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The inertial navigation system (INS), which is frequently used in emergency rescue operations and other
situations, has the benefits of not relying on infrastructure, high positioning frequency, and strong real-
time performance. However, the intricate and unpredictable pedestrian motion patterns lead the INS
localization error to significantly diverge with time. This paper aims to enhance the accuracy of zero-
velocity interval (ZVI) detection and reduce the heading and altitude drift of foot-mounted INS via
deep learning and equation constraint of dual feet. Aiming at the observational noise problem of low-cost
inertial sensors, we utilize a denoising autoencoder to automatically eliminate the inherent noise. Aiming
at the problem that inaccurate detection of the ZVI detection results in obvious displacement error, we
propose a sample-level ZVI detection algorithm based on the U-Net neural network, which effectively
solves the problem of mislabeling caused by sliding windows. Aiming at the problem that Zero-Velocity
Update (ZUPT) cannot suppress heading and altitude error, we propose a bipedal INS method based on
the equation constraint and ellipsoid constraint, which uses foot-to-foot distance as a new observation to
correct heading and altitude error. We conduct extensive and well-designed experiments to evaluate the
performance of the proposed method. The experimental results indicate that the position error of our
proposed method did not exceed 0.83% of the total traveled distance.
© 2023 China Ordnance Society. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
1. Introduction

With the increasing need for indoor location-based service (LBS)
in various scenarios and sectors, high-precision and highly robust
LBS solutions have become a research hotspot [1]. Location
awareness is emerging as an Internet of Things (IoTs)-enabled
technology and an essential part of the ambient assisted living
framework [2]. Global Navigation Satellite Systems (GNSS) have
provided millimeter to centimeter level positioning in outdoor
environment [3]. Due to the obstruction of satellite signals, it is
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difficult for global navigation satellite systems to obtain accurate
positioning results in indoor environments [4]. Therefore, indoor
positioning systems built on wireless signals such as cellular [5,6],
Radio Frequency Identification (RFID) [7], ZigBee, LiDAR [8], Ultra-
WideBand (UWB) [9], Bluetooth [10], and Wi-Fi [11] have been
studied and implemented extensively. The unreliable variations in
Wi-Fi signals, such as the complicated signal multipath problem,
limit its application. Vision-based indoor localization methods
achieve high-precision localization results, but privacy and security
issues limit their application [12]. In addition, issues such as high
computational overhead limit its application to embedded devices
[13]. Visible light-based localization methods achieve high locali-
zation accuracy in a small range, but sunlight affects the robustness
of the localization system [14]. In summary, the existing indoor
positioning technologies have their strengths. However, they all
of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-
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have problems such as high deployment costs, small coverage, poor
robustness, and low positioning accuracy, which cannot fully meet
the high-precision LBS requirements in various application.

With the rapid development of microelectromechanical system
(MEMS) technology, MEMS-based inertial navigation systems (INS)
play a vital role in providing seamless indoor and outdoor LBS for
arbitrary unprepared and unfamiliar environments. Comparedwith
other navigation and positioning methods, pedestrian inertial
navigation technology based on MEMS sensors does not need to
deploy base stations in advance, and only relies on the sensors they
carry, such as accelerometers, gyroscopes and magnetometers, to
complete pedestrians’ navigation and positioning [15]. Inertial
navigation has the characteristics of strong autonomy, high posi-
tioning frequency, low power consumption and real-time perfor-
mance. Therefore, it is more suitable for applications such as
individual combat, anti-terrorism action, emergency rescue, and
fire rescue where the environment is unknown and infrastructure
cannot be deployed in advance, as shown in Fig. 1. Especially in
military applications, inertial navigation can not only improve
training efficiency and duty efficiency, but also provide accurate
and continuous location services for areas such as jungles, indoor
environments, and urban canyons, enabling multi-soldier collabo-
rative operations. However, the work of such personnel is rather
special. In addition to normal walking, more situations are running,
turning, going up and downstairs, and even jumping and crawling,
which brings greater challenges to navigation and positioning
algorithm.

Although there has beenmuch researchwork on strapdown INS,
foot-mounted INS still has the following difficulties and challenges:
Fig. 1. Applications of foot-mounted
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(1) Low-cost MEMS sensors with poor performance and high noise;
(2) The complex and changeable pedestrian motion modes make it
difficult to accurately detect the zero-velocity interval (ZVI); (3)
Heading and altitude error accumulate over time in Zero-Velocity
Update (ZUPT)-assisted pedestrian navigation systems. Thus, the
positioning error of ZUPT-assisted INS is not well suppressed and
diverges with time and movement distance [16].

This paper aims to improve the ZVI detection accuracy and
reduce the heading and altitude drift of foot-mounted INS via deep
learning and the equation constraint of dual feet. The key contri-
butions of our study are as follows:

(1) We propose a novel dense sequence labelling mechanism to
solve the multiclass window problem. This mechanism can
accurately label the data for each timestamp, and then the
dense prediction of temporal data is achieved by encoding
and decoding data with accurate labelling.

(2) Aiming at the problem that traditional ZVI detectors based
on sliding windows cannot provide sample-level detection
results, we propose a novel sample-level ZVI detectionmodel
based on a dense sequence labelling mechanism and a U-Net
network, which outputs binary zero-velocity classification
results for each sensor measurement.

(3) We propose a bipedal INS method based on the equality
constraint and ellipsoid constraint. This method fuses two
monopod systems through foot-to-foot ranging, and uses
foot-to-foot distance as a new observation of the Kalman
filter to correct heading and altitude error. The method can
pedestrian inertial navigation.
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effectively suppress heading and altitude error, and achieve
long-term accurate and stable pedestrian positioning.

