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Robust Visual-Inertial Odometry Based on a
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Abstract— We present a real-time, high-accuracy, robust,
tightly coupled visual-inertial odometry (VIO) algorithm, includ-
ing monocular-inertial odometry and stereo-inertial odometry,
and uses inertial measurement unit (IMU) pre-integration that is
based on fourth-order Runge–Kutta (PK4) and IMU initialization
based on maximum a posteriori (MAP) estimation. In particular,
we used the multi-state constraint Kalman filter (MSCKF) to
fuse vision and IMU measurement data for state estimation.
In the optimization stage, we simultaneously considered and
optimized all of the historical constraints, and performed multiple
iterations to reduce the linearity errors. For further reducing the
cumulative error and improving the relocation accuracy, we used
a bag-of-words model for global optimization. To lower the com-
putational cost and increase the real-time performance, we set
keyframe insertion mechanism and introduced sliding window,
and used a new form of Kalman gain that converts the Kalman
gain in multi-state constraint Kalman filtering into the inverse of
the state dimension. We validated the proposed method by using
the EuRoC MAV dataset and KITTI dataset. We performed
physics experiments in an outdoor environment with unstable
light, to further validate the accuracy and robustness of our
method.

Index Terms— Factor graph optimization, IMU initialization,
Kalman filter, state estimation, visual-inertial odometry.

I. INTRODUCTION

S IMULTANEOUS Localization and Mapping (SLAM)
technology is the first key technical problem to be solved

by intelligent mobile robots. Its core is state estimation; thus,
accurate state estimation is the premise for stable operation
of intelligent mobile robots. In the past 20 y, implementation
of SLAM technology has mainly used a single sensor (such
as a camera or LiDAR), with substantial success. Compared
with LiDAR systems, cameras are widely used due to their
smaller size, lower cost, better performance in rich texture
environments, and extraction of semantic information [1], [2],
[3], [4]. However, vision systems exhibit large drifts when
under aggressive motion and are unable to recover scales,
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which limits their practical applications in intelligent mobile
robots. Inertial measurement units (IMUs)—which are low
cost, have high accuracy under fast motion, and have fusion
vision sensors—can observe scales information and improve
the motion-tracking performance markedly. Therefore, integra-
tion of vision systems and IMUs is increasingly common.

Visual-inertial systems (VIO) can be divided into two
broad categories: filter-and optimization-based methods. Cur-
rent popular filter-based methods include MSCKF [5] and
ROVIO [6]; optimization-based methods include OKVIS [7]
and VINS_Mono [8]. Filter-based methods assume Markov
propertes, and the current frame state is only related to
the previous frame state and regardless of previous history
frame state. Therefore, the filtering-based method has less
computational load and running time, but in the case of long
running distance, it will produce a large cumulative error.
The factor graph optimization method is proposed on the
basis of Bayesian network, which considers the relationship
between the current state and all previous historical states.
Therefore, this method is beneficial to reduce the cumulative
error, but it will lead to poor real-time performance of the
system. To enhance the coupling degree of vision and IMU
measurement data, as well as improve the accuracy and
robustness of the VIO system while maintaining high real-time
performance, we propose a tightly coupled VIO framework
that consists of a filter-based odometer module and a factor
graph-based optimization module.To solve the problem of
insufficient correlation between current and historical infor-
mation as well as large linearity error in filter-based methods,
we set keyframe insertion mechanism, and used multi-state
constraint Kalman filter (MSCKF) for state estimation at the
normal frame level between two keyframes. We then used
the sliding-window-based factor graph optimization method
for local map optimization at the keyframe level; and used a
bag-of-words model, loop-closure detection method for global
optimization. The main contributions of our work are as
follows:
• We built a tightly coupled VIO framework consist-

ing of a MSCKF-based odometry module and a factor
graph-based optimization module. We set up a new
keyframe insertion method and proposed a new method-
ology for correlating all of the historical information
and reducing the linearity errors—by using filtering and
optimization. We used MSCKF for vision and IMU mea-
surements fusion and poses propagation and updating at
the normal frames level between two keyframes; and set a
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TABLE I
THE MAIN TECHNOLOGY OF THE MOST REPRESENTATIVE VISUAL AND VISUAL-INERTIAL SYSTEMS

sliding window; constructed IMU constraint, prior, visual
observation, and loop-closure factors for local as well
as global optimization of keyframe pose; and performed
factor graph optimization to reduce cumulative error and
linearity error while ensuring high real-time performance.

• We evaluate the performance of our algorithm on repre-
sentative indoor and outdoor public benchmark datasets,
and set up a real environment experiment to verify the
effectiveness of our method.

This work improves the accuracy and robustness of VIO
system state estimation. Our work will serve as a baseline
for VIO system research and advance the state-of-the-art in
visual-inertial odometry techniques.

II. RELATED WORK

There is extensive academic work related to visual SLAM.
In this section, we review current work: pure vision state
estimation and mapping, visual-inertial fusion SLAM meth-
ods. Table I summarizes representative visual and visual-
inertial systems, indicating the main techniques used for state
estimation, fusion methods, and pose optimization.

A. Pure Vision State Estimation and Mapping

A large number of high-precision pure visual state estima-
tion algorithms have been proposed in the past few decades.
Reference [10] applied the Structure From Motion (SFM)
method to SLAM for the first time, using the probabilistic
model framework to create a sparse but stable map online,
which laid the foundation for the development of visual
SLAM. A SLAM algorithm that separated tracking and map-
ping as two threads were first proposed in [11], applying
FAST to extract feature points, and introducing a key frame
mechanism as well as a non-linear optimization scheme.
LSD_SLAM [1] uses the feature extraction method based on
the direct method, and improves the speed of feature tracking.
The back-end optimization uses pose-graph (PG) optimization,
and directly tracks as well as maintains the depth map, but the
accuracy is lower than in PTAM [11]. A pure visual odometry
(VO) method, SVO [2], uses direct methods to track image
features efficiently; but short-term data association limits its

accuracy. However, ORB_SLAM [3], [4] systems based on the
Oriented FAST and Rotated BRIEF (ORB) feature extraction
method provide short- and medium-term data association, local
optimization using Bundle Adjustment (BA), as well as a
bag-of-words model (DBoW2 ) [12], [13] for loop closure
detection and relocation in a manner that achieves long-term
data association. The three types of data association are the
key to stable orientation in large-scale indoor and outdoor
environments. ORB-SLAM renders the SLAM system more
modular and is an important milestone in the development
of visual SLAM. In recent years, a relatively novel direct
sparse mileage calculation method [14], [15], which uses
the method of uniformly sampling key points on the entire
image instead of the direct method to add an a priori method,
has been proposed, that substantially improves the real-time
functionality of the SLAM system. However, the system lacks
long-term data correlation, resulting in lower accuracy.

