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A Deep Learning Control Strategy of IMU-based
Joint Angle Estimation for Hip Power-Assisted

Swimming Exoskeleton
Longwen Chen, Dean Hu∗

Abstract— Wearable exoskeleton techniques are becoming mature
and wildly used in many areas. However, the biggest challenge lies
in that the control system should recognize and follow the wearer’s
motion correctly and quickly. In this study, we propose a deep
learning control strategy utilizing inertial measurement units (IMU)
for hip power-assisted swimming exoskeleton. The control strategy
includes two steps: Step 1, the swimming stroke is recognized
by a deep convolutional neural and bidirectional long short-term
memory network (DCNN-BiLSTM); Step 2, the hip joint angles are
estimated with BiLSTM network belonging to the recognized motion
to predict the hip trajectory. The dataset of motion recognition
and estimation of four swimming strokes are collected by placing
IMUs on swimmers’ back and thighs. We conduct offline and online
testing of control strategy for accuracy and robustness validation.
During offline testing, we achieve an accuracy more than 96% of motion recognition and root mean square error (RMSE)
less than 1.2° of hip joint angle estimation, outperforming 2.76% of accuracy and 0.09° of RMSE compared with those of
ELM or CNN-GRU. During online testing, the pre-trained networks are transplanted into a Raspberry Pi 4B and achieve
8.47ms for conducting one motion recognition and 6.72ms for one hip joint angle estimation on average, which are far less
than 300ms of delayed sensations between the action of exoskeleton and human, while keeping a satisfying recognition
accuracy as well. The experiment results show that the accuracy and robustness of proposed control strategy are stable
and feasible for the application to exoskeletons.

Index Terms— Motion recognition; Motion trajectory estimation; Deep learning; Hip power-assisted swimming exoskele-
ton; Control strategy.

I. INTRODUCTION

WEARABLE exoskeletons have been applied to many
fields such as power assistance, rehabilitation training,

agriculture, military [1]–[4] etc. Power-assisted exoskeletons
can repeatedly and correctly lead the wearer’s limbs through a
pre-defined motion trajectory and cut down the joint pressure
and energy cost of the wearer [5]. They can even help the
wearer conduct tasks far beyond their ability. Swimming, as
one of the most popular forms of exercise among people, is
acknowledged as an excellent but tiring aerobic exercise. Four
competitive swimming stroke (i.e. backstroke, breaststroke,
butterfly, front crawl) all depend on thigh strength, which
mainly generates from hip joint of each leg, to provide the
propelling force of the swimmer [6]. With the help of hip
power-assisted exoskeletons, the swimmer’s hip fatigue can
be greatly relieved.

The most difficult technique of power-assisted exoskeleton
lies in that it should be able to recognize and follow the
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wearer’s motion and trajectory while maintaining a satisfying
accuracy and robustness. Some phase detection based control
strategies have been proposed and applied on exoskeletons.
Our previous work [7] presents an underwater power-assisted
device controlled by the detected frequency of forearm swings,
which is collected by an IMU on the wearer’s forearm, to
adjust the propelling force generated by two thrusters in
order to produce power assistance for the wearer. Wang et
al. [8] presents a swimming assistance soft exoskeleton based
on breaststroke motions. They applied state transition based
phase detection as the control strategy of their exoskeleton
to recognize three motion phases (glide, recovery and sweep)
during breaststroke. Yu et al. [9] presented a torque tracking
strategy for squatting assistance control system applied on a
lower limb exoskeleton. Their control strategy detects lifting
phase during squatting with inertial measurement units (IMUs)
and generates a calculated assistive profile to the wearer’s hip
joint. Natali et al. [10] shows a control strategy that using the
signal output of the shoe insole to determine three gait phases
(early stance, mid stance and swing) in order to realize motion
recognition of proposed soft assistive lower limb exoskeleton.
Phase detection based control strategy can overcome the above

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3264252

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on May 04,2023 at 08:05:28 UTC from IEEE Xplore.  Restrictions apply. 



2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

mentioned difficulty. However, the major limitation lies in that
it can only recognize one specific motion. During swimming,
for example, the swimming stroke of the swimmer can be
switched randomly. Phase detection based control strategy
cannot meet the requirement of user’s motion switches.