(4) We conduct extensive and well-designed experiments to
verify the performance of the proposed ZVI detection
method and bipedal INS method, and obtain a satisfactory
performance.

The remainder of this paper is organized as follows: Section 2
reviews the related literature. Section 3 details the proposed
sample-level ZVI and bipedal INS method. Section 4 conducts an
extensive experiment to verify the proposed method. Finally, Sec-
tion 5 draws a conclusion.

2. Related work

The methods for pedestrian inertial navigation can be classified
into three categories: (1) Pedestrian dead reckoning (PDR) consists
of step detection [17], step length estimation [18] and heading
estimation [19], which obtain high-precision positioning results in
a short period through device built-in inertial sensors [20]; (2)
Deep learning-based inertial odometry [21] recognizes pedes-
trian’s moving modes and regresses pedestrian’s position without
any constraints on the usage mode of the device [21]; (3) The
strapdown inertial navigation system (SINS) integrates the angular
velocity with time to obtain the attitude change, and double in-
tegrates the acceleration with time in the navigation coordinate
system to obtain the position change. The SINS sensors can beworn
on the waist, calf, head, or upper arm, and more are tied to the foot
or built into the insole. In this paper, we focus on foot-mounted
inertial navigation.

However, the localization error diverges over time due to iner-
tial sensor noise (i.e., biases, cross-coupling errors, scale factors and
random noise) and non-strapdown relationship between user and
device [15]. To overcome the divergence of accumulative inertial
navigation error, the zero-velocity correction is the most practical
constraint method, which consists of two parts: ZVI detection and
zero-velocity update. ZUPT technology suppresses error accumu-
lation by the fact that the velocity of pedestrian is zero when the
foot contacts the ground [22]. ZVI detection is the basis of zero-
velocity updating, which directly affects the effect of zero-
velocity correction [23]. The ZVI detection is often modeled as a
hypothesis-testing problem, and statistical detection theory is used
to analyze recognize zero-velocity interval [24]. Extensive ZVI
detection methods based on inertial sensors, including the gener-
alized likelihood ratio test (GLRT) [25], acceleration magnitude
(MAG) detector, acceleration moving mean detector, acceleration
moving variance (MV) detector, angular rate moving mean detec-
tor, angular rate moving variance (ARMV) detector and angular rate
energy (ARE) detector, have been proposed. These methods are all
based on predefined thresholds, and their performance depends on
pedestrian movement patterns and threshold settings.

Selecting the threshold value of each ZVI detection method,
whichmust be selected according to the judgement principle of the
zero-velocity state and a large number of experiments, is compli-
cated. In addition, human movement is relatively complex and
cannot be in a single movement mode, such as walking all the time.
To solve the problem of the fixed threshold method, Ren et al. [26]
leveraged a hidden Markov model (HMM) to adaptively adjust the
ZVI detection threshold according to pedestrian movement modes.
Yang et al. [27] utilized a Mahony filtering algorithm to merge and
de-noise the original foot acceleration and angular velocity infor-
mation to provide high-precision pitch angle information. Then,
they utilized the pitch angle sliding variance for zero-velocity
detection. Wahlstrom et al. [28] proposed a threshold-adaptive
ZVI detection algorithm, which selects the optimal threshold
3

online according to the user's speed, gait frequency, or movement
pattern. However, this algorithm requires collecting large quantity
datasets at different walking velocities and different movement
modes.

With the rapid development of deep learning technology, some
researchers try to use a data-driven approach to perform ZVI
detection, which can be applied to more general motion models
without any manual feature extraction [29]. The ZVI detection
methods based on deep learning or machine learning import the
original inertial measurement units (IMU) data and corresponding
labels into the neural network for training, which can effectively
solve the dependence of traditional methods on the threshold
setting and greatly improve the ZVI detection accuracy [30]. Wag-
staff et al. [31] used a Long Short-Term Memory (LSTM) neural
network to build a ZVI detection model, and improved model
performance through rotation, scaling, and dithering. Zhu et al. [32]
combined Convolutional Neural Networks (CNN) and LSTM, and
used one-dimensional CNN to process raw data to achieve motion
classification and improve the ZVI detection accuracy. Chen et al.
[23] trained a contrastive neural network by comparing with the
known static inertial data to recognize ZVI. Yang et al. [33] pro-
posed Symmetrical-Net that leverages deep Recurrent Convolu-
tional Neural Networks to adaptively detect ZVI.

Researchers have also explored ZVI detection methods based on
images, foot pressure, radar signals, and echo feedback, which
require additional equipment and are computationally expensive.
In addition, the introduction of additional facilities can provide the
ZVI detection accuracy, but the positioning system loses its au-
tonomy and cannot deal with emergencies or cannot collect data in
advance.

Compared with the ZVI detection accuracy, the heading and
altitude error in inertial navigation has a greater impact on the
positioning results. In the IEZ framework, the accumulation of the
heading error cannot be eliminated. Therefore, limiting the heading
error has become a research hotspot. In 2005, Foxlin et al. [34]
corrected the navigation error according to the gait characteristics
of walking to limit the navigation error, and combined ZVI detec-
tion with the extended Kalman filter to form an INS þ EKF þ ZUPT
(IEZ) foot-mounted INS framework. The algorithm not only corrects
velocity error, but also helps limit the increase in position and
attitude error. Based on the IEZ framework, Zhang et al. [35] pro-
posed the Zero Angular Rate Update (ZARU) method based on the
assumption that the heading change is zero when the device is
static or quasi-static, which limits the accumulation of gyroscope
error and improves the heading stability. Since then, navigation
system using the IEZ framework has been widely used. To enhance
localization accuracy, scholars have improved various key parts of
the IEZ framework. Sun et al. [36] improved the data quality of
inertial sensor by calibration to improve the navigation accuracy.