B. Visual-Inertial State Estimation and Mapping

Inertial odometry has high accuracy at high frequency,
which can increase the accuracy of visual odometry at high
speed. Fusing vision and IMU can still be robust in complex
environments where a single sensor fails, such as a lack
of texture features or aggressive motion. Loose and tight
coupling are the two main fusion forms of vision and IMU.
There is not much work on visual-inertial fusion based on
loose coupling, and the fusion effect is lower. Consequently,
the tightly coupled visual-inertial fusion technique (based
on filtering and optimization methods) is the mainstream of
research.

The filtering-based method can be traced back to MSCKF
(which integrates vision and IMU information on the basis
of the EKF framework) and adds camera poses at different
times to the state vector (which solves the EKF_SLAM state
vector dimension explosion problem). A new, real-time VIO
algorithm that is capable of consistent estimation was proposed
in [16], which refined the MSCKF and was extended to the
stereo visual-inertial SLAM system in [17]. ROVIO is a VIO
system implemented by EKF based on sparse image patches,
which directly uses the pixel intensity error of image patches
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Fig. 1. Overview of proposed method. The entire system has three main parts: measurement preprocessing, filter-based odometry and factor graph optimization.
The interconnected relationship of each part is represented by a red line with an arrow.

as a visual measure for updating the EKF; wheras [18] directly
provides an EKF with photometric errors with high accuracy
and robustness. Although filter-based VIO systems run faster,
their accuracy is limited due to the lack of long-term data
correlation.

Compared with filter-based methods, optimization-based
methods can optimize multiple variables simultaneously and
exhibit advantageous time synchronization. OKVIS [7] is
a representative optimization-based VIO system that intro-
duces a keyframe-based optimization method to correlate past
poses with recent inertial states and inertial measurements
for nonlinear optimization as well as precision: 6-degrees-of-
freedom (6DOF) state estimation. To ensure that the system
has better real-time performance yet ensure high accuracy,
VINS_Mono, which uses the Lucas-Kanade (LK) optical flow
method for feature tracking, uses graph optimization and
optimizes variables on a window of limited size. Its loop
closure detection applies DBoW2 and 4-DOF pose graph opti-
mization, Thus, the system has high accuracy and robustness.
The VINS_Mono system is simplified in VINS_Fusion [19]
and has been extended to stereo and stereo-inertial odometry
systems. In particular, HybVIO [33] extended PIVO [39]
to stereo, and improved the IMU deviation model, outlier
detection, stationarity detection and feature track selection,
and to improve the long-term consistency of the system, based
on the improved VIO system, optionally loosely couple with
the ORB-SLAM2 system by running in parallel, and the VIO
fixed-delay pose is used as the input of the ORB-SLAM2
system, and use the conversion relationship between the VIO
system and the SLAM system to output the SLAM-processed
pose on the input frame. This paper realized the combination
of multi-state constraint Kalman filter method and factor graph
optimization method from one system, according to the set
keyframe mechanism, performs multi-state constraint Kalman
filter and factor factor separately on different levels of frames.

A fast, accurate IMU initialization method is the premise of
building a high-precision and robust VIO system, and is the

core part of the visual-inertial system. Although [20] reused
maps with short-, medium-, and long-term data associations,
the slow IMU initialization technique substantially affects the
accuracy and robustness of the system. For improving the
rate of IMU initialization, VINS_Mono uses the initialization
method proposed in [21], assuming that the external param-
eters of the IMU and the camera are known—ignoring the
influence of acceleration bias; and estimating the velocity,
gravity and scale separately to improve the efficiency. The
IMU initialization method proposed in [9] (used in this paper)
establishes the estimation of inertial parameters as an optimal
estimation problem, considers IMU noise, simultaneously esti-
mates all of the inertial parameters, avoids the problem of data
inconsistency, does not ignore any bias, and uses it as the MAP
probability a priori known information for IMU initialization.

III. SYSTEM OVERVIEW

Fig. 1 shows the frame structure of our proposed
visual-inertial state estimator system. The system consisted of
four module, measurement preprocessing, filter-based odome-
try factor graph optimization and loop closure detection.

The system started with preprocessing of the measurement
data, extraction and tracking image features, pre-integration of
IMU measurements between two consecutive keyframes, and
performing IMU initialization. See Section IV for details.

Then, the measurement data of the camera and IMU were
sent to the odometer module of MSCKF for pose estimation.
To further improve the visual measurements, we optimized the
filtered pose with a sliding-window-based factor graph. See
Section V for details.

IV. PREPROCESSING OF IMU MEASUREMENTS

This section introduces two parts: IMU pre-integration and
initialization. First, we used the PK4 for IMU pre-integration
of IMU measurements, and calculated the noise covariance
matrix to propagate the measurements. Then, we built a MAP
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estimation model, the IMU measurement residual, and an
a priori residual model to optimize the IMU parameters.

A. IMU Pre-Integration

To provide accurate initial values for initialization and
IMU constraints for back-end optimization, we used the PK4
pre-integration method to perform IMU pre-integration; and
propagated the bias noise.

