spikes in workload and

lack of training variation are of particular concern to the long-

term health and performance of the athletes (2, 3, 10, 11, 34).

Workload monitoring allows coaches to quantify the demands

placed on athletes and make evidence-based decisions in an effort

to reduce risk of injury and burnout and optimize training and

peaking. With the desire to quantify training and competition

demands, coaches and trainers utilize an array of variables to

estimate workload and inform short- and long-term training

progressions. Intrinsic (internal) variables include psychological

constructs such as rating of perceived exertion (RPE) (4, 9, 35),

and physiological constructs such as heart rate (HR), and blood
TABLE 1 Common workload variables.

Variable
8-hour preseason Offseason period where athletes can practice 4 h

20-hour preseason 20-hour practice period that begins one month

Non-Conference Practice and games against non-conference opp

Conference Practice and games against conference opponen

Arbitrary Units (AU) Arbitrary Units (AU) are used as a scaling facto
produced by Catapult® devices to calculate PL,

PlayerLoad (PL) PlayerLoad is an overall indicator of work perfo
modified vector magnitude, expressed as the squ
of the three vectors (x, y and z axis)—and divide
listed below “where axi, ayi and azi are the acce
sampled accelerometer points with n + 1 points o
360000574716-What-is-Player-Load-) for more
Pn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(axi�axi�1 )

2þ(ayi�ayi�1 )
2þ(azi�azi�1 )

2
p

100

PlayerLoad Per Minute (PL*min−1) PlayerLoad Per Minute is PL divided by minute

High Inertial Movement Analysis
(High-IMA)

High-IMA is a metric that combines acceleration

Jumps Total number of jumps

Total Weekly Training Load Sum of weekly PL for training and games

Weekly Training Load (acute) Average workloads attained over the previous 7

Chronic Workload Rolling average of training load experienced in

Acute: Chronic Workload Ratio
(ACWR)

Acute (1 week) workload divided by chronic (4

Player Load, PL.min−1, High-IMA, Weekly Training Load, Chronic Workload, and Acute:

jumps performed. These are the standard metrics for reporting Catapult workload dat
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lactate (15). Extrinsic (external) variables include time motion

analysis (TMA), and global positioning systems (GPS) (10, 11,

34). More recently, inertial measurement units (IMU) have been

used to provide a multidimensional view of training-related

physical demands, and they are considered the “gold standard”

for reliable and valid measures of athlete workload (15). An IMU

brings together triaxial accelerometers (assesses movement in

three dimensions), gyroscopes (determines orientation), and

magnetometers (measures directions) (10, 29) into one small

wearable device to measure external loads (Catapult Clearsky T6,

Melbourne, Australia). This allows tracking of movements such

as accelerations, decelerations, changes of direction, jumps, and

directionality of movements (39). IMU’s measure workload data

as arbitrary units (AU); AUs combine all movements into a

single number that represents the intensity and duration of the

workload session; in Catapult, this measurement is termed

PlayerLoad (PL). Other variables typically examined in studies

profiling women’s basketball include PlayerLoad per minute

(PL*min−1), a measure of intensity over time; High Inertial

Movement Analysis (High-IMA), a measure of fast (above

3.5 m*s−1) accelerations, decelerations, changes of direction, and

free running; and Jumps (29). Expanded definitions of the

variables used in this study, and by others conducting workload

analyses in women’s basketball, are summarized in Table 1.

The Catapult system used in this study adds a Local Position

Measurement (LPM) system to enhance information provided by

IMU’s. LPMs are particularly helpful when determining the

demands of indoor training or competition sessions, such as

those conducted on a basketball court. Data from the Catapult

system quantify fluctuations in volume through AU workloads

across days, weeks, and the course of the season. Acute
Calculated Method
on the court & 4 h for S&C, film, ECT

before games start

onents

ts

r to compare the total volume of work performed. Specifically, they are the units
PL.min−1, High-IMA, and other metrics available.

rmed during activity that includes movements in all planes. PL is defined as “a
are root of the sum of the squared instantaneous rate of change in acceleration in each
d by 100; it is represented in arbitrary units (AU).” (7). The formula for PlayerLoad is
leration values in x, y and z directions respectively, and i = 0…, n represents the
ver the time of the session” (see https://support.catapultsports.com/hc/en-us/articles/
information.

s of activity. PL*min−1 is a measure of intensity.

s, decelerations, change of direction, and free running when acceleration is >3.5m·s−1.

days

the previous 4 weeks

week) workload

Chronic Workload Ratio are in arbitrary units (AUs). Jumps are the raw number of

a.
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fluctuations in workload, represented by percent change, are one

way to quantify load. Acute to chronic workload ratio (ACWR,

or acute load–the sum of the last seven days, divided by chronic

load–the sum of the previous four weeks), is another strategy for

quantifying load. From a theoretical perspective, acute workload

indicates fatigue and chronic workload indicates fitness (21).