More and more studies related to motion recognition or
estimation start to apply machine/deep learning networks
(ML/DL) to conduct corresponding tasks. The continuous
videos, pictures, IMU or EMG signals are used as input of
ML/DL networks to recognize/predict human motions [1],
[12], [13] For example, our previous work [14] presents a
swimming stroke recognition system based on two IMUs
placed on the lumbar and back of the swimmer, utilizing
a deep convolutional neural and bidirectional long short-
term memory network (DCNN-BiLSTM). Vijay et al. has
a research on human activity recognition such as walking
activities recognition [15]–[18], gaits trajectories associated
with different joint angle trajectories, walking instance and
speeds [19]–[21], upper limb exercises of post-stroke reha-
bilitation patients [22], and fall detection [23] with hybrid
DL techniques such as extreme learning machine (ELM) or
CNN-RNN (e.g. inception based CNN-GRU) networks, and
receives impressing and convincing experiment results. Yijian
Chen et al. [24] conducts an IMU-based lower limb motion
trajectory estimation with a graph convolution network. Siyu
Chen et al. [25] uses a single IMU for real-time walking gait
estimation of construction workers. Sung et al. [26] utilizing a
single IMU to predict multi-joint angles during walking based
on LSTM network, etc. ML/DL based control strategy can
greatly solve the above mentioned limitation. Ren et al. [27]
proposed a deep learning based control strategy on an upper
limb rehabilitation exoskeleton robot for motion prediction
in order to produce torque assistance for the wearer. Zhu
et al. [28] presents an IMU based motion recognition for
soft exoskeleton through DNN for locomotion identification to
provide different assistance mode for the user. Shinnosuke et
al. [29] places motion sensors on the wearer’s torso and legs to
estimate his/her motion to enable the powered exoskeleton to
assist with the estimated motion through KNN. However, not
only above mentioned studies, but also other studies related
to wearable exoskeletons in [30]–[35] all focus on the land
activities like walking, running or gesture recognition of the
user. Control strategies of power-assisted exoskeleton aiming
at assisting underwater activities such as swimming are hardly
to discover.

Therefore, based on our previous work, in this study, we
propose a DL control strategy of IMU-based joint angle
estimation for hip power-assisted swimming exoskeleton. To
realize the proposed strategy, the lumbar and each thigh of
the swimmer are placed with one IMU respectively for real-
time kinematic data collection. The acceleration and angular
acceleration collected from the lumbar IMU are used as the
dataset for motion recognition, while the hip joint angles
calculated from quaternions of each hip IMU are used to
conduct motion estimation. The major contributions of this
study are as follows:
(1). A versatile kinematic dataset of four swimming strokes
(collected by three IMUs and contains acceleration and angular

acceleration of the lumbar, joint angles of hips) of three well-
trained swimmers is established;
(2). A DCNN-BiLSTM classification network for swimming
stroke recognition, and four BiLSTM regression networks of
four swimming strokes for hip angle estimation are proposed,
and the performance of proposed DL networks conducting
corresponding task in offline testing are proved to be accept-
able, outperforming 2.76% of accuracy and 0.09° of RMSE
compared with those of ELM or CNN-GRU;
(3). The proposed DL control strategy is transplanted into
a Raspberry Pi 4B for online performance evaluation, and
achieves averagely 8.47ms for one motion recognition while
keeping a satisfying recognition accuracy, and 6.72ms on
average for one hip joint angle estimation, which are far
less than 300ms of delayed sensations between the action of
exoskeleton and human.

The innovations of this work mainly lie in the application
field and platform of motion recognition and estimation uti-
lizing DL networks. When applying our control strategy to
underwater power-assisted exoskeletons, conducting motion
recognition and estimation is helpful for the user’s real-time
motion detection and following for assistance control, while
running on Raspberry Pi indicates that the exoskeleton does
not need to be connected to a PC, which helps reduce the
size of the exoskeleton without limiting the motion range of
the user. Furthermore, the hardware of our control strategy
containing only three IMUs, a Raspberry Pi and a battery
makes it easy to be applied to exoskeletons. Finally, our study
contributes to the research of underwater human motion and
underwater power-assisted exoskeleton in some ways.

The structure of this paper is listed as follows: Section II il-
lustrates the experiment of data collection and data preprocess
of this study; Section III explains the DL control strategy in
detail, including the overview of control strategy, related DL
theory and DL networks applied for motion recognition and
estimation; Section IV presents the offline experiment results
of swimming stroke recognition and hip motion estimation
utilizing proposed DL methods, compares the corresponding
results with other DL methods, and provides online experiment
results of the robustness of conducting motion recognition
and estimation; Section V demonstrates the discussion and
conclusion of our work.