1) Accelerometer and gyroscope measurements: IMUs
can measure the body acceleration and gyroscope at every
moment; the measurement model was as follows:

ât = at + bat + Rwgw + na, ω̂t = ωt + bωt + nω, (1)

where â and a are the estimation of acceleration measurements
and the acceleration true value, respectively; ω̂ and ω represent
the estimation of gyroscope measurements and the gyroscope
true value respectively. Estimation of the acceleration and
gyroscope measurements is affected by the acceleration bias
ba ∈ R3, gyroscope bias bω ∈ R3 and Gaussian white noise for
the accelerometer and gyroscope: na and nω, respectively. The
acceleration bias and gyroscope bias followed the following
random walk model:

bat+1 = bat + na, bωt+1 = bωt + nω. (2)

We obtained the acceleration and gyroscope bias at each
moment by adding Gaussian white noise to the deviation of
the previous sampling moment.

2) Pre-integration: The position, velocity, and rotation state
of two consecutive keyframes can be propagated by the
measurements between them:

pwb j
= pwbi

+ vwbi
1ti −

1
2

gw1t2
i +

∫∫
t∈[i, j]

(
Rwt at

)
dt2,

vwb j
= vwbi

− gw1ti +
∫

t∈[i, j]

(
Rwt at

)
dt,

qwbi
= qwbi

⊗

∫
t∈[i, j]

1
2
�(ωt )q

bi
t dt, (3)

where �(ω) =
[
−⌊ω⌋× ω

−ωT 0

]
, ⌊ω⌋× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

,

and 1t is the time interval between continuous time i and j .
From Eq. (3), the values of p, v, and q under the bi frame

and the b j frame in the world coordinate system are evident.
When performing state propagation from frame bi to frame b j ,
the pre-integration model must be used to convert the state in
the world coordinate system to the IMU coordinate, as follows:

Rbi
w pwb j

= Rbi
w (p

w
bi
+ vwbi

1ti −
1
2

gw1t2)+ α
bi
b j
,

Rbi
w v

w
b j
= Rbi

w (v
w
bi
− gw1t)+ βbi

b j
,

qbi
w ⊗ qwb j

= γ
bi
b j
, (4)

where Rbi
w and qbi

w are the rotation matrix and rotation
quaternion, respectively, from the world coordinate system
to the IMU coordinate system. αbi

b j
, βbi

b j
,and γ

bi
b j

are the

pre-integration values corresponding to p, v and q, respec-
tively. For the process of IMU pre-integration using PK4
numerical integration, see [38, Section 3.2].

3) Noise propagation: Next, we assumed that the IMU was
synchronized with the camera, and calculated the solution as
well as propagation of the pre-integration noise term between
consecutive two keyframes at times k = i and k = j . First,
According to the pre-integration term between two consecutive
keyframes, we define the relative motion increment between
time i and j , as follows:

1R
(
γi j

)
=

j−1∏
k=i

Exp
[(
ω̂ik − bωk − nω

)
1tik

]
,

1βi j =

j−1∑
k=i

1R (γik)
(
âik − bak − na

)
1tik,

1αi j =

j−1∑
i

[1βik1tik +
1
2

R (γk)
(
âik − bak − na

)
1t2

ik],

(5)

where ω̂ik = ω̃ik + bωk + nω and âik = ãik + bak + na are the
estimated value ωik and aik , respectively, after approximation
by the PK4 numerical integration.

Using the estimated value (equal to the true value),
we added the error term, from Eq. (5) to obtain noise terms
δαi j ,δβi j and δr

(
γi j

)
; corresponding to αi j , βi j , and R

(
γi j

)
,

respectively, as follows:

1R̂
(
γi j

)
= 1R

(
γi j

)
Exp

(
δr

(
γi j

))
,

1β̂i j = 1βi j + δβi j ,

1α̂i j = 1αi j + δαi j , (6)

For detailed calculations of the noise terms δαi j , δβi j , and
δr

(
γi j

)
, see Appendix A.

We decompose the noise terms δαi j , δβi j , and δr
(
γi j

)
in

Appendix A. In accordance with the results of the decomposi-
tion, we can derive the continuous-time propagation equation
for the noise terms, as follows:

δzi j = F j−1δzi j−1 + G j−1n j−1, (7)

where δzi j =
[
δr

(
γi j

)
δβi j δαi j

]T ; n j−1 =
[
nω na

]T ; and
F j−1 and G j−1 are the Jacobian matrices of δzi j and n j−1,
respectively. One can obtain detailed expressions in accor-
dance with Eqs. (31), (32) and (33) in Appendix A.

Based on the continuous-time propagation Eq. (7) and the
continuous-time noise covariance matrix

∑
n j−1
∈ R6×6, the

covariance
∑

i j propagates from the initial convariance
∑

i j =

0, as follows:∑
i j

= F j−1
∑

i j

FT
j−1 + G j−1

∑
n j−1

GT
j−1, (8)

where
∑

n j−1
= diag

(
σ 2
ω, σ

2
a
)
.

In particular, the purpose of obtaining
∑

i j is that when
one obtains a new IMU measurement, only Eq. (7) and (8)
are updated, rather than recomputation from scratch, which
substantially reduces the computational complexity.
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B. IMU Initialization

The IMU initialization builds an optimization model factor,
optimizing the IMU pre-integration terms and parameters with
factor graph, and uses the optimized pre-integration terms
and parameters to repropagate the IMU pre-integration in a
manner that updates the pose of the IMU. We adopt the IMU
initialization model building method proposed in [9], build
a MAP estimation model, and use all of the IMU noises as
known prior information to perform the optimal estimation
of the IMU pre-integration terms and parameters. The IMU
parameters to be optimized are as follows:

Yk = {s, gwdir , ba, bω, v̂0:k}, (9)

where s ∈ R+, gwdir ∈ SO (3) and v̂0:k ∈ R3 represent
the scale factor in pure vision, gravity direction, and the
unscaled speed of each frame in the body coordinate system,
respectively. The true speed is expressed as vi = sv̂i , but we
used an unscaled speed v̂i for simplifying the initialization.

We denoted the pre-integration of measurements between
the ith and jth keyframes by Mi j , and we set pre-integration
between consecutive keyframes in the IMU initialization win-
dow by M0:k = M0:1 . . .Mk−1:k .

In accordance with the defined IMU state and measure-
ments, we formulated a MAP problem, but given that the
measurements are independent of each other, maximizing the
posterior distribution is equivalent to minimizing its negative
logarithm. Therefore, the MAP estimate can be written:

(Yk)
∗
max = arg min

Xk

(− log(p(Yk))

−

k∑
i=1

log(p(Mi−1,i |s , gwdir , ba, bω, vi−1, vi ))).