While percent change and ACWR are not without criticism (14,

20, 21) these metrics, along with other IMUs, are typically part

of an overall performance monitoring and improvement plan

that may consider multiple factors (e.g., sleep, nutrition, stress).

Monitoring ACWR as part of a multifactorial plan facilitates

athlete development across their training age or years of

participation (13), informs workload adjustments to minimize

fatigue and burnout (36, 37), and it has been previously

associated with a lower risk of non-contact injuries (3).

Specifically, prior research has established that when RPE’s and

AU’s show workload increases of ≥15% compared to the

previous week, injury risk can increase between 28% and 49%

(13). In addition, ACWR between 1 and 1.5 is associated with

the lowest injury rate (36%) when compared to other ranges

(<0.5; 54%), (0.5–.99; 51%), and (>1.5; 59%) (33, 36). A recent

systematic review by Andrade and colleagues (3) concluded that

90% of the studies reviewed suggest that athletes are at higher

injury risk when ACWR is higher–vs. lower or moderate.

Quantification of these variables provides coaches with additional

information for evidence-guided training, competition, and

recovery decisions.

IMU data from athletes participating in a variety of sports have

been examined. Specifically, related research during basketball play

has included workload monitoring methods (10, 11, 23, 34),

workloads in games vs. practices (12), workload requirements

between various playing positions and drills (1, 23, 31, 32), the

effect of fluctuating training loads on performance variables (4,

16, 17) and pre-season (16) and in-season workload demands

(9). However, the previously mentioned studies examined short-

term workloads. Only a handful of studies have examined

season-long or longer-term workload variables. Game data over

the course of four years (29), in-season weekly load fluctuations

utilizing RPE (25), and neuromuscular response to training loads

(26) have been examined among women’s basketball players. In

addition, in-season weekly load fluctuations utilizing RPE (9) and

10 weeks of pre and in-season play utilizing HR (4) have been

examined; however, these studies were conducted with male

basketball players. It is unknown how women’s basketball loads,

measured utilizing IMU data, vary over the course of the entire

season, and in particular how demands may fluctuate between

pre-season and in-season play. There is a need for long-term

studies quantifying changes in workload among women’s

basketball players (11, 29) in order to optimize training programs

to meet the demands of the competition season.

While value can be drawn from existing research, variables

used to quantify basketball workload and workload monitoring

vary (25, 26, 29), and only one study has examined IMU’s

among women basketball players over the course of a whole year

(26). Interestingly, the primary purpose of the study by Peterson

and Quiggle (26), was to examine the neuromuscular response to
Frontiers in Sports and Active Living 03
training loads-not to examine training load variations across a

year. Petway et al. (27) have called for the need to examine how

different workload metrics vary throughout a season. Therefore,

given the lack of longitudinal research on seasonal workload

variations in women’s basketball, the purpose of the present

study was to quantify the external load of practices and games

during a Power-5 DI Women’s Collegiate Basketball season,

while specifically examining the fluctuations and differences in

loads between and within four key periods: 8-hour preseason, 20-

hour preseason, Non-Conference, and Conference play. IMU

data (Catapult Innovations, Melbourne, Australia) were utilized

to determine weekly team averages of PL, PL.minute−1, High-

IMA, and Jumps as well as weekly percent change, and ACWR.

Data collected for this study provides information for physical

profiling of this important group of athletes.
Materials and methods

Experimental design

A longitudinal, retrospective, and observational study design

was used to examine four IMU metrics across four distinct

periods: 8-hour preseason, 20-hour preseason, Non-Conference

play, and Conference play. Data captured via Catapult T6

wearable devices were regularly collected by the sports

performance coaches at a large urban university in the western

USA. Data were available from eleven female basketball athletes

over the course of the 2019–2020 season.