II. DATA ACQUISITION AND PREPROCESS

A. Experiment for Data Acquisition

Three well-trained swimmers in Hunan Provincial Swim-
ming Team (Changsha, Hunan Province, China) are invited
for our data acquisition experiments. All of them are informed
with related matters needing attention and are voluntarily
participate in the experiment. Tab.I illustrates the basic in-
formation of our invited subjects.

Three IMUs (Xsens DOT, Netherlands) are placed on the
lumbar and thighs of each subject according to the ISB
recommendation of joint coordinate definitions [36], [37].
Each sensor has a size of 12×24×5mm3 and a weight of
7g only. Before the data collection, each IMU’s axes are
calibrated by performing static calibration on standing pose
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TABLE I: The basic information of swimmers.

Subject Gender Age Height Weight

1 Male 25 1.81m 78kg

2 Female 28 1.67m 51kg

3 Male 22 1.71m 74kg

Fig. 1: The placement and coordinate definition of each IMU.

(i.e. A pose). The experiment takes place in a standard 50m
swimming pool. IMUs are wirelessly connected to a cellphone
and are decided the beginning and ending of data collection
by a Xsens DOT APP. IMUs are attached to the swimmer’s
body by magic tapes to prevent fall off, just as shown in Fig.
1 below.

During data acquisition experiment shown in Fig. 2, all
the subjects are asked to swim in the order of backstroke,
breaststroke, butterfly and front crawl for 50m respectively
for 4 groups at their 70% effect. The interval between each
group for a short break is 3 mins and that of each stroke in
a group is 1 min in order to prevent fatigue of the swimmers.
The sampling frequency of IMUs are 120Hz, and the collected
data can be recorded and stored in the designed motion order
in the memory card of sensor for offline data processing. The
computer for offline training and testing is equipped with Intel
i5-12490F CPU, RTX 6050 GPU and 16GB RAM. All the DL
networks used in this study are coded based on Pytorch.

B. Data Preprocess
The collected data are handled by a Kalman filtering

algorithm to cut down nonlinear noise. Due to the sample
frequency 120Hz during data acquisition, a sliding window
with length of 120ms and overlap with 60ms shown in Fig. 3
below is applied to segment the collected data before being set
to conduct motion recognition or estimation in order to speed
up the training speed.

For motion recognition, similar to our previous work, “one-
hot encoding” method, which can be explained in Tab. II
below, is utilized for data labeling during preprocess. Convo-
lutional layer can deal with automatically learning and sorting

Fig. 2: The data acquisition experiment. For each swimmer,
each motion group is conducted in the order of backstroke,
breaststroke, butterfly and front crawl for 50m respectively. In
total 4 motion groups are taken place on each swimmer.

Fig. 3: The definition of sliding window.

features from raw data [38], [39]. Therefore, the segmented
lumbar IMU data are used as the input of DCNN-BiLSTM
directly without normalized to automatically conduct feature
extraction. Data belonging to the same motion label are
concatenated in order to enlarge our training set.

Euler angles calculated by the quaternion of IMUs placed
on the thigh can be used to express the angles of freedom
belonging to one joint. According to the joint coordination
shown in Fig. 1, pitch angles can be chosen to directly reflect
the hip joint angles, which is calculated by Eq. (1)

ϕ = arctan
2q2q3 + 2q0q1

q20 − q21 − q22 + q23
(1)

where q0, q1, q2, q3 refer to the corresponding quaternions. All
the hip joint angles belonging to related swimming strokes
are normalized by Eq. (2) before being used as the input of
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TABLE II: Label information and motion.

Motion Encode

Backstroke [1 0 0 0]

Breaststroke [0 1 0 0]

Butterfly [0 0 1 0]

Front Crawl [0 0 0 1]

BiLSTM regression network

θlf−nor =
θlf− − θIf−mean

θIf−std

θrf−nor =
θrf − θrf−mean

θrf−std

(2)

where θIf and θrf represent the raw data of hip angle, θIf nor
and θrf−nor indicate the normalized hip joint angles, θmean
and θstd mean the average and standard deviation of each leg
of corresponding swimming stroke respectively.

III. DEEP LEARNING CONTROL STRATEGY

A. Control Strategy Overview
Fig. 4 presents the overview of proposed control strategy.

Currently, the control strategy can be concluded as two steps:
Step 1: Performing swimming stroke recognition with acceler-
ation and angular velocity of lumbar utilizing DCNN-BiLSTM
classification network;
Step 2: According to the swimming stroke identified by
Step 1, estimating the hip joint angles in advance using
pitch calculated from two thigh IMUs by loading BiLSTM
regression network that belongs to the identified motion.