(10)

By given the measurements M0:k and measurement model
in Eq. (5), and assuming that the noise follows a Gaussian
distribution, For the calculation process of the measurements
residual, see [9, Sec II-B].

With the known inertial parameters from Eq. (7), we must
calculate its residual as the prior residual:

rb =
[
δs, δgwdir , δba, δbω, δβ̂i−1, δβ̂i

]
, (11)

where δba and δbω are immediately derived [22]; δβ̂i−1 and
δβ̂i are found in Appendix A; δgwdir =

(
δαg, δβg

)
; and δs is

derived from [9].
Assuming that IMU pre-integration follows the Gaussian

distribution, the MAP problem can be equivalent to the fol-
lowing optimization problem:

(Yk)
∗
max = arg min

Xk

(

k∑
i=1

∥∥rMi−1,i

∥∥2∑
Mi−1,i

+ ∥rb∥
2∑

b
), (12)

where rMi−1,i and rb are the IMU measurement residuals and
prior residuals between consecutive keyframes, and

∑
Mi−1,i

and
∑

b are covariance matrices of the corresponding resid-
uals. See [22] for the detailed definition of the covariance∑

Mi−1,i
.

Fig. 2. Diagram of the inertial optimization.

Fig. 3. Filter-based odometer and factor graph optimization process: We
used MSCKF to fuse IMU and visual measurements between two consecutive
frames. Simultaneously, we inserted keyframes, and utilized IMU constraints
and visual reprojection errors between keyframes within a sliding window for
factor graph optimization.

During optimization, the direction and scale factor of gravity
are defined in [9, Sec II-B]. Fig. 2 shows the factor diagram
of the inertial optimization. Only IMU residuals are included
in the Fig. 2; the visual re-projection error is regarded as a
constant; and the scale factor, gravity direction, acceleration
bias, and angular velocity bias are regarded as the probability
priors of the IMU residuals. Thus, only inertial optimiza-
tion is completed; then we update the bias and repeat IMU
pre-integration to propagate the IMU state.

V. FILTER-BASED ODOMETER AND FACTOR
GRAPH OPTIMIZATION

In this section we describe a filter-based odometry and
factor graph optimization method (Fig. 3). First, we insert
keyframes based on the original frame through the set
keyframe selection mechanism. Then, we fused each frame
of the vision and IMU measurements between two keyframes
with MSCKF and updated the pose of each frame. To reduce
the computation, we replaced the EKF state vector of the
camera pose with feature point information, used the Q R
orthogonal decomposition to decompose the H c matrix in the
state update stage, and converted the Kalman gain form, trans-
forming the inversion of the measurements into the inversion
of the states, equivalently. Since the state of the EKF at each
moment is only related to the previous moment and lacks the
constraint relationship with the historical state, we performed
factor graph optimization at the keyframes level; constructed
the visual reprojection error, IMU residuals and IMU prior
factor for all of the information; added the loop-closure factor
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to the factor graph; and used the factor graph method to opti-
mize them simultaneously within the sliding window. When
the information of a new keyframe arrived, keyframes were
optimized again within sliding window, and the linear errors
were reduced after multiple iterations. This not only ensured
tight coupling between the IMU and vision measurement, but
also ensured the real-time performance and high precision of
the system.

A. Insert Keyframes

We set up the keyframe mechanism as follows: we set up
two situations to judge whether it is a keyframe. Considering
the real-time and accuracy of our method, we set the current
fame as a keyframe when it exceeded 40 image frames
from the previous keyframe or the map point tracked by
the current frame contained <40% of the map points of the
previous keyframe. This keyframe setting method reduces the
computational load of the system when optimizing keyframes
using factor graphs. By inserting keyframes, we use factor
graph optimization to optimize each keyframe pose at the
keyframe level, and use MSCKF to fuse vision and IMU data
and propagate and update each frame state at common frames
level between two keyframes.

B. Filter-Based Odometer

1) IMU status: We updated and propagated the IMU status
after IMU initialization. IMU status can be defined as follows:

X I MU =
[ I

G pT GvI
T I

G RT bT
a bT

ω

]T
, (13)

where I
G pT and I

G RT are translation and rotation, respectively,
from the IMU coordinate system to the world coordinate
system; Gv I

T is the IMU speed in the world coordinate
system; and bT

a and bT
ω are the accelerometer and gyroscope

bias, respectively. In accordance with Eq. (13), the error state
of the IMU is defined as follows:

X̃ I MU =
[

I
G p̃T G ṽT

I
I
Gδθ

T b̃T
a b̃T

ω

]T
, (14)

where I
Gδθ = Log

( I
G R̄T I

G R
)

is the pose error, and the rest
is the standard additive error (i.e., the error is defined as x̃ =
x − x).

Here, the advantage of the pose error represented by δθ is
that it enables us to represent the uncertainty of the pose with
the covariance matrix, and the pose has only three degrees of
freedom. Thus, we used the minimal representation of δθ .

2) EKF state vector: With in a sliding window, to reduce
the computational complexity, we only considered the camera
states without considering the feature points information.

Assuming that there are M camera states
[

C
GqT C

G pT
]

in state

space at time k, then the state vector is defined as follows:

Xk =
[

X T
I MUk

C1
G qT C1

G pT
· · ·

CM
G qT CM

G pT
]T
, (15)

where X I MUk is the IMU status; Ci
G q

T
and Ci

G p
T

, i = 1 . . . N
are the estimation of the i th camera rotation and translation,

respectively, to the world coordinate system. Its error state
vector is defined as follows:

X̃k =
[

X̃ T
I MUk

C1
G q̃T C1

G q̃T
· · ·

CM
G q̃T CM

G p̃T
]T
. (16)

3) IMU state propagation: In accordance with x̃ = x̂−x , the
propagation of the IMU state is the propagation of the IMU
error state. The discrete IMU error state propagation process
is as follows:

X̃ I MUi+1 = Fx X̃ I MUi + Fnn I MU ,

n I MU =
[
nω, na, nbω , nba

]
, (17)

where ḃω = nbω , ḃa = nba , and n I MU is the Gaussian
white noise of the system. Fx and Fn are the discrete time
IMU error- and noise-state transition matrices (the Jacobian
of continuous-time IMU model in [5] with respect to the IMU
state and noise), respectively.