Some studies have attempted to wear multiple inertial sensors
on pedestrians, which can use multiple sensors to constrain each
other to improve the navigation and positioning results. Zhu et al.
[37] and Wu et al. [38] fixed two IMUs on pedestrian feet, using a
maximum distance constraint between the feet to improve heading
stability. Skog et al. [39] and Chen et al. [40] integrated multiple
small and low-cost IMU on a PCB board to form an IMU array, and
then used unscented Kalman filtering to fuse the navigation in-
formation of multiple IMUs to obtain a more robust and precise
heading estimation. Pedestrians will be constrained by the sur-
rounding environment during walking. Therefore, some re-
searchers correct pedestrian inertial navigation error based on map
assistance or map matching [41]. Khairi et al. [42] used building
structures to assist pedestrian navigation, effectively constraining
the heading divergence. Sahoo et al. [43] proposed a ramp cali-
bration algorithm that detects ramps on themap and uses the ramp
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position to correct pedestrian positions to improve localization
accuracy.

In addition, some researchers combine foot-mounted INS with
Global Navigation Satellite System (GNSS) [3], pseudolite [44],
Bluetooth [45], cellular [6], vision [13], LiDAR, ultra-wideband
(UWB) [9], Wi-Fi and other wireless positioning technologies to
provide absolute position information for foot-mounted INS to
enhance positioning accuracy and robustness. However, the
method suppresses the heading error by fusing the magnetometer
and GNSS can only be used outdoors, and the magnetometer and
GNSS will fail in the indoor environment. In addition, the inte-
grating sensors such as cameras and UWBwill make the system too
complicated and bloated, which is not conducive to the widespread
use of pedestrian inertial navigation.
3. Materials and methods

3.1. System architecture

Fig. 2 illustrates the overall structure of our proposed pedestrian
inertial navigation based on dual foot-mounted IMU. We sanitize
inertial sensor noise with a denoising autoencoder. Subsequently,
we propose a sample-level ZVI detection method that effectively
solves the problem of mislabeling caused by sliding windows.
Furthermore, we leverage the equality constraint and ellipsoid
constraint to correct heading and altitude error.
3.2. Sensor noise sanitization based on denoising autoencoder

Mining the intrinsic features of inertial sensor measurements
can effectively enhance the performance of ZVI detection and INS
mechanization. In this study, the denoising autoencoder is utilized
to learn the intrinsic characteristics of sensor data before training
the ZVI detection model. The autoencoder is an unsupervised
learning method with the same size as the input and output layers.
Autoencoder consists of encoding and decoding procedures. For
input x, the hidden encoding layers predict a target, and the
decoding procedure reconstructs the input with z through decod-
ing mirror layers. The objective of autoencoder is to minimize the
difference between the rawmeasurements x of inertial sensors and
Fig. 2. System a
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reconstructed input.

min
∅;4

kx� 4ð∅ðxÞÞk2 (1)

The denoising autoencoder [46] is a stochastic variant of the
autoencoder. The denoising autoencoder is an extremely effective
tool for learning the essential features, which can be used for noise
reduction. Compared with autoencoder, denoising autoencoders
require an additional stochastic corruption step in the training
phase. As shown in Fig. 3, each denoising autoencoder consists of
three parts: an encoder layer, a noise-added layer, and a decoder
layer. The noise-added layer obtains corrupted inertial data ~x by
adding the masking noise to the original sensor measurements x.
The encoder layer maps the corrupted data ~x into hidden repre-
sentation y.

y¼ f ðw~xþbÞ (2)

where w is an N �M encoding matrix, and b is a bias vector. M
represents the number of input units and N represents the number
of hidden units. f ð $Þ denotes the activation function. A similar
process is performed by the decoder layer to map the hidden rep-
resentation back to the raw sensor measurements.

z¼ gðw0yþb0Þ (3)

where w0 is an M � N decoding matrix, and b0 is a bias vector. z is
the reconstructed vector. gð $Þ denotes the activation function. In
this paper, we choose the sigmoid function as the activation
function.

The goal of denoising is to minimize the reconstruction error,
which is done by minimizing the square error loss function Lðxi;ziÞ,
where

Lðxi; ziÞ¼
1
2

XM
j¼1

�
xj � zj

�2 (4)

A sparsity term applies to the objective function of the denoising
autoencoder to make it work even if there are more hidden units
than input units. Therefore, the cost function JDAE is rewritten as
rchitecture.



Fig. 3. Structure diagram of a denoising autoencoder.
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(5)

The first term is the cost function of autoencoder, and the sec-
ond term is the sparse penalty term, where N is the number of
hidden units; r and brj are the sparsity parameter and the average
activation of hidden unit j, respectively; and b is the sparsity
penalty.

3.3. Zero-velocity interval detection based on U-Net neural network

ZVI detection is the most critical technology in pedestrian in-
ertial navigation systems based on zero-velocity assistance.
Enhancing the ZVI detection accuracy can effectively improve
positioning accuracy [16]. However, due to the high-frequency foot
vibration during pedestrian movement, it is challenging to accu-
rately recognize the zero-velocity state and the non-zero-velocity
state from the gyroscope and accelerometer measurements. Espe-
cially for mixed motion modes such as running and jumping,
further research is needed to accurately detect the ZVI. The tradi-
tional ZVI detection methods are based on sliding window, which
suffers from a multiclass window problem, i.e., the samples within
each window cannot always share the same label. To solve the
multiclass window problem, we analyze the pedestrian gait cycle,
present a dense labelling mechanism, and propose a novel sample-
level ZVI detection method based on U-Net neural network.