From Fig. 4, after data preprocessing, the swimmer’s cur-
rent swimming stroke can be defined by the piecewise se-
quence of mt =

(
a1t, θ̇1t

)
, where alt and θ̇lt refer to

the acceleration and angular acceleration of the lumbar at
time t. Sequential motion data for motion recognition Mt is
combined of Mt = (mt,mt+1, . . . ,mt+119). The normalized
hip joint angle piecewise sequence can be used to define
the swimmer’s hip motion of current swimming stroke by
θt = (θlh, θrh), where θlh and θrh indicate the normalized
hip joint angle of left and right hip at time t. Then sequen-
tial motion data for hip trajectory estimation At consists of
At = (θt, θt+1, . . . , θt+119). Algorithm 1 below describes the
process of proposed control strategy. Through Step 1 and 2 , a
pre-defined hip motion trajectory of the recognized swimming
stroke is generated to guide the lower limbs of the wearer
through the power assistance facility.

B. Methods
CNN is usually adapted in DL network to conduct feature

extraction on input data automatically. DCNN consists of
several CNN layers. The input data are transferred to kernel
with different size in a CNN layer. For example, a size of
3× 1 CNN kernel shown in Fig. 5, which is optimized from
the input data, mainly play a role of a supervised training
process in order to maximize the activation level. Eq. (3) below

Algorithm 1 The process of proposed control strategy

Load pre-trained DCNN-BiLSTM and four BiLSTM networks; Acquire
sequential motion data of the swimmer Mt and At;

motion = DCNN −BiLSTM(Mt);

if motion = backstroke :

At estimated = BiLSTM backstroke(At);

else if motion = backstroke :

At estimated = BiLSTM breaststroke(At);

else if motion = butterfly :

At estimated = BiLSTM butterfly(At);

else if motion = frontcrawl :

At estimated = BiLSTM frontcrawl(At);

end if

The pre-defined hip motion trajectory is:

Trajectory = (A1 estimated, . . . , At estimated)

return Trajectory

describes the function of CNN kernels, where aij indicates the
j th sample of layer 1 feature map, f refers to the Sigmoid
function, wm,n means a H × K convolution kernel weight
matrix, b illustrates the bias of layer 1 feature map, and
xi+m,j+n shows the activation value of the upper neurons
connected to the neuron (i, j).

ai,j = f

(
H∑

m=1

K∑
n=1

Wm,n ·Xi+m,j+n + b

)
(3)

A CNN layer often cooperates with a max-pooling layer for
reducing feature dimensionality, preventing feature distortions
and effectively identifying target labels. The output of max-
pooling layer can be illustrated by Eq. (4) below, where R
means the size of max-pooling layer and T is the correspond-
ing pooling stride.

pi,j = max
r∈R

(ai×T+r,j) (4)

Some gated RNN methods such as GRU and LSTM are
proposed to overcome the gradient vanishing or explosion
of RNN dealing with long term study situations. GRU has
been proved to have fewer parameters and shorter processing
time. However, when handling large-scale datasets, LSTM
achieves a better performance than GRU, which proceeds
sequential information by memory cells that store and output
information to learn long time scales temporal relationships
[40]. BiLSTM, combined of bidirectional RNN and LSTM,
considers information from both past and future, which can
be seen in Fig. 6 below. Eq. (5) explains the information flow
of a BiLSTM cell, where σ and g mean the Sigmoid function
and Softmax function singly, c̃[t],Γu,Γf ,Γo, c

[t] represent the
output of input modulation gate, update gate, forget gate,
output gate and cell state respectively, h[t] refers to the output
of single BiLSTM cell calculated from the old cell state d[t]

and the future cell state d[t+1] independently, Wc,Wu,Wf and
Wo are the corresponding coefficient matrix, bc, bu, bf and bo
are the relevant bias vectors.
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Fig. 4: The overview of control strategy.

Fig. 5: The function of CNN filter.