4) Covariance matrix propagation: We denote the covariance
matrices of the IMU error state X̃ I MU and noise n I MU as PIi |i

and Q, respectively; the covariance PIi |i propagation process
of the error state is as follows:

PIi+1|i = 8i+1,i PIi |i8
T
i+1,i + Fn QFT

n , (18)

where
Q = diag

[
δtσ 2

ω I3 δtσ 2
a I3 δtσ 2

bω I3 δtσ 2
ba

I3
]
.

where i ∈
[
tk, tk+1

]
and 8i+1,i = exp(Fxδt) ≃ I + Fxδt .

When the state continues to propagate to a new scan tk+1,
we define the EKF error-state covariance matrix at this time
as Pk+1; the propagated covariance matrix at time-step tk+1 is
given by:

Pk+1|k =

[
PI Ik+1|k 8k+1,k PI Ck

PT
I Ck
8T

k+1,k PI Ik|k

]
, (19)

where PI Ik+1|k can be recursively computed with Eq. (18).
5) Camera pose state augmentation: In accordance with the

external parameters between the calibrated camera and IMU
as well as the IMU pose, we calculated the camera pose,
as follows:

C
Gq = C

I q ⊗ I
Gq,

C
G p = I

G p + C
(

I
Gq

)T C
I p, (20)

where C
I q and C

I p are the quaternion and position between
the IMU and camera, respectively. C (·) denotes a rotational
matrix. We appended this camera pose estimation to the state
vector and augmented the covariance matrix accordingly:

Pk|k ←

[
I6N+15

JπN

]
Pk|k

[
I6N+15

JπN

]T

, (21)

where Appendix B shows the calculation process for JπN .
6) Camera observation model: We used the KLT optical flow

method to track FAST corner features C pi ∈ 0k extracted
from the kth frame image; i is the corner index, and its
corresponding landmark point in three-dimensional space is
G P i . To estimate the state of the current frame, we constructed
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this measurement model by using a reprojection error between
the tracked feature points and visual landmarks:

rc

(
Xk,

C pi ,
G Pi

)
=

C pi −

[
fx ·

C Pix
C Piz

+ cx · fy ·

C Piy

C Piz

+ cy

]T

, (22)

where fx and fy are focal lengths, and cx and cy are
offsets of the main points on the image plane, C Pi =(
C

(I
Gqk

)
· C

(C
I qk

))T G Pi −
(
C

(C
I qk

))T I
G pk −

C
I pk .

Considering that measurements C pi and G P i are both
affected by noise, we assumed that their true values are C ptv

i
and G P tv

i , respectively, as follows:

C pi =
C ptv

i + n pi ,
G Pi =

G P tv
i + n Pi , (23)

where both n pi and n Pi follow a standard normal distribu-
tion; n pi ∼ N

(
0,

∑
n pi

)
and n Pi ∼ N

(
0,

∑
n Pi

)
, respec-

tively. In accordance with the ground-truth corner features,
we obtained a true zero-residual model:

0 = rc

(
X̂k,

C ptv
s ,

G ptv
s

)
≈ rc

(
Xk,

C pi ,
G Pi

)
+ H c

i X̃k + Ni , (24)

where the reader can refer to Appendix C for H c
i and Ni .

7) Status updates: To update the state, we must solve the
error state 1X = Krn ; where K is Kalman gain, and rn is the
residual that ignores only the noise Q2

T rc. The calculation
process is as follows:

rn = Q1
T rc = H X̃ + n, (25)

where n = Q1
T N , H is the upper triangular matrix of

H c
=

[
H c

1 , . . . , H c
m
]
. To reduce the amount of calculations,

we performed Q R decomposition on HC ; the decomposition
process is as follows:

H c
=

[
Q1 Q2

] [
H
0

]
,

where Q1 and Q2 are orthogonal matrices.
Considering that the raw Kalman gain K =

P H T (
H P H T

+ R)−1 must invert the matrix in the
dimension of the measurements, to reduce the amount of
calculations, we convert the Kalman gain equivalently:

K =
(

H T R−1 H + P−1
)−1

H T R−1, (26)

where R = diag
(∑

N1
, · · · ,

∑
Nm

)
, this Kalman gain indi-

cates that inversion of the matrix in the dimension of
state substantially reduces the computation complexity. Then,
we updated the state estimate and covariance matrix as
follows:

Xk = Xk + K H X̃ + K n,

Pk+1 = (I − K H) Pk(I − K H)T + K RK T . (27)

Fig. 4. Illustration of factor graph optimizing keyframe poses within a sliding
window. There are several camera poses, visual features, IMU measurements,
and IMU pre-integration constraints in the sliding window. IMU constraints
and visual reprojection errors are optimization factors in factor graphs for
optimizing keyframe poses.

C. Sliding Window-Based Factor Graph Optimization

We used the MSCKF to fuse the visual and IMU measure-
ments, as well as update the poses, which still had a large
cumulative error and linearization error. To further improve
the accuracy of each frame pose, we inserted keyframes on
the basis of the original frames, and performed MSCKF for
each frame between two keyframes and sliding-window-based
factor graph optimization for keyframes; which considered the
IMU prior, visual constraints and IMU constraints between
all of the keyframes in the sliding window in a manner that
optimized the poses of the keyframes [26]. Considering all
of the historical information for comprehensive optimization
can reduce the cumulative error, and every time new data
arrives, all of the historical data in the sliding window should
be optimized once. Multiple iterative optimization not only
reduces the linearization error but also can better approach
the optimal solution. Fig. 4 shows the optimization process.