The variables used for analysis in this study were included in

previous research on women’s Division I basketball players (29),

and recommended in a recent systematic review on external

workload monitoring in team sports (15). PlayerLoad (PL), an

indicator of overall work, PlayerLoad per minute (PL*min−1), an

indicator of the intensity of effort over time, total high inertial

movement analysis (High-IMA), a metric that combines

accelerations, decelerations, change of direction, and free running

when acceleration is greater than or equal to 3.50 m*s−1*s−2, and

total jumps (Jumps), were used as the primary measures for this

study. PL was further examined to calculate weekly training loads

(i.e., weekly percent difference) and an acute (7 days) to chronic

(28 days) workload ratio (ACWR). These variables are described

in detail in Table 1. All variables were measured using Catapult

ClearSky T6 (Catapult Innovations, Melbourne, Australia), and

analyzed using Catapult OpenField Software.
Subjects

Participants included eleven (n = 11) DI female basketball players

at a Power-5 DI University located in the West. Athletes ranged from

18 to 24 years (mean = 20.2 ± 1.3 years), and participated in 102

practices, and 30 games. They were tracked during all mandatory

basketball activities, and variables were de-identified. Data were

previously collected as part of the University’s Basketball team daily

monitoring practices. Approval from the Institutional Review Board
frontiersin.org
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(IRB #08-062020a) was obtained and each athlete gave written

consent to use their previously collected and de-identified data. All

participation was voluntary.
Procedures

Match play demands
Practice and game sessions were held in University gyms. In

order to quantify the physical demands throughout the season, the

inertial measurement unit (IMU) was utilized and placed on each

athlete. Each athlete wore a sports vest which housed a small

pouch where the unit was placed, located at the top of her back

between the scapulae. As the athlete entered the gym each day,

she would receive the same IMU device assigned at the beginning

of the year. The first author would then assist to place the device

in the vest and ensure the device was turned on and tracking

movements. While in practice, the investigator would live track the

practice or game utilizing Catapult software (Openfield; Catapult

Innovations, Melbourne, Australia) to indicate when drills began

and ended. Non-activity time that exceeded two minutes,

including teaching, timeouts, and water breaks, was excluded from

the study. Athletes who did not participate in the full practice,

were injured that day, or did not play more than 10 min in the

game were also excluded from that day’s data. Data were

downloaded utilizing Openfield software and exported to

Microsoft Excel (Redmond, WA). Catapult wearable devices have

demonstrated acceptable reliability and validity in soccer (8),

indoors (22), and during treadmill running (5).

Researchers have examined intra- and inter- device reliability

in activities that closely resemble basketball (24). When

examining intra-device reliability (a) the majority of CV

(coefficient of variation) values for various directions and levels

of acceleration were low (e.g., < 1.0%, although the values ranged

from 0.01% to < 3.0%), and (b) ICCs ranged from 0.77 to 1.0

(very large to nearly perfect) (22). Taken together, CVs and ICCs

indicate a high level of intra-device reliability. Inter-device

differences were noted for various directions and levels of

acceleration, such that effect sizes ranged from 0.54 (medium) to

1.20 (large), indicating a lower level of inter-device reliability

compared to intra-device reliability (24).

Criterion Validity of the Catapult ClearSky T6 local positioning

system (LPS) was examined by asking participants to complete a

circuit of 7 movements that simulated team sport movements, and

comparing results to a Vicon motion capture system (considered

the gold standard) (18). The root mean square error was 0.20 ±

0.05 m and mean bias detected an overestimation for all distance

bands. While there is some error, the LPS system demonstrates

acceptable accuracy for measuring inter-unit distance. Concurrent

validity was tested by Nicolella et al. (24), who concluded that the

difference between accelerometer measured peak acceleration and

the Catapult device ranged from 1.0% to 23.5%. A consistent

difference of 15% was reported, with PlayerLoad from Cataput

being consistently lower than load calculated using a Cartesian

formula. While there have been questions about reliability and

validity of these devices, there is agreement that inter-unit
Frontiers in Sports and Active Living 04
reliability is high (24), and that Catapult devices are useful tools