Fig. 6: The structure of BiLSTM. It can be seen that the output of each BiLSTM cell takes both the cell state c[t] and the
future cell state c[t+1] into consideration.



c̃[t] = tanh
(
Wc

[
a[t−1], x[t]

]
+ bc

)
Γu = σ

(
Wu

[
a[t−1], x[t]

]
+ bu

)
Γf = σ

(
Wf

[
a[t−1], x[t]

]
+ bf

)
Γo = σ

(
Wo

[
a[t−1], x[t]

]
+ bo

)
c[t] = Γf ⊗ c[t−1] + Γu ⊗ c̃[t]

H [t] = Γo ⊗ tanh
(
c[t], c[t+1]

)
(5)

C. Motion Recognition

Fig. 7 illustrates the structure of DCNN-BiLSTM classifica-
tion network, which combines of two groups of CNN and max-
pooling layer, two BiLSTM layers and two full connection
layers (FC). The sequence input of the network has a size
of 6×120. The kernel size of convolutional layer is 1×, and
the size of max-pooling layer is 1×2 with a stride of 1×2.
The number of hidden neurons of each BiLSTM layer is
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16. A dropout layer exists between two FC layers and the
possibility is set to 0.4 in order to prevent overfitting. We
choose SGD optimizer with initial learning rate of 0.01 as
the gradient descent method. The max epoch value is set
to 50 during training. The activation function of DCNN-
BiLSTM is Softmax. For more details like the cost function,
the adjustment of hyper-parameters etc. of DCNN-BiLSTM,
please refer to our previous work [14]. The performance of
the classification network can be evaluated by Eq. (6), where
TP, FP, TN and FN refer to true positive, false positive, true
negative and false negative independently.

accuracy =
TP + FN

TN + TP + FP + FN

precision =
TP

TP + FP

recall =
TP

TP + FN

(6)

To explain the forward propagation of proposed DCNN-
BiLSTM, firstly, the feature matrix pl from CNN and max-
pooling layer is calculated according to Eq. (3) and Eq. (4).
Then, the output of BiLSTM layer hl =

[
h[1], . . . , h[l]

]
is

generated from pl according to Eq. (5). After that, the full
connected (FC) layers proceed the BiLSTM output by Eq.
(7) below, where wl−1

ji and bl−1i are the weight matrix and
bias term between the ith node of layer l − 1 and the j th
node of layer l respectively. Finally, the output of classification
layer, which is calculated by Softmax function, generates the
classification results according to the output of FC layers f l

and Eq. (8)

f l =
∑
j

wl−1
ji

(
σ
(
h
[l−1]
i

)
+ bl−1i

)
(7)

ŷ
(i)
j = arg max

j∈i

1

1 + exp
(
−W (l)T f l

) (8)

where ŷ
(i)
j means the predicted possibility for the sample j

belonging to class i. The cost function J of DCNN-BiLSTM
is illustrated in Eq. (9)

J =
1

M

M∑
i=1

L
(
ŷ
(i)
j , y

(i)
j

)
(9)

where M refers to minibatch size, y(i)j indicates the true
possibility for the sample j belonging to class i, L is cross
entropy lost function in the form of Eq. (10).

L = − 1

M

M∑
j=1

N∑
i=1

y
(i)
j log ŷ

(i)
j (10)

D. Motion Estimation
Fig. 8 illustrates the architecture of BiLSTM regression

network in this work, which is made up of two BiLSTM
layers, two FC layers, a dropout layer and a regression layer.
The sequence layer size here becomes 2×120. Each BiLSTM
layer has 8 hidden neurons. The gradient descent with Adam
optimizer is chosen with an initial learning rate of 0.01, and
the max epoch is 40 during training. The dropout possibility

of the dropout layer between two FC layers is set to 0.2
through multiple attempts. The weight decay which is used
for L2-Regularization to prevent network overfitting [41] of
backstroke, breaststroke, butterfly and front crawl network are
adapted to 0.014, 0.034, 0.01 and 0.026 respectively according
to the results of several trails. The performance of BiLSTM
conducting hip joint angle estimation can be evaluated by
root mean square error (RMSE) and association coefficient
(R) between the actual and estimated values, just as expressed
by Eq. (11)

RMSE =

√√√√ 1

N

N∑
i=1

(xi − yi)2

R = 1−
∑N

i=1 (xi − yi)2∑N
i=1

(
xi − X̂i

)2
(11)

where N refers to the number of input sequence data, xi, yi
indicate the unnormalized input and predicted values respec-
tively.