Our factor graph optimization method fixed the visual
landmarks and optimized only the keyframe pose, and used
a sliding window method to update keyframes and visual
landmarks. Upon arrival of a new image frame, the old frame
must be marginalized. If the penultimate frame is a keyframe,
we moved the last frame pose out of the sliding window,
and simultaneously marginalized both the visual and inertial
data. If the penultimate frame is not the keyframe, to ensure
the coherence of IMU pre-integration, we marginalized only
the visual observation of the last frame. We comprehensively
considered the size of the sliding window by real-time and
running accuracy of the system. We set the size of the sliding
window to 20 keyframes. According to the setting method
of keyframe and sliding window, we ensured high real-time
performance when performing factor graph optimization.

D. Loop-Closure Detection

To further improve the positioning accuracy and avoid
excessive drift when the robot reached the same position again,
we used the DBoW2 bag-of-words model for loop-closure
detection [3], [4], [27], as Fig. 5. We used corner features
and the BRIEF descriptors to describe the entire image, and
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Fig. 5. Loop-closure constraint. The blue line and circle are loop-closure
constraints, connecting the two keyframes that match the current moment and
historical moment.

treated BRIEF descriptors as visual words for querying visual
databases. After temporal and spatial consistency checks, one
returns to the loop-closure detection candidate frame.

VI. EXPERIMENTS

To qualitatively and quantitatively analyze our proposed
method, we conducted a series of experiments. In the exper-
iments, we used two datasets. One is the EuRoC MAV
dataset [28], which has 11 subsequences. This dataset was
collected using UAV in an indoor environment; each sequence
has different light dark changes and motion intensity, which
can sufficiently verify the robustness of our system. The other
dataset is the KITTI dataset, which contains visual and IMU
information. This dataset was collected using autonomous
vehicles in an outdoors environment, which can be used to
evaluate the performance of our algorithm outdoors. Finally,
we put the proposed method on a physical robot for physical
verification in light-stable indoor and light-unstable outdoor
environments. We implemented our method based on C++
and executed it with an Intel i5-6500 CPU desktop computer
by using the Ubuntu 16.04 system.

A. EuRoc MAV Dataset

We use the EuRoC MAV dataset to verify the robustness
of our system in indoor environments. The EuRoC MAV
dataset is collected by the Asctec Firefly hexagonal rotorcraft,
which contains a stereo camera (Aptina MT9V034 global
shutter, WVGA monochrome, 2CfB-20 FPS) and an IMU
(ADIS16448, angular rate and acceleration, 200 Hz).

The IMU pre-integration is crucial to the VIO system, is the
initial value of IMU initialization, and directly affects the
accuracy of the pose solution. We use the PK4 numerical
integration to approximate the IMU pre-integration and cal-
culate the absolute pose error (APE) and relative pose error
(RPE) to evaluate the performance of PK4 integration and
mid-integration. Since the rotation error had little effect on
the system, we only compare the root mean square error
(RMSE) [29] of translation. Fig. 6 shows the translation
component of the APE and the RPE comparison between
the PK4 integration and mid-integration in the representative
MH_05_difficult subsequence. The PK4 numerical integration

Fig. 6. Comparison of error between mid integration and PK4 integration.
(a) Error trajectory of the translation part of the APE; (b) Error trajectory of
the translation part of the RPE.

slightly outperformed the mid-integration (Fig. 6). In addition,
the mean value of the RMSE of PK4 numerical integration in
APE and RPE in all of the EuRoC MAV dataset sequences
was superior to the mid-integration by 0.015 m and 0.021 m.
Thus, we used the PK4 numerical integration to conduct IMU
pre-integration.

Our proposed VIO system that combined extended Kalman
filtering and factor graphs. On the basis of using MSCKF to
fuse visual and IMU measurements, as well as propagate and
update the pose, we used the factor graph method to solve the
problem that MSCKF is unable to associate the historical pose,
and optimize the keyframe pose. In principle, the cumulative
error of the system can be reduced by increasing the constraint
relationship with the historical frame. We used the RMSE to
evaluate the accuracy of the system. Table II summarizes the
RMSE of all of the sequences in the EuRoC MAV datasets.

First, we used the VINS initialization method to initialize
IMU and vision. The experimental results are expressed by
our_mono (vins) and our_stereo (vins) in Table II. Then,
we changed the IMU initialization model (see Section IV-B);
the experimental results are shown as by our_mono and
our_stereo in Table II. By comparing two IMU initialization
methods, we chose the IMU initialization method with higher
precision as the IMU initialization method of our system.

Next, we compared our system with state-of-the-art, filter-
based VIO systems such as ROVIO [6], msckf_vio [30], and
optimization-based VINS_Mono and VINS_Fusion by using
the same computer configuration, running environment and
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TABLE II
RMSE(M) IN EUROC MAV

Fig. 7. Comparison of trajectories under KITTI 2011_10_03_drive_0027 raw dataset. (a), (b) and (c) represent the comparison between the running trajectory
of msckf_vio, VINS_Fusion and ours and the groundtruth trajectory (reference), respectively. The three numbers on the right side of each figure represent the
maximum, median and minimum of the APE from top to bottom.

evaluation algorithm. Compared with the filter-based system,
in monocular-inertial and stereo-inertial configuration, our
method was improved by 2.3CfB- and 0.7CfB-, respectively.
The advantage of our method is consideration of all of the
historical information and prior information, conduction of
multiple iterations in the sliding windows, and introducing
global optimization (which contributes to reducing the lin-
earization and cumulative errors). Compared with a factor
graph-based VIO system, in monocular-inertial and stereo-
inertial configuration, our method was improved by 15.4% and
17.4%, respectively. Thus, our method is superior to the factor
graph-based method in the terms of data fusion, and can better
use IMU measurements to reduce the cumulative drift of the
system.

B. KITTI Dataset

To further verify the performance of our system, we used the
KITTI 2011_10_03_drive_0027 raw dataset (which involves
a 10-Hz camera and 100-Hz IMU measurements, and was
captured around the city of Karlsruhe, Germany). This dataset
has a vehicle running in loops in outdoor real environments.
We has a vehicle running in loops in outdoor real environ-
ments. We used this dataset to evaluate the performance of
the system over long distances outdoors.