for assessing athlete workload.
Statistical analysis

To establish normative values for PL, PL*min−1, High-IMA,

and Jumps over the course of the four time-periods (8-hour

preseason, 20-hour preseason, Non-Conference, and

Conference), means and SDs were calculated. To investigate

whether there were any differences in the performance of PL,

PL*min−1, High-IMA, and Jumps across the four periods (i.e., 8-

hour preseason, 20-hour preseason, Non-Conference, and

Conference) of the training season, a series of linear mixed

model analyses were conducted. This approach was necessary to

account for the nested structure of the data, where repeated

observations were obtained from the same players across the

four periods, and to control for potential statistical errors. Using

linear mixed models, it was possible to estimate the effects of

predictor variables and determine whether there were significant

differences in performance across the different periods of the

training season. Using one of the linear mixed model analyses in

this study as an example, Jumps were the dependent variable,

and the periods of the training season were the predictor

variables. By accounting for the correlation between repeated

observations of Jumps on the same players across the four

training periods, the model was able to control for statistical

errors. Therefore, the use of linear mixed models in this study

allowed for a more rigorous analysis of the data, enabling the

identification of any significant differences in the performance of

PL, PL*min−1, High-IMA, and Jumps across the different

periods of the training season. Bonferroni post hoc analyses were

further conducted to determine specific significant differences

among the comparisons of the four periods. Significance level

was set at 0.05. Cohen’s d was also utilized to determine effect

sizes, with 0.2–0.49 categorized as small, 0.5–0.79 as medium,

and 0.8 and above as large. Confidence intervals were set at 95%.

To establish season-long weekly descriptive values for weekly

PL totals, weekly percent change in PL, and ACWR, data were

calculated and graphed for visual inspection. Percent change was

calculated [(new week− previous week)/previous week])

and graphed along with weekly PL totals. In this study, ACWR

was calculated utilizing an exponentially weighted equation

(29). EWMAtoday ¼ Loadtoday� 2=(N þ 1)þ ((1� (2=(N þ 1))�
EWMAyesterday), where N = 7 for acute and 28 for chronic. Final

results were calculated as follows (Acute EWMA 7/Chronic

EWMA 28 = ACWR). Weekly averages of ACWR are presented

along with weekly PL totals.
Results

Normative values

Table 2 presents the normative values of mean and standard

deviation for PL, PL*min−1, High-IMA, and Jumps by training
frontiersin.org
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TABLE 2 Averages by period.

Period Player load
(mean ± SD)

Player Load/Min
(mean ± SD)

High-IMA
(mean ± SD)

Jumps
(mean ± SD)

8-hour preseason 428.7 ± 169.3 5.4 ± 2.6 19.7 ± 18.7 112.5 ± 106.7

20-hour preseason 468.9 ± 125.0 5.3 ± 1.2 33.8 ± 17.2 76.0 ± 34.7

Non-Conference 532.2 ± 233.9 5.4 ± 1.2 40.3 ± 57.1 95.8 ± 63.3

Conference 496.4 ± 252.5 5.3 ± 1.2 33.8 ± 19.3 80.1 ± 55.3

Yearlong average 492.2 ± 220.8 5.3 ± 1.5 33.7 ± 34.9 88.4 ± 65.6

Period comparisons Cohen’s d
(95% CI for d )

Cohen’s d
(95% CI for d )

Cohen’s d
(95% CI for d )

Cohen’s d
(95% CI for d )

8-hour vs. 20-hour 0.27 (0.08, 0.47)¶ 0.07 (−0.12, 0.26) 0.79 (0.59, 0.99)§ 0.48 (0.29, 0.68)§

8-hour vs. Non-Conference 0.48 (0.30, 0.66)§ 0.00 (−0.18, 0.18) 0.43 (0.25, 0.61)§ 0.21 (0.03, 0.39)¶

8-hour vs. Conference 0.29 (0.12, 0.46)§ 0.08 (−0.09, 0.25) 0.74 (0.56, 0.91)§ 0.45 (0.28, 0.62)§

20-hour vs. Non-Conference 0.32 (0.15, 0.48)§ 0.11 (−0.05, 0.28) 0.14 (−0.02, 0.30) 0.37 (0.20, 0.53)§

20-hour vs. Conference 0.12 (−0.03, 0.28) 0.00 (−0.16, 0.15) 0.00 (−0.16, 0.15) 0.08 (−0.07, 0.24)
Non-Conference vs. Conference 0.15 (0.01, 0.28)¶ 0.11 (−0.02, 0.25) 0.16 (0.03, 0.30)¶ 0.27 (0.13, 0.40)§

Player Load, Player Load/Min, and High-IMA are in arbitrary units (AUs). Jumps are the raw number of jumps performed. These are the standard metrics for reporting

Catapult workload data. Team weekly and/or periods (8-hour preseason, 20-hour preseason, conference, and non-conference) maximum and minimum values can

be provided upon request.