The forward propagation of proposed BiLSTM regression
network can be explained as follows. The output of BiLSTM
layer is calculated from sequence input by Eq. (5) and trans-
ferred to full connected (FC) layers by Eq. (7). The output
of regression layer, which is calculated by hyperbolic tangent
function (tanh), generates the estimated hip joint angles. The
mean squared error function (MSELoss) described in Eq. (12)
is chosen as the lost function.

L = {I1, . . . , In} , li = (xi − yi)2 (12)

IV. RESULTS

A. Offline Testing
As mentioned in Section II.A that each subject generates

four groups of data of four swimming strokes. We randomly
select one group data of each motion as the test set and the
remaining data as the training set during offline training and
testing. The major concern of offline testing is the accuracy of
motion recognition and estimation of DCNN-BiLSTM classi-
fication network and four BiLSTM regression networks. The
motion recognition and estimation are conducted separately
during the offline testing.

1) Motion Recognition: To evaluate the performance of
proposed DCNN-BiLSTM, some hybrid DL networks such
as ELM and CNN-GRU used by Vijay et al. [15], [17] are
also utilized here for comparison experiments. Fig. 9(a)-(c)
present the confusion matrixes of test set utilizing DCNN-
BiLSTM, CNN-GRU and ELM, achieving overall recognition
accuracy of 96.53%, 94.49% and 93.77% respectively. From
the confusion matrixes of three DL methods in Fig. 9 that
some breaststroke motions are tend to be misidentified to
butterfly, and this may be caused by the similarity lumbar
motion of breaststroke and butterfly [42]. The recognition
report of three DL method can be seen in Tab. III (a)-(c)
below. From Tab. III , three chosen DL method all achieve
a satisfying result of backstroke and front crawl recognition.
The backstroke recognition receives an accuracy of more
than 98.99%, a precision of more than 97% and a recall of
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Fig. 7: The structure of DCNN-BiLSTM classification network.

Fig. 8: The structure of BiLSTM regression network.

more than 98.25%, while the corresponding results of front
crawl recognition are more than 97.68%, 94.44% and 92.44%
respectively. However, our proposed DCNN-BiLSTM greatly
outperforms during breaststroke and butterfly recognition. As
can be seen in Tab. III , except for the recall of butterfly,
DCNN-BiLSTM obtains the best results among three DL
methods. Considering the weakness of ELM and CNN-GRU,
conclusion can be drawn that the proposed DCNN-BiLSTM
is capable of conducting swimming stroke recognition in our
control strategy.

2) Motion Estimation: Fig. 10(a)-(d) present the actual and
estimated hip joint angles and errors between them of back-
stroke, breaststroke, butterfly and front crawl of three subjects
respectively utilizing proposed BiLSTM regression network.
Data that unrelated to the recognized motion (i.e. the swimmer
getting into the swimming pool from the bank) at the begin-
ning and the end of test set are not presented in Fig. 10. From
the curves shown in Fig. 10, we discover that the variation
tendency and values of actual hip joint angles can keep the
pace with those of the estimated hip joint angles. However, it
is obviously seen that the errors between actual and estimated
angles of butterfly shown in Fig. 10(c) are larger compared
with other three swimming strokes. This may because that leg
motions of each butterfly cycle are more complex to conduct
that during one cycle, the swimmer needs to finish two leg
kicks, which raises the motion requirement for swimmers and
restricts the quality of collected data.

A GRU regression network is also adapted here for com-
parison experiment. The motion estimation performance uti-
lizing BiLSTM and GRU are listed in Tab. IV (a)-(b) below
independently. The overall RMSE of BiLSTM and GRU are
0.9297◦ and 1.0148◦, and BiLSTM outperforms about 0.09◦

in RMSE than GRU. It is seen from Tab. IV that BiLSTM
achieves a better result than GRU among most of the items
in motion estimation report. The relatively worse RMSE and
R of butterfly shown in Tab. IV below validate the conclusion
we draw from Fig. 10 again. Generally speaking, we have
achieved satisfying RMSE less than 1.2◦ and R more than
0.93, which prove that the proposed BiLSTM regression
network of four swimming strokes can predict the hip motion
trajectory well.