3.3.1. Gait analysis
A entire gait cycle of pedestrian is defined as the process from

the heel of one foot on the ground to the heel of the opposite foot
on the ground againwhen theywalk [49]. Fig. 4 shows the different
stages in the pedestrian gait cycle. The time for the foot to fully
contact the ground during walking is very short, usually approxi-
mately 0.1e0.3 s, and it is even shorter when running [47,48]. Fig. 5
shows the acceleration change during the walking process. As
shown in Fig. 5, the periodic amplitude change in the inertial data
corresponds to the alternating occurrence of ZVI and non-ZVI, and
has a relatively apparent front-to-back dependency in the time
dimension.

3.3.2. Traditional zero-velocity interval detection methods
During movement such as walking and running, the feet will

alternately leave and touch ground. When their feet touch the
ground, the pedestrian's speed is zero. Many research works are
5

based on this phenomenon to correct the positioning error. The
traditional ZVI detection methods based on IMU are classified into
the following three categories: those based on acceleration, those
based on angular velocity, or those based on a combination of ac-
celeration and angular velocity [50]. A sliding window is usually
used to enhance detection robustness. Detection method based on
acceleration amplitude threshold (MAGD) [42],

Aa¼

8>><>>:
1
N

XiþN�1

k¼i

ðk ak k �gÞ2 < ta 1

others 0

(6)

Detection method based on acceleration variance threshold
(MVD) [51],

As2 ¼

8>><>>:
1

N � 1

XiþN�1

k¼i

ðak � aNÞ2 < ts 1

others 0

(7)

Detection method based on angular velocity energy threshold
(ARED) [52],

Au ¼

8>><>>:
1
N

XiþN�1

k¼i

ðk uk kÞ2 < tu 1

others 0

(8)

Combined detection method (generalized likelihood ratio test,
GLRT),

Ac ¼

8>><>>:
1
N

XiþN�1

k¼i

1

s2a
k ak � g

ak
k ak k

k2 þ 1

s2u
k uk k < tc 1

others 0

(9)

ak ¼
1
N

XkþN�1
k¼i

ak (10)

where ak ¼
�
axk ayk azk

�T is the measurement of the acceler-

ometer at time k; uk ¼ �uxk uyk uzk
�T is the measurement of

the gyroscope at time k; ta, tu, ts and tc are the zero-velocity
detection thresholds of acceleration, angular velocity, acceleration
variance and combined observation, respectively; and s2a and s2u are
the random noise variances in acceleration and angular velocity,
respectively. The value of the window size N depends on the
sampling frequency of the sensor and the walking velocity of the
pedestrian, and is usually determined empirically.



Fig. 4. An entire gait cycle [47,48].

Fig. 5. Acceleration variation within one gait cycle.

Fig. 6. Illustration of sliding window labeling and dense sequence labeling. The top of
the figure shows the sensor data in different states, with different colors indicating
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The above fixed threshold-based methods are excellent for ZVI
detection in uniform motion, but when the pedestrian frequently
switches motion modes and intensities, the detection accuracy
drops sharply [33].
different state (swing or stance). The middle of the figure shows two different ap-
proaches in sliding window labeling, which both lead to loss of label information. The
bottom of the figure shows dense sequence labeling, which avoids the multiclass
window problem by assigning labels to each sample.
3.3.3. Dense labelling
ZVI detection may be considered as an issue of sequence

labelling in which the zero-velocity states at each timestamp in
long-term time-series data are anticipated. The traditional ZVI
detection method typically uses explicit windowing to segment the
data. The explicit windowing method divides data into sub-
windows of equal length and assigns an identical label to each
sample in each subwindow. As illustrated in Fig. 6, a multiclass
windows occur when samples within a subwindow do not share
the same label. In addition, there is no clear consensus on the
definite window size to utilize because it is challenging to define
the boundaries of state change.

Fig. 6 provides a visual comparison of sliding window labeling
and dense sequence labeling. Red indicates the swinging phase
(S1), and blue represents the stance phase (S2). For instance, when
using the labeling strategy with the most occurring classes, the
label of this subwindow is assigned as S1. Conversely, S2. However,
this subwindow essentially involves class S1 and class S2
6

information. Therefore, it leads to losing the accurate information
of the other class. Using incorrect sequence semantic information
leads to an inaccurate recognition result. The bottom of Fig. 6 shows
that dense sequence labeling can train and predict every sample’s
label rather than every window.

As technical jargon, the term “dense sequence labeling” is pro-
posed by the semantic segmentation field in computer vision. We
contributed the dense sequence labeling method to circumvent the
multiclass window problem, giving a single label for each sample in
every timestamp rather than assigning the same label for each
subwindow. The dense sequence labeling result is denoted as YL ¼
fy1; y2;/yi;/yLg, where yi represents the state of the ith sample.
The output of dense labeling is the same length as the time-series
data.
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3.3.4. Zero-velocity interval detection
Based on dense labels, we propose a novel sample-level ZVI

detection method based on U-Net neural network. U-Net neural
network is an improved end-to-end image semantic segmentation
network based on a fully convolutional neural network [53], which
contains a shrinking path for feature extraction and a dilation path
for expanding the size of feature maps. The shrinking and dilation
paths are a pair of symmetric structures (encoder-decoder struc-
tures). In U-Net, the input image first performs feature extraction
on the image through the convolution-pooling operation, then uses
deconvolution in the expansion path to enlarge the size of the
feature map to the raw image size, and finally predicts category of
each pixel to realize semantic segmentation of images.