IMA, inertial movement analysis; CI, confidence interval.

Numbers in upper panel are presented as mean ± SD; numbers in lower panel represents effect size Cohen’s d (95% CIs for d); Cohen’s d effect sizes of 0.2–0.49 is small,

0.5–0.79 is medium, and 0.8 or higher is large.
§Significant differences between comparisons, where p < 0.01.
¶Significant differences between comparisons, where p < 0.05.
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period over the year. PL had the highest mean value during the

Non-Conference period, followed by Conference, 20-hour

preseason, and 8-hour preseason, respectively. PL*min−1 did not

show much variation between the different periods of the year.

High IMA’s had the same trend as PL with Non-Conference

having the highest values, followed by Conference, 20-hour

preseason, and 8-hour preseason, respectively. Jumps were the

only variable that had the highest values during the 8-hour

preseason, followed by Non-Conference, Conference, and 20-

hour preseason, respectively (see Table 2).
Results by training period

Table 2 presents mean and standard deviation values for PL,

PL*min−1, High-IMA, and Jumps by training period during the

year. A linear mixed model analysis revealed a significant PL

effect (p < 0.01). Further analysis using a Bonferroni post-hoc

analysis revealed that PL was significantly lower during the 8-

hour period compared to 20-hour (p = 0.041), Non-Conference

(p < 0.01), and Conference (p < 0.01) periods, respectively. PL

was also significantly lower in the 20-hour period compared to

Non-Conference (p < 0.01), yet significantly higher in Non-

Conference compared to Conference (p = 0.03). There were no

statistical differences in PL*min−1 across the periods of the year,

p = 0.597. The linear mixed model analysis also revealed a

significant period effect on High-IMA (p < 0.01). Specifically,

High-IMA’s were significantly lower during the 8-hour period

when compared to 20-hour (p < 0.01), Non-Conference

(p < 0.01), and Conference (p < 0.01) periods, respectively, yet

significantly higher during Non-Conference when compared to

Conference (p = 0.032).
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Jumps were significantly higher values during the 8-hour

period compared to 20-hour (p < 0.01), Non-Conference (p <

0.01), and Conference (p < 0.01) periods, respectively. The 20-

hour period had significantly lower Jumps compared to Non-

Conference (p < 0.01), and significantly more Jumps in Non-

Conference compared to Conference (p < 0.01).
Results by weekly loads

Weekly training load totals ranged from a low of 1024 AU

during week one, to a high of 3431 AU during week 19 (See

Figure 1). Similarly, the highest percent change, week to week,

occurred between week one and week two (85%), and the largest

percent decrease (−30%) occurred between week 20 and week 21,

as shown in Figure 1. Weekly percent change varied every week,

however, there were only 5 weeks where a positive or negative

percent change, respectively, continued for a second week in a

row. ACWR, as shown in Figure 2, varied from a high of 1.18

during week 10 to a low of 0.76 during week 18. Throughout the

season, the ratio remained consistent, between 0.95 and 1.04 for

20 of the 28 weeks with only one week < 0.95.
Discussion

The purpose of this study was to quantify the external

workloads of elite collegiate Division I female basketball players

over the course of four key periods: 8-hour preseason, 20-hour

preseason, Non-Conference, and Conference play. Primary results

included (1) establishing norms for PL, PL*min−1, High-IMA,

and Jumps for each of the 4 collegiate basketball key training
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FIGURE 1

Weekly totals presented in arbitrary units (AU) combined with line graphs that represent percentage difference between weeks in collegiate female
basketball players (n= 11).