B. Online Testing

1) Online Testing Setup: In online testing, the pre-trained
DCNN-BiLSTM classification network and four BiLSTM
regression networks are transplanted into a Raspberry Pi 4B
according to Algorithm 1 to realize our control strategy. Be-
cause we have verified the reliability of proposed DL methods,
considering the complexity of conducting online testing, we
do not design comparison experiments here. We invite subject
2 again to participate our online testing experiment and swim
in the order of backstroke, breaststroke, butterfly and front
crawl for 50m independently. A battery, a lumbar IMU and
Raspberry Pi 4B are placed in a waterproof box on the
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(a) DCNN-BiLSTM

(b) CNN-GRU

(c) ELM

Fig. 9: The confusion matrix of swimming stroke recognition
utilizing (a). DCNN-BiLSTM; (b). CNN-GRU and (c). ELM.

swimmer’s waist, while other two IMUs are placed on the
swimmer’s thighs.

Both the accuracy and robustness are the key point in
online testing. The sliding window length and overlap of four

TABLE III

(a) The motion recognition report utilizing DCNN-BiLSTM.

Motion Backstroke Breaststroke Butterfly Front crawl

Accuracy 0.9899 0.9754 0.9697 0.9841

Precision 0.9767 0.9837 0.9128 0.9630

Recall 0.9825 0.9282 0.9632 0.9689

(b) The motion recognition report utilizing CNN-GRU.

Motion Backstroke Breaststroke Butterfly Front crawl

Accuracy 0.9899 0.9681 0.9565 0.9768

Precision 0.9709 0.9674 0.8604 0.9815

Recall 0.9881 0.9175 0.9668 0.9244

(c) The motion recognition report utilizing ELM.

Motion Backstroke Breaststroke Butterfly Front crawl

Accuracy 0.9928 0.9522 0.9551 0.9812

Precision 0.9826 0.9837 0.8488 0.9444

Recall 0.9883 0.8578 0.9669 0.9745

TABLE IV

(a) The motion estimation report utilizing BiLSTM.

Subject

Motion Backstroke Breaststroke Butterfly Front crawl

RMSE R RMSE R RMSE R RMSE R

1 0.7743◦ 0.9646 0.9012◦ 0.9610 1.0791◦ 0.9484 0.8943° 0.9522

2 0.9864◦ 0.9307 0.8561◦ 0.9728 1.1245◦ 0.9629 0.8612◦ 0.9706

3 0.8721◦ 0.9511 0.8662◦ 0.9688 0.9934◦ 0.9660 0.8759◦ 0.9723

(b) The motion estimation report utilizing GRU.

Motion

Subject Backstroke Breaststroke Butterfly Front crawl

RMSE R RMSE R RMSE R RMSE R

1 0.8943◦ 0.9553 0.9827◦ 0.9489 1.1032◦ 0.9317 0.8543◦ 0.9627

2 1.0129◦ 0.9281 1.2188◦ 0.9412 1.1178◦ 0.9697 0.9986◦ 0.9510

3 0.8688◦ 0.9536 0.9739◦ 0.9501 1.1008◦ 0.9575 0.8934◦ 0.9639

BiLSTM becomes 120 and 110 timestamps in order to have a
more detailed estimation of the swimmer’s hip motion, while
those of DCNN-BiLSTM are not changed. According to the
sampling frequency (120Hz) of IMU, one classification result
and six corresponding regression results are generated within
one second during online testing.

2) Online Testing Results: Fig. 11(a)-(c) below present the
related results of online testing experiments. Through Fig.
11(a), we discover that the overall online swimming stroke
recognition accuracy is good. However, the recognition ac-
curacy results of breaststroke and butterfly are needed to be
improved. Besides, we find that identification errors tend to
take place in the data period belonging to motion transitions
like the end of butterfly and the beginning of front crawl.
Because the swimmer is asked to continuously swim in one
swimming stroke for 50m, the motions of this time period
may be turning back or gliding for the preparation of the next
swimming stroke, which are not recorded and labeled during
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(a) Backstroke hip joint angle estimation.

(b) Breaststroke hip joint angle estimation.

Fig. 10: The actual and estimated hip joint angles and errors between them of (a). backstroke, (b). breaststroke, (c). butterfly
and (d). front crawl of three subjects, where X labels indicate the timestamps and Y labels indicate the values of predicted
and actual hip joint angles and the difference between them.
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(c) Butterfly hip joint angle estimation.

(d) Front crawl hip joint angle estimation.