Fig. 7 and Table III are comparisons of the running results
of the stereo-inertial system. Fig. 7 (a), (b) and (c) show
running trajectories of msckf_vio, VINS_Fusion and ours
compare with groundtruth and the distribution of errors,
respectively. The running trajectory of our method is closer
to the groundtruth trajectory. Table III shows the RMSE of all

TABLE III
RMSE APE AND RPE METRICS

APEs and RPEs. In the table, Ate and Are represent the RMSE
of translation and rotation parts of APE, respectively, whereas
we calculate the RPE at intervals of 1m, Rte and Rre are the
RMSE of translation and rotation parts of RPE, respectively.
From Fig. 7 and Table III, our method outperformed state-of-
the-art VIO systems msckf_vio and VINS_Fusion.

In addition, we also calculate the time consumed by pose
processing and optimization. A total of 4544 frames of camera
poses were processed and optimized during trajectory running,
and the average processing time of each frame of camera poses
is shown in Table III. The average processing time of each
frame pose optimization of our algorithm is 16.6657ms, which
is significantly superior to VINS_Fusion algorithm. This is
because our method is much sparser than the VINS system
in the selection of keyframes. At the same time, the real-time
performance of the system is greatly improved and the compu-
tational complexity is reduced by introducing sliding windows,
performing Q R decomposition and converting the form of
Kalman gain. Although our method takes slightly more time to
calculate the pose optimization than the msckf_vio algorithm,
the accuracy of our method is much higher than that of the
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Fig. 8. Outdoor real experiment is performed using the Qiming mobile robot
equipped with Realsense D435i and GNSS-850 in (a): (b) shows the outdoor
experimental environment. In (c), (d) and (e), the gray dotted line represents
the trajectory provided by GNSS-850, which is ground truth. (c) is ablation
analysis, the blue solid line corresponds to our method with loop-closure, the
red solid line corresponds to our method without loop-closure; (d) and (e) are
comparative experiment without loop-closure and comparative experiment
with loop-closure, respectively, the blue solid line corresponds to our method,
the red solid line corresponds to VINS-Fusion, and the green solid line
corresponds to msckf_vio.

TABLE IV
APE TRANSLATION PART METRIC

msckf_vio algorithm. A comprehensive comparison of our
method outperforms msckf_vio and VINS-Fusion.

C. Real-World Experiments

In the physical experiments, we migrated our proposed algo-
rithm to the Qiming ROS mobile robot of the six workshops,
which installed Intel’s RealsenseD435i camera and GNSS-850,
as shown in Fig. 8 (a). We use the trajectory obtained from
GNSS-850 as the ground truth. In the outdoor environment
shown in Fig. 8 (b), we set up ablation experiment to verify
the necessity of increasing loop-closure detection, and set
up comparison experiments to compare with VINS Fusion
and msckf, as shown in Fig. 8 (c), (d) and (e), the total
running length is 106.90 m, and the average running speed is
2.2 m/s. Table IV shows the trajectory accuracy, where our_lp,
our_nolp, VINS_lp and VINS_nolp represents our method
with loop-closure, our method without loop-closure, VINS-
Fusion with loop-closure and VINS-Fusion without loop-
closure, respectively.

From Fig. 8 (c), with the addition of loop-closure, the
running trajectory of our method is obviously improved, and
the accuracy is improved by 71.29% in Table IV. Therefore,
it is necessary to increase the loop-closure. From Fig. 8 (d),
Fig. 8 (e) and Table IV, compare our method with state-of-
the-art VIO systems VINS-Fusion and msckf_vio. In case of
loop-closure, compared with VINS-Fusion and msckf_vio, the
RMSE of our method is reduced by 59.79% and 82.56%,
respectively. But when loop-closure detection is not added,
compared with VINS-Fusion and msckf_vio, the RMSE of
our method is decreased by 28.99% and 39.27%, respectively.
Thus, through these experiments, we verify the effectiveness of
our method and the necessity of adding loop-closure detection.

VII. CONCLUSION AND FUTURE WORK

We proposed a robust, general Kalman filter-based and
factor graph visual-inertial systems. We fused vision and
inertial measurements by using MSCKF, to achieve a high
degree of coupling of sensor data. For the IMU measurements,
we used the PK4 numerical integration method to complete the
IMU pre-integration. To avoid calculating the IMU noise from
scratch, we built an IMU noise propagation model (for updat-
ing the IMU pre-integration, when new IMU measurements
arrive). In the IMU initialization phase, we used the MAP
estimation model to optimize the IMU parameters, considering
all of IMU noise as known prior information. After opti-
mization we performed re-propagation of IMU pre-integration.
We fused vision and IMU measurements using MSCKF,
and propagated and updated each frame pose. In addition,
to solve the problem of the large cumulative error in MSCKF,
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we used a factor graph to establish the constraint relationship
between the current keyframe and historical keyframe, and
optimized the pose of each keyframe, then used MSCKF to
update each frame pose. To reduce the computational cost,
we inserted keyframes in the factor graph optimization stage
and constructed a sliding window. To further improve the
accuracy of the system, we utilized a bag-of-words method
for loop closure detection to reduce the cumulative drift. Our
system achieved higher accuracy than existing public methods,
as indicated by testing on datasets with aggressive motion and
substantial lighting changes, as well as in indoor and outdoor
environments.

We will continue, to verify the excellent scalability of our
method. In future work, we will extend our method to fusion
of some common sensors for autonomous vehicles, such as
vision, IMU, LiDAR, and global sensors (e.g. GPS), to achieve
robust large-scale outdoor pose estimation for autonomous
vehicles. In follow-up work, we will also focus on removing
dynamic and semi-static objects in the field.

APPENDIX

A. Calculate δr(γi j ), δβi j and δαi j

In accordance with Eq. (5), we used mathematical deriva-
tions for decomposition, such that the left-hand side of the
equation is evident in the form of an estimated value plus an
error term. The decomposition process of 1R

(
γi j

)
, 1βi j and

1αi j is as follows:

1R
(
γi j

)
=

j−1∏
k=i

Exp
[(
ω̂ik − bωk − nω

)
1tik

]
≃

j−1∏
i

[
Exp

((
ω̂ik − bωi

)
1tik

)
Exp (−Jr (γk) nω1tik)

]
= 1R̂

(
γi j

) j−1∏
k=i

Exp
(
−1R̂

(
γk+1 j

)
Jr (γk) nω1tik

)
= 1R̂

(
γi j

)
Exp

(
−δr

(
γi j

))
, (28)

where δr
(
γi j

)
is the error term.