FIGURE 2

Weekly totals presented in arbitrary units (AU) combined with line graphs that represent acute to chronic workload ratios (ACWR) in collegiate female
basketball players (n= 11).
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periods; (2) determining differences in PL, PL*min−1, High-IMA,

and Jumps, respectively, for each time-period; and (3)

establishing season-long weekly descriptive values for weekly PL

totals, weekly percent change in PL, and ACWR.
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Establishing normative values for different measures of

workload during specific times of the training year is important

to plan and apply appropriate training stimuli to facilitate

recovery and peaking, and to maximize player availability for
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training and competition (6, 9, 13). Table 2 shows the average

workload values per practice during four key times of the

training year.

Whereas comparative data with female basketball players do not

exist, Heishman and colleagues studied daily PL data in men’s

collegiate basketball players over a five-week time block during the

8-hour period (17). PL values averaged 706.5 ± 170.9 AU during

the 8-hour period (17), which are considerably higher than the

average values found in the present study (428.7 ± 169.3 AU)

during the same training period. Male athletes also had higher

values for High-IMA, which averaged 62.46 + 20.84, whereas in

the present study, PL averaged 33.8 + 19.3. Since practice duration

was likely similar between studies based on NCAA regulations, the

higher PL and High-IMA found in men (17) is likely attributed to

a practice planning variable. For example, previous research

indicates that 5v5, 3v3, and full court drills produce higher IMU

acceleration load values than 4v4, 2v2, or half court drills,

respectively (32). Differences in PL and High-IMA could also be

due to differences in study design (i.e., different catapult systems

used to collect data, data collection processes and/or data cleaning)

or sex differences in leg length, muscle mass, muscular strength,

speed, or other performance metrics (30).

Interestingly, PL*min−1 was similar between studies.

Specifically, PL.min−1 in Heishman et al. (17) averaged 5.4 ±

1.3 AU in week 1 (the highest value reported), and it averaged

5.4 + 2.6 in the present study across the 8-hour period. This may

indicate that when intensity is factored into workload, it is more

similar than different between the sexes. Specifically, in the

present study, non-activity time (i.e., water breaks and coaching)

that exceeded two minutes was excluded from the statistical

analysis. In contrast, Heishman et al. (17) started monitoring

when players took the floor and ended when practice concluded.

This could possibly account for the differences in PL but similar

PL*min−1 values between studies.

Jumps were also similar between the two studies. Males (17)

averaged 103.28 ± 40.48 jumps, and females in the present study

averaged 112.5 + 106.7 jumps. There appears to be more

individual variability in jumping in the present study compared

to the study by Heishman and colleagues (17), based on the

differences in standard deviations recorded. In addition, jumps

are measured without consideration of jump height.

While some of the measured variables differed between

collegiate athletes in the present study and that of Heishman

et al. (17), previous research examining workloads in male and

female elite junior basketball players during competition (27)

(43 ± 27 AU in males, 39 ± 21 AU in females, p = 0.69) concluded

that differences were not statistically different, and effect sizes

were small (28). Additional research should aim to determine if

workload variables consistently vary between males and females

—when using standardized data collection and analysis

procedures–or whether differences increase as athletes mature or

move to more advanced levels of play.

While averages for each variable during each time period in the

present study can provide valuable context for programming,

standard deviations provide insight into the variations

throughout the seasonal periods and between athletes. Variations
Frontiers in Sports and Active Living 07
in PL between athletes, even when participating in the same

drills, is likely due to physical and playing style differences, as

well as differences in leg length and strength (30, 33). Therefore,

standard deviations can also provide insight into individual PL

ranges that may be seen in collegiate women’s basketball. While

standard deviations should not be examined as a key programing

variable, they can provide valuable insights into differences

between players in training intensity during similar time periods.

Our second study objective was to describe the workload

requirements of each training period: 8-hour, 20-hour, Non-

Conference, and Conference. To our knowledge, no other study

has compared PL, PL*min−1, High-IMA, and Jumps across time

periods over the course of a year; however, one study examined

these variables during game-play over the course of four years

(29). In the present study, PL, High-IMA, and Jumps were all

significantly different between time periods p < 0.05. PL*min−1

was the only variable that did not show a significant difference

across any of the periods. It is possible that the average intensity

of the practices stayed constant while duration–and therefore

PL–varied. PL and High-IMA’s were significantly lower in the 8-

hour period compared to every other time period (p < 0.05) due

to the substantially reduced time allowed for practice during the

8-hour period. Interestingly, Jumps were significantly higher in

the 8-hour period compared to the other periods (p < 0.01 for

all). This is likely due to the incorporation of planned plyometric

sessions during the 8-hour period that were not performed

during other times of the year. Specifically, the jump loads were

planned as low-level plyometrics as part of the warm-up during

the 8-hour period of training. These jump loads were

incorporated into practice to increase the volume of game-like

jumps and landings during the 8-hour period where time was

limited. In addition, training data suggested the largest

percentage change in training volume (85%) was between weeks

1 and 2–when Jumps were also the highest.