The model architecture of the proposed sample-level ZVI
detection method is shown in Fig. 7. We denote the sanitized two-
dimensional sensor data as a single pixel column and multichannel
image with a size of (1, N, C), where N is the length of the input
subsequence, and C is the number of the sensor channels. Our
method outputs the time of heel strike and toe-off (zero-velocity
interval).
3.4. INS mechanization

As shown in Fig. 8, INS mechanization obtains the position,
velocity, and attitude of an object by integrating acceleration twice
and angular rate once provided by accelerometers and gyroscope.
Compared with the noise of low-cost MEMS sensors, the navigation
performance improvement brought by optimizing parameters such
as Earth rotation is negligible. Therefore, the INS mechanization
equations can be simplified as follows [54]:

2664
pnk
vnk
Cn
b;k

3775¼

2666664
pnk�1 þ vnkDt

vnk�1 þ
h
Cn
b;k

�
~f
b
k � ba

	
� gn

i
Cn
b;k�1 þ Cn

b;k�1U
h�

~wb
k � bg

	
Dt
iDt

3777775 (11)

where k is a time index, Dt ¼ tk � tk�1 is the time interval between
two consecutive observations, pn and vn indicate the position
vectors and velocity vectors in the navigation system, respectively,
Cn
b represents the rotation matrix from the carrier system to the
Fig. 7. System architecture of the proposed robust zero-velocity interval detection method b
determining point. Output infers the time of heel strike and toe-off.
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navigation system, gn ¼ ½0;0;�g�T represents the Earth’s gravity

vectors in the navigation system, ~f
b
and ~wb represent the acceler-

ation and angular rate observation vectors in the carrier system,
respectively, ba and bg are the bias vectors of the accelerometer and
gyroscope, respectively, and U½ �� is the cross-product form.
3.5. Heading error correction based on equation constraints of
bipedal INS and inter-foot ranging

Traditional heading correction methods use magnetometer ob-
servationsmounted on the IMU to correct heading estimation error.
This method can effectively provide position estimation accuracy,
but themagnetometer is easily contaminated by buildingmaterials,
electronic equipment and other external magnetic sources. Other
heading correction methods that rely on sources or prior knowl-
edge (WLAN fingerprinting, map matching) require infrastructure
to be installed in the area to be located or environmental data to be
collected in advance. These methods lose the substantial autonomy
of inertial navigation, and cannot be applied to emergencies such as
emergency rescue.

To calibrate the heading error while maintaining the autonomy
of inertial navigation, we calibrate the heading error by means of
bipedal INS and inter-foot ranging. We design a bipedal pedestrian
navigation system that consists of two IMU modules and an ul-
trasonic module. The system obtains the distance between the feet
through the ultrasonic module and synchronizes it with the inertial
data. The inter-foot distance between is calculated as follows:

d¼ k peL þ Ce
b;LI

b
L � peR � Ce

b;RI
b
R k þndb k DI k þnd (12)

where L and R represent the left and right feet, respectively. Ib

represents the lever arm of IMUmodule and ultrasoundmodule. pn

indicates the position vectors. Cn
b represents the rotation matrix. nd

represents the inter-foot distance observation noise with a
covariance of s2

d . k � k represents the vector magnitude. In this
paper, the bipedal distance is incorporated into the EKF as a new
observation.

We define the error state dx as the state estimate bx minus the
true state x.
ased on U-Net network. Input refers to IMU raw measurements surrounding the under



Fig. 8. INS mechanization.
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dx¼ bx � x (13)

According to themonopodmodel, the left and right feet are each
subsystem. We combine the two subsystems into a bipedal system
by introducing a bipedal intra-foot distance constraint. Corre-
spondingly, the system state vectors dX of the biped are expanded
to

dX¼


dxL
dxR

�
(14)

where dxL and dxR represent the error state space equations of the
left and right foot subsystems, respectively.

Its state space equation dX and observation equation dY are
expressed as

dXk ¼ FdXk�1 þ DW (15)

dY ≡

24 dyv;L
dyv;R
dd

35¼
24 Hv 03�15

03�15

Hd;L

Hv

Hd;R

35dX þ
24 nv;L
nv;R
nd

35 (16)

dd¼dn � d (17)

where F and D represent the state transition matrix and noise gain
matrix of the inertial navigation system, respectively. H and n
represent the observation matrix and observation noise, respec-
tively. dn is the ultrasonic measurement and the process noiseW is

W ¼
24 wT

L

wT
R

35 (18)

where

Hd;L ¼
h
DIT
�
Ce
b;LI

b
L

	
�01�3DI

T01�6

i.
k DI k (19)

Hd;R ¼
h
� DIT

�
Ce
b;RI

b
R

	
�01�3 �DIT01�6

i.
k DI k (20)

F ¼


f L 015
015 f R

�
(21)

D¼



dL 015�12
015�12 dR

�
(22)
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where I represents identity matrix. 0 represents zero matrix. C
represents the rotation matrix. f represent the acceleration obser-
vation vectors.

The filtering process is as follows.
3.5.1. Initialization phase

P¼



PL 015�15
015�15 PR

�
(23)

PL and PR are the covariance matrices of the left and right feet,
respectively.