We used the δr
(
γi j

)
obtained with Eq. (28) into 1βi j , and

used the first-order approximation to remove the higher-order
terms. The decomposition of 1βi j is as follows:

1βi j =

j−1∑
k=i

1R (γik)
(
âik − bak − na

)
1tik

≃

j−1∑
k=i

1R̂ (γik)
(
I − δr(γik)

∧
) (

âik − bai

)
1tik

−1R̂ (γik) na1tik

= 1β̂i j +

j−1∑
k=i

[
1R̂ (γik)

(
âik − bai

)∧
δr (γik)1tik

−1R̂ (γik) na1tik
]

= 1β̂i j − δβi j , (29)

where δβi j is the error term.

Similarly to Eq. (29), we decomposed 1αi j :

1αi j =

j−1∑
i

[1βik1tik +
1
2

R (γk)
(
âik − bak − na

)
1t2

ik]

≃

j−1∑
k=i

[
1
2

R̂ (γik)
(
I − δr(γik)

∧
) (

âik − bai

)
1t2

ik

+ (1βik − δβik)1tik −
1
2

R̂ (γik) na1t2
ik

]

= 1α̂i j +

j−1∑
k=i

[
1
2

R̂ (γik)
(
âik − bai

)∧
δr (γik)1t2

ik

−1βik1tik −
1
2

R̂ (γik) na1t2
ik

]
= 1α̂i j − δαi j , (30)

where, δαi j is the error term.
To obtain the F j−1 and G j−1 matrices, we continued to iter-

atively decompose δr
(
γi j

)
, δβi j , and δαi j . The decomposition

process of δr
(
γi j

)
is as follows:

δr
(
γi j

)
=

j−1∑
k=i

1R̂T (
γk+1 j

)
Jr (γk) nω1tik

=

j−2∑
k=i

1R̂T (
γk+1 j

)
Jr (γk) nω1tik

+1R̂T (
γ j j

)
Jr

(
γ j−1

)
nω1ti j−1

= 1R̂T (
γ j−1 j

) j−2∑
k=i

1R̂T (
γk+1 j−1

)
Jr (γk) nω1tik

+ Jr
(
γ j−1

)
nω1ti j−1

= 1R̂T (
γ j−1 j

)
δr

(
γi j−1

)
+ Jr

(
γ j−1

)
nω1ti j−1,

(31)

where Jr (γk) = I − 1−cos(∥γk∥)

∥γk∥
2 γ ∧k +

∥γk∥−sin(∥γk∥)∥∥γ 3
k

∥∥ (
γ ∧k

)2.
We repeat the same process to decompose δβi j .

δβi j =

j−1∑
k=i

[
−1R̂ (γik)

(
âik − bai

)∧
δr (γik)1tik

1R̂ (γik) na1tik

]
=

j−2∑
k=i

[
−1R̂ (γik)

(
âik − bai

)∧
δr (γik)1tik

+ 1R̂ (γik) na1tik

]
−1R̂

(
γi j−1

) (
âi j−1 − bai

)∧
δr

(
γi j−1

)
1ti j−1

+1R̂
(
γi j−1

)
na1ti j−1

= δβi j−1 −1R̂
(
γi j−1

) (
âi j−1 − bai

)∧
δr

(
γi j−1

)
1ti j−1

+1R̂
(
γi j−1

)
na1ti j−1, (32)
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Next, we calculated δαi j by the same process.

δαi j =

j−1∑
k=i

[
−

1
2
1R̂ (γik)

(
âik − bai

)∧
δr (γik)1t2

ik

+
1
2
1R̂ (γik) na1t2

ik + δβik1tik

]
=

j−2∑
k=i

[
−

1
2
1R̂ (γik)

(
âik − bai

)∧
δr (γik)1t2

ik

+
1
2
1R̂ (γik) na1t2

ik + δβik1tik

]
−

1
2
1R̂

(
γi j−1

) (
âi j−1 − bai

)∧
δr

(
γi j−1

)
1t2

i j−1

+
1
2
1R̂

(
γi j−1

)
na1t2

i j−1 + δβi j−11ti j−1

= δαi j−1 + δβi j−11ti j−1

−
1
2
1R̂

(
γi j−1

) (
âi j−1 − bai

)∧
δr

(
γi j−1

)
1t2

i j−1

+
1
2
1R̂

(
γi j−1

)
na1t2

i j−1, (33)

By decomposing each term of δr
(
γi j

)
, δβi j and δαi j ,

we obtained F j−1 and G j−1 matrices for error propagation.

B. Calculate JπN

JπN in Eq. (21) is the derivation of the visual pose πN =[C
Gq C

G p
]T to the error state vector X̃ I MU :

JπN =
∂π̃N

∂ X̃

=


∂δθCN
∂δθI

03×9
∂δθCN
∂ I

G p̃
03×6N

∂
CN
G p̃
∂δθI

03×9
∂

CN
G p̃
∂ I

G p̃
03×6N


=

[
C

(C
I q

)
03×903×3 03×6N(

C
(I

Gq
)T
·

C
I p

)
03×9 I 03×6N

]
. (34)

C. Calculate H c
i and Ni

H c
i is the covariance matrisx of the camera state. Ni

is the covariance matrix of the noise, and follows the
Gaussian distribution Ni ∼

(
0,

∑
Ni

)
. Take ψ

(C P i
)
=[

fx ·
C P ix
C P iz
+ cx · fy ·

C P iy
C P iz
+ cy

]T

:

H c
i = −

∂ψ
(C Pi

)
∂C Pi

·

∂C P
(

X̂k,
G Pi

)
∂ X̃k

,∑
Ni

=

∑
n pi

+ HPi

∑
Pi

HPi
T ,

HPi = −
∂ψ

(C Pi
)

∂C Pi
·
∂C P

(
Xk,

G Pi
)

∂G Pi
. (35)

Appendix E in [24] shows the detailed calculation processes
for H c

i and HPi .
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