PL was significantly higher during the Non-Conference period

compared to the 8-hour (p < 0.01), 20-hour (p < 0.01), and

Conference (p < 0.05) periods, respectively. Game play explains

these differences to a certain extent, yet it does not explain the

difference in PL between Conference and Non-Conference

periods. While Conference and Non-Conference periods include

practices and games, game days and travel vary between the two

periods. During Conference play, all games are played on Fridays

and Sundays, whereas Non-Conference games can be played any

day of the week. This could lead to increased practice volume

when there is a shorter break between a cluster of games. Also,

PL during the Conference period could be lower due to a

planned taper in order to keep players fresh and manage injuries

as the team prepares for post-season play.

The third objective in the present study was to describe weekly

values for workload totals, percent change in workload, and ACWR

throughout the season. While large-scale averages and comparisons

between time periods are important, examining loads over a

shorter time period (e.g., week to week) can also improve the

planning process. Previous research has found that percent

change as well as ACWR are valuable tools coaches can use to

examine the change in training load across weeks (13, 33, 36).
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While injury data were not examined in the present study, previous

research indicates that a weekly increase in PL above 15% can lead

to a 28%–49% increase in injury risk (13). Increases in weekly PL

above 15% occurred in the present study in 13 of the 28 recorded

weeks and the largest difference occurred between week one and

week two; however it should be noted there was one less training

session in week one by design. Our values are considerably

higher than in another study that examined workloads in

professional Lithuanian women’s basketball players throughout a

season; in their study only 3 of the 24 weeks had a greater than

15% change in workload (25). In contrast, a study examining

workloads in collegiate male basketball players reported 5 of the

10 weeks had an increase in PL greater than 15% (9). This could

indicate that inconsistencies in scheduling within basketball

programs make it harder to keep PL consistent week to week.

Collegiate basketball is also restricted by NCAA regulations,

which could affect how workloads are increased throughout

the year.

ACWR can also provide coaches with information about

athlete training load variations. In the present study, there was a

consistent weekly ACWR range between 0.95 and 1.17 for all but

one occasion, where there was a low of 0.76. This deviation

could be explained by a holiday break where athletes did not

participate in any mandatory activities with the team, and these

results are similar to those from a study examining professional

Lithuanian women’s basketball players near the end of December

(25). While injury risk is always present, research has found that

the optimal range for decreasing this risk is 1–1.5 ACWR (19,

33, 36). In the present study, 17 of the 28 weeks were within the

recommended ACWR range, with the other weeks having only

minor deviations. This was similar to previous measures of

ACWR in elite women basketball players where ACWR values

ranged from 0.9 and 1.1 for most weeks (25).

The findings from the present study can be applied to day to

day, week to week, and long-term practice planning to better

maximize practice time and minimize risk of injury in collegiate

women’s basketball players. By utilizing averages and ranges of

IMU-based workloads, coaches can create an outline of the

collegiate basketball training season and adapt it to the unique

needs of a team, paying particular attention to transitions

between specific time periods and week-to-week changes in

workloads.

To our knowledge, this study was the first to report season-long

descriptive IMU-based workload data in collegiate women’s

basketball players from a Power 5 conference. Nevertheless, there

are limitations to consider. First, a relatively small sample size of

11 athletes from a single team was utilized. As such, results are

specific to this team and may vary based on coaching style,

schedule, fitness, age, and data analysis. Second, results may also

vary based on player position (i.e, guards tend to have higher

workload values compared to posts) (29), or on an individual’s

gait, biomechanics, or speed of locomotion (15). Thirdly, there

are a variety of critiques (3, 14, 20, 21, 37) related to the use and

measurement of ACWR as a predictor of injury risk (e.g., ACWR

is fundamentally flawed, should not be used to predict injury

risk, and should be dismissed or re-evaluated). Most agree that
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AWCR is best utilized as a part of a multifactorial approach to

examine athlete well-being, performance, and fatigue (3, 37), and

that predicting risk of injury warrants additional research to

establish causality (14, 20, 21). Fourth, these data do not include

workouts in the weight room or conditioning that occurred

outside of practice time, and we did not control for workouts

outside of organized team practices. Therefore, caution should be

used when comparing results from the present study to other

teams or levels of women’s basketball.