PL ¼

2666666666666664

pL11 03�3 03�3 03�3 03�3

03�3 pL22 03�3 03�3 03�3

03�3

03�3

03�3

03�3

03�3

03�3

pL33
03�3

03�3

03�3

pL44
03�3

03�3

03�3

pL55

3777777777777775
(24)

PR ¼

2666666666666664

pR11 03�3 03�3 03�3 03�3

03�3 pR22 03�3 03�3 03�3

03�3

03�3

03�3

03�3

03�3

03�3

pR33
03�3

03�3

03�3

pR44
03�3

03�3

03�3

pR55

3777777777777775
(25)

where pii represents the empirical value of the navigation
parameter.
3.5.2. Prediction stage

dXk ¼ FkdXk�1 þ DkWk (26)

where dXk�1 is the error estimate from the previous step. F and D
represent the state transition matrix and noise gain matrix of the
inertial navigation system. Since the noises of the two subsystems
are independent of each other, the covariance matrix Q of the
process noise Wk is calculated as follows:



Fig. 9. Ellipsoid constraint correction diagram.
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Q ¼



Q L 06�6
06�6 QR

�
(27)

where Q L and QR are the observation noise covariance matrix of
the left and right feet, respectively.

Q L ¼

26664
qL11 03�3 03�3

03�3 qL22 03�3

03�3 03�3 qL33

37775 (28)

QR ¼

26664
qR11 03�3 03�3

03�3 qR22 03�3

03�3 03�3 qR33

37775 (29)

where q11, q22, and q33 are the empirical covariance values of the
accelerometer, gyroscope and ultrasound in the initialization stage,
respectively.

3.5.3. Observation update phase
The motion of each foot of the pedestrian alternates between

swinging and stance phase, the movements of the feet alternate
with each other. Therefore, the observation equations dy are also
different in different phases. When the left foot is in stance and the
right foot is swinging.

dy¼


dyv;L
dd

�
¼



Hv 03�15
Hd;L Hd;R

�
dX þ



nv;L
nd

�
(30)

When the right foot is in stance and the left foot is swinging.

y¼


dyv;R
dd

�
¼



Hv 03�15
Hd;L Hd;R

�
dX þ



nv;R
nd

�
(31)

When both left and right feet are in stance at the same time.

dy¼
24 dyv;L

dyv;R

dd

35¼
24 Hv 03�15

03�15

Hd;L

Hv

Hd;R

35dX þ
24 nv;L

nv;R

nd

35 (32)

where H and n represent the observation matrix and observation
noise, respectively. 0 represents zero matrix.

The observation is input into the extended Kalman filter, and the
filter gain is calculated. Then, the innovation is calculated, and the
innovation is substituted into the state estimation equation to
obtain the optimal estimation of the error. Finally, the optimal
estimation of the error is compensated for the state obtained by the
solution.
3.6. Altitude error correction based on ellipsoid constraint

Although the height error of each step is only centimeters.
However, altitude errors accumulate over time and step count,
eventually resulting in very significant altitude errors, especially
with low-cost sensors. Therefore, altitude error correction is very
meaningful and necessary for low-cost inertial sensors. The altitude
drift of each step of pedestrians is usually less than 3 cm, which is
significantly smaller than the height of stair (decimeters). When
the altitude change is less than the threshold, it is considered to be
drift and needs to be set to zero; when it is greater than the
threshold, it is considered to be a real altitude change and is not set
9

to zero. As shown in Fig. 9, the foot lies on a common ellipsoid
surface during the neighboring stance phases, the ellipsoid
constraint can be used to suppress the drift of altitude. The ellipsoid
constraint means that the height change in the same foot (position
of foot-mounted IMU) between two adjacent supports is less than a
threshold ε.

jhðtk�mÞ � hðtkÞj < ε (33)

where h is height. tk�m and tk are previous and current moment,
respectively. In two adjacent support phases, the feet lie on the
same ellipsoid. This constraint satisfies

1¼ðxeÞ2 þ ðyeÞ2
ðRE þ hÞ2

þ ðzeÞ2h
RE
�
1� f 2

	
þ h
i2 þ nec (34)

where f is the eccentricity of the Earth, and RE is the lateral radius of
curvature. RE and h are the radius of curvature and height at time
tk�m. nec is ellipsoid bound noise.

We convert Eq. (34) to the observation matrix form by first-
order Taylor expansion as follows:

Hec ¼
2401�6;

2xe

ðRE þhÞ2
;

2ye

ðRE þhÞ2
;

2ze�
RE
�
1� f 2

	
þh

	2; 01�6

35
(35)

Each foot obeys the ellipsoid constraints. Therefore, their
observation equations dyec are as follows:

dyec ¼


dyec;L
dyec;R

�
¼


Hec;L 03�15
01�15 Hec;R

�
dX þ



nec;L
nec;R

�
(36)

where Hec and nec represent the height observation matrix and
observation noise. dX represents the system state vectors of the
biped.

In extreme cases, this approach will fail and lead to height errors
when the user is walking on a very gentle slope or ramp. This
problem can be solved by ramp detection [55].
4. Experimentation and evaluation

We conduct well-designed and extensive experiments on
different scenarios to verify the performance of the proposed
method. The experimental setup is first introduced. Section B val-
idates the ZVI recognition accuracy. Section C validates the posi-
tioning accuracy of the proposed method in typical scenarios.
Section D compares the proposed method with other methods in a
complex indoor and outdoor environment.



Table 1
Performance parameters of IMUs module.

Name Parameter

Operating voltage/V 3.3e5
Output frequency/Hz 0.1e200
Range (A/g), (G/((�)$s�1)) A: ±2/4/8/16;

G: ±250/500/1000/2000
Acceleration stability/(g$s�1) 0.01
Angular velocity stability/((�)$s�1) 0.05

Table 2
Performance parameters of the ultrasonic module.

Name Parameter

Sound frequency/kHz 40
Receiving distance/cm 3e500
Receiving angle/(�) <90
Data fluctuation range/mm >2
Data sending frequency/Hz 50
Ranging accuracy/cm ±2
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4.1. Experimental setup

To alleviate the heading error, we install an IMU on each foot of
pedestrian, and obtain the foot distance measurement value
through the ultrasonic ranging module. The two monopod INS
subsystems are fused by equality constraints through the inter-foot
distance. As illustrated in Fig. 10, the proposed system consists of
two foot-mounted IMU modules (ICM-42605 [56]), a pair of ultra-
sound sensors and an Arduino development board for collecting
sensor data. The key performance parameters of the IMU module
and the ultrasound module are shown in Table 1 and Table 2,
respectively.

Inertial navigation is relative positioning. Its positioning error
depends not only on the sensor performance and positioning al-
gorithm, but also on the positioning time and travel distance.
Therefore, we adopt absolute trajectory error (ATE), distance-
normalized relative trajectory error (D-RTE), time-normalized
relative trajectory error (T-RTE) and position drift error (PDE) to
fully evaluate the performance of the proposed method. To explore
the localization error distribution, we introduce the positioning
error cumulative distribution function (CDF).

ATE is the major metric used to evaluate the indoor positioning
accuracy. ATE is the RMSE of the estimation error and reflects the
global consistency between the estimated trajectory and the true
trajectory, and the error grows with movement time and distance.

ATE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

t¼1
k xt � ~xt k

r
(37)

T-RTE is the RMSE of average error over a fixed time-interval
window span ti (ti ¼ 10 s in our case). It reflects the local consis-
tency between the estimated trajectory and the true trajectory.

T�RTE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

t¼1
k ðxtþti � xtÞ � ð~xtþti � ~xtÞ k

r
(38)

D-RTE is the RMSE of average error over a fixed travel distance
d (d ¼ 10 m in our case). It also reflects the local consistency be-
tween the estimated trajectory and the true trajectory.

D�RTE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

t¼1
k �xtþtd � xt

�� �bxtþtd � bxt� k
r

(39)

PDE reflects the final position (at timestamp m) drift over the
total traveled distance (traj: len).
Fig. 10. Data acquisit

10
PDE¼ k xm � ~xm k =traj: len (40)

where xt and ~xt represent the position in the ground truth trajec-
tory and in the predicted path at timestamp t, respectively. td is the
time required to travel a distance of d.
4.2. Accuracy of zero-velocity interval recognition

To verify the performance of the ZVI detection method, we
compare the proposed method with traditional fixed threshold-
based ZVDs methods (acceleration-moving variance detector
(MVD) [51], acceleration-magnitude detector (MAGD) [42], angular
rate energy detector (ARED) [52], and stance hypothesis optimal
detector (SHOE) [57]) and data-driven methods (CNN, LSTM, CNN-
LSTM). Table 3 compare these methods in typical movement modes
(forward walking, backward walking, running, lateral walking). As
shown in Table 3, for normal movement (forward walking), the
fixed threshold method and the data-driven method are similar,
and both achieve more than 95% recognition accuracy. For
abnormal movements (backward walking, running, lateral
walking), it is difficult for the fixed thresholdmethods tomaintain a
recognition accuracy of more than 90%, while the data-driven
methods still achieve a recognition accuracy of more than 90%.
For abnormal movements, the recognition accuracy of the data-
ion equipment.



Table 3
Comparison of zero-velocity recognition accuracy in different motion modes.

Methods Forward walking/% Backward walking/% Running/% Lateral walking/% Average/%

MVD 95.8 86.6 78.5 82.3 85.80
ARED 97.4 88.9 81.2 84.7 88.05
MAGD 96.3 87.7 85.3 89.2 89.63
SHOE 98.2 89.3 84.8 88.6 90.23
CNN 96.1 91.6 92.8 93.2 93.43
LSTM 98.3 95.1 93.6 96.3 95.83
CNN-LSTM 99.2 96.3 95.1 97.5 97.03
Proposed 99.5 98.1 97.9 98.7 98.55
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driven method is significantly better than that of the fixed
threshold method. As shown in Table 3, the average accuracy of
each ZVI detector in different motion modes are 85.80%, 88.05%,
89.63%, 90.23%, 93.43%, 95.83%, 97.03% and 98.55%, respectively.
The proposed method outperforms other compared methods on
four commonmotion patterns. All compared methods are based on
the sliding window for zero-velocity interval detection, only
knowing whether there is a zero-velocity point in the window, and
cannot specifically detect whether each observation is zero-
Table 4
Description of volunteers.

Subject Gender Age Height/cm Weight/kg

S1 M 27 171 68
S2 M 26 183 82
S3 F 23 155 45
S4 M 35 192 85
S5 F 25 161 54
S6 F 27 158 57
S7 M 31 175 70

Fig. 11. Accuracy comparison in typical scenari
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velocity. The proposed method provides more. The proposed
method provides more accurate and finer ZVI detection for each
observation.

In this work, we collect acceleration, angular velocity data, and
trained the zero-velocity interval detection model on the PC with
python language and PyTorch deep learning platform. U-Net is a
neural network with high efficiency and low computational over-
head. The zero-velocity interval detection model based on U-Net
can efficiently detect the zero-velocity interval in real time.
4.3. Positioning accuracy in typical scenarios

To more fully and systematically evaluate the proposed posi-
tioning method, we invited 7 volunteers to conduct experiments in
four typical indoor and outdoor positioning scenarios, including
offices, shopping malls, streets, and parking lots. Table 4 details 7
volunteers’ information. Volunteers randomly generated multiple
trajectories of 50e300 m in each scenario. The cumulative walking
distance of each scenario is approximately 5 km. Fig. 11 shows the
comparison of localization accuracy for the four scenarios in the
os: (a) ATE; (b) T-RTE; (c) D-RTE; (d) PDE.



Table 5
Accuracy comparison in typical scenarios.