Future research is needed to continue to profile athletes and

provide longitudinal data in women, notably in elite women’s

basketball. A recent systematic review (3) tracked 2375 injuries in

1,234 male athletes, who participated in Rugby, Australian

Football, Soccer, and Cricket. There are very few studies that

examine IMUs in female athletes, and no systematic reviews that

link workload to athlete fatigue, performance, or injury risk in

women because to date, research is mostly limited to men in

elite and professional sports. Future research with both men and

women should work to develop standardized multifactorial

methods to examine the association between variables such as

workload, sleep, stress, travel, hydration, and nutrition—and

basketball statistics, performance, and non-contact injuries (3,

37). Accounting for moderators such as previous injuries, fitness,

fatigue, and mood is also important (3, 37), and points to the

need to individualize player profiles when examining data. When

examining injuries, the impact of tissue injured, type of injury

and grading of injury (i.e., seriousness) on ACWR, should also

be considered (3).

While developing standardized multifactorial methods,

researchers should continue to test recommended athlete

workload monitoring protocols for various sports, levels of

participation, fitness and performance metrics, and sex-

differences; or re-evaluate the ACWR models–because clear

consensus has not been reached on the best approach (38). For

example, although a 1 : 4 week split is currently the most

common timeframe used to calculate ACWR, other strategies

could be examined and recommended based on game schedule,

time in season, and training. The impact of latent workload is

important and should continue to be tested using EWMA

adjusted ACWR (38).

A third area for future research is to expand the definition of

neuromuscular fatigue from jumps alone to variables that include

Flight Time to Contraction Time Ratio (FT:CT) and Reactive

Strength Index, Modified (RSImod), as specified in Heishman

et al. (17). These data would provide coaches and trainers with

additional jump-related fatigue metrics for consideration. In

addition to examining the aforementioned jump-related fatigue

metrics, viewing fatigue as a multifactorial concept that includes

travel, sleep, hydration, and academic or other stress would help

further define the relationship between fatigue and performance

(27). In the present study, loads were examined based on the

four periods of the training season, however, load changes

experienced in practice on a day-to-day basis require further

examination.

Two additional areas for future research include continuing to

study inter-device reliability and various types of validity (18, 24),
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and expanding workload variables to include distance and speed,

and re-examining fitness metrics regularly (as they change

throughout the training cycle or year) to determine the impact of

improved fitness on factors that determine athletic success (3).
Practical applications

The present study helps sport and performance coaches to

understand the physical demands of players across a collegiate

women’s basketball season. By understanding how training loads

can be measured and quantified, and by using seasonal and

period-specific reference values as part of a multifactorial athlete

profile, coaches can objectively plan and track training demands

and vary loads based on time of year and short-term and long-

term goals. The normative values in the present study quantify

average player load, variations between players, and provide a

comparison of the loads during the four key periods of the year.

This allows coaches to understand the changes in demands of an

upcoming transition period and plan accordingly. By utilizing

metrics such as percent change and Acute to Chronic Workload

Ratios, along with other data (e.g., sleep, stress, level of fitness,

etc.), coaches can create a plan based on reference ranges while

also allowing for team-specific adjustments. Use of multifactorial

data facilitates educated decision-making that can impact a

team’s programming throughout the year.

While data in the present study are valuable to understand,

coaches should recognize that other variables will vary, and every

team (and even individual athletes) will present with their own

unique team and player profiles that may differ from those found

in this study.
Conclusion

Data on female athletes is sparse, and there is a need to better

quantify training and performance loads at various points

throughout the season. Our study quantified and profiled the

external load of practice and games during a Power-5 DI

Women’s Collegiate Basketball season. ACRW varied throughout

the season, with most of the changes within the range

recommended to minimize injury risk. These findings, combined

with other research on workloads during women’s basketball, can

be used to describe the physical demands across a season, and

coaches should be able to use these data as part of a

multifactorial approach to more effectively plan practices and

game strategies.
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