Scenarios ATE/m T-RTE/m D-RTE/m PDE/%

Offices 0.98 0.050 0.039 0.97
Shopping malls 0.85 0.046 0.040 0.93
Streets 0.81 0.044 0.034 0.83
Parking lots 0.82 0.041 0.032 0.85
Average 0.86 0.045 0.036 0.89

Q. Wang, M. Fu, J. Wang et al. Defence Technology xxx (xxxx) xxx
form of CDF and boxplot. As shown in Fig. 11(a), the 80% ATE of
offices, shopping malls, streets and parking lots are 1.90 m, 1.87 m,
1.83 m and 1.84 m, respectively. As shown in Fig. 11(b), the 80% T-
RTE of offices, shopping malls, streets and parking lots are 0.092 m,
0.099 m, 0.091 m and 0.096 m, respectively. As shown in Fig. 11(c),
the 80% D-RTE of offices, shopping malls, streets and parking lots
are 0.074 m, 0.079 m, 0.075 m, and 0.072 m, respectively. As shown
in Fig. 11(d), the average PDE of offices, shopping malls, streets and
parking lots are 0.97%, 0.93%, 0.83% and 0.85%, respectively. The
localization performance of the four scenarios is very similar, which
proves that the proposed method has satisfactory universality and
robustness. Table 5 shows that the average ATE, T-RTE, D-RTE and
PDE of the proposed method in typical scenarios are 0.86 m,
0.045 m, 0.036 m, and 0.89%, respectively.
4.4. Comparison with other methods

To justify the superiority of our proposed bipedal INS method
based on equality constraint and ellipsoid constraint, we compared
our proposed method with the following foot-mounted INS.
Fig. 12. Preplanned com
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(1) The IEZ (INS þ EKF þ ZUPT) framework was proposed by
Foxlin et al. [34], which uses ZUPT method to estimate and
correct the drift error of the sensors, and then uses an
Extended Kalman Filter (EKF) to correct the solution results
of the INS.

(2) Wagstaff et al. [31] trained an Support Vector Machine (SVM)
to classify pedestrian’s movement modes, adaptively upda-
ted the ZVI detector threshold and trained an LSTM-based
learning strategy to directly classify pedestrians’ state (sta-
tionary or moving).

Fig. 12 compares our proposed method and abovementioned
methods in a comprehensive environment, including multiple in-
door and outdoor scenes. The preplanned comprehensive path is
up to 3.3 km, covering typical scenarios, such as cover football
fields, indoor passages, round flower beds, streets, outdoor stairs
and parking lots. In the comparative experiment, we invited 5
volunteers, and each volunteer walked along the planned path 3
times.

The experimental results are shown in Fig. 13. The yellow line of
the proposed method is steeper than the other plots, which in-
dicates that the overall error of our proposed method are signifi-
cantly lower than those of the compared methods. As shown in
Fig. 13(a), 80% ATE of our proposedmethod is 3.51m, while those of
Wagstaff’s method and IEZ are 5.47 m and 8.89 m, respectively. As
shown in Fig. 13(b), 80% T-RTE of our proposed method is 0.10 m,
while those of Wagstaff’s method and IEZ are 0.15 m and 0.22 m,
respectively. As shown in Fig. 13(c), 80% D-RTE of our proposed
method is 0.06 m, while those of Wagstaff’s method and IEZ are
0.10 m and 0.16 m, respectively. Table 6 demonstrates that our
proposed method achieves the best results in terms of ATE, T-RTE,
prehensive paths.



Fig. 13. Accuracy comparison of different methods: (a) ATE; (b) T-RTE; (c) D-RTE. (d) PDE.

Table 6
Accuracy comparison of different methods.

Scenarios ATE/m T-RTE/m D-RTE/m PDE/%

IEZ 3.88 0.11 0.07 2.33
Wagstaff et al. 2.61 0.07 0.04 1.41
Proposed 1.77 0.05 0.03 0.83
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D-RTE and PDE metrics. As shown in Table 6, the proposed method
improves the average ATE by 32.18% and 54.38% over Wagstaff’s
method and IEZ, respectively. Wagstaff’s method adaptively adjust
the zero-velocity detection threshold according to the motion
mode to obtain more accurate zero-velocity detection and posi-
tioning accuracy. Wagstaff’s method and IEZ are based on the
sliding window for zero-velocity interval detection, only knowing
whether a certain window is zero-velocity, and cannot specifically
detect whether each observation is zero-velocity. The proposed
method provides zero-velocity judgment for each observation,
while using equality constraints and ellipsoid constraints to effec-
tively suppress positioning errors.
5. Conclusions

The main issues of inertial navigation are that the observation
contains noise, the pedestrian's complex and changeable move-
ment patterns lead to inaccurate ZVI detection, and the heading
and elevation error are difficult to suppress. To conquer these is-
sues, we propose a pedestrian inertial navigation method named
free-walking that consists of a sensor denoising module, a sample-
level ZVI detection module, and a dual-foot INS module based on
intra-foot ranging. The proposed method not only improves the
robustness of ZVI detection in complex motion modes, but also
provides sample-level ZVI detection. We proposed a bipedal INS
13
combined with inter-foot ranging. Based on bipedal INS, we
establish equation constraints and ellipsoid constraint models, and
integrate the bipedal distance as an observation into the bipedal
system through EKF. The method can effectively suppress heading
and altitude error, and achieve long-term accurate and stable
pedestrian positioning. The proposed method does not rely on any
additional infrastructure and historical training data to achieve
indoor localization. Therefore, the proposed method is not only
easy to deploy in arbitrary unfamiliar and unprepared environ-
ments, but also easy to integrate with other localization algorithms
or IoTs systems.
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