Fig. 10: The actual and estimated hip joint angles and errors between them of (a). backstroke, (b). breaststroke, (c). butterfly
and (d). front crawl of three subjects, where X labels indicate the timestamps and Y labels indicate the values of predicted
and actual hip joint angles and the difference between them.
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data acquisition and offline testing.
From Fig. 11(b)-(c), it can be seen that the performance

of online motion estimation basically keeps the level of that
in offline testing. In Fig. 11(b), we can find that the errors
of left hip during butterfly is larger than those during other
swimming strokes. The causes can be various, such as the
wrong identification of butterfly motions just as illustrated at
about 580-820 timestamps in Fig. 11(a), the IMU location
deviation due to the water flow, or the nonstandard left leg
butterfly kicks of the swimmer etc. However, it seems that the
occasional misidentifications of other three swimming strokes
do not have too much bad influence on the following hip
motion estimation according to the errors shown in Fig. 11(b)-
(c). Generally speaking, the online hip motion estimation also
achieves an acceptable performance.

It is known that the user will produce delayed sensations
if the time interval between the action of exoskeleton and
human is more than 300ms [43]. For the robustness of DCNN-
BiLSTM and BiLSTM, it takes average 8.47ms for DCNN-
BiLSTM to take a motion recognition, while average 6.72ms
is needed for BiLSTM to proceed an angle estimation, which
are much less than the length of sliding window (120ms) and
required time interval.

V. DISCUSSION AND CONCLUSION

In this study, considering the mode of lower limb generating
propelling force in four swimming strokes, we propose a
DL control strategy based on our previous work aiming at
hip power-assisted swimming exoskeleton utilizing IMUs.
According to the biggest challenge of exoskeleton control,
our control strategy greatly overcomes the limitations of
phase detected control strategy, and make contributions to
the underwater human motion and underwater power-assisted
wearable exoskeleton research.

It has been proved through our experiment results that
the control strategy can recognize and estimate the wearer’s
motion with satisfying accuracy and robustness, and can cope
with the ruleless motion switches of the wearer. The current
problem is also clear that the algorithm performance is needed
to be improved when implemented on butterfly mode. As
we mentioned before that, the mechanism of lumbar motion
of breaststroke and butterfly is similar, which contributes
to the not that satisfying recognition accuracy of butterfly.
Meanwhile, the leg motion of one butterfly cycle are more
complex for swimmers to conduct, and recognizing butterfly as
breaststroke lead to the relatively large error between estimated
and real hip joint angles. Generally speaking, the advantages
of proposed control strategy are concluded as follows:
(1) When applied to exoskeletons, the proposed control strat-
egy is able to correctly recognize and estimate the wearer’s
motion with a quick response, so that the user will not feel a
time delay of the action between him/her and the exoskeleton;
(2) The hardware of proposed control strategy is only com-
bined of a battery, a Raspberry Pi 4B and three IMUs,
making it low-cost, low-weight, high-sensitivity and easy to
be applied;
(3) The proposed control strategy can be used to exoskeleton
in any field such as rehabilitation exoskeletons as long as

acquiring a dataset of target motions (i.e. easy for usage
transferring);
(4) The random and discontinuous errors of swimming stroke
recognition do not show obvious effect on the hip joint angle
estimation of the swimmer (i.e. strong fault tolerance of
control strategy).

However, according to the experiment results, our control
strategy still has the following limitations:
(1) The butterfly recognition performance of DCNN-BiLSTM
are needed to be optimized. Another IMU that placed at the
back, or the head of the swimmer is needed to generate more
data feature for motion recognition performance improvement.
Also, the number of subject participating our data collection
experiment is too small. Data of swimmers of different ages,
genders and swimming levels are needed to enlarge the fea-
tures of our dataset;
(2) Just as mentioned in Section IV.B.2 that, the transition
data between different motions deserve a label during data
preprocessing for further improvement of motion recognition
accuracy. This is a fatal drawback of our proposed control
strategy, because the swimmer cannot swim all the time. The
control strategy should recognize the rest, and preparation
motions of the swimmer such as turn around and gliding
in order not to conduct hip motion estimation. Otherwise,
when applied to power-assisted exoskeletons, providing power
assistance during transition motion periods will make the
wearer injured;
(3) The environment of a swimming pool is mild. It remains
to be seen that how the control strategy performs in open
water when applied to exoskeletons, which is a dangerous
experiment and hard for us to conduct currently.

In fact, based on the two steps shown in this study, our
control strategy still has a third step to be realized in the future:
Step 3: According to the estimated hip joint angles of Step
2, send the pre-defined motion trajectory to the motor for
assistance control.

We are now devoted to working on the research and
development of a Bowden cable driven hip power-assisted
swimming exoskeleton. Currently, our work is still in the
stage of related hardware selection (e.g. motor type etc.) and
exoskeleton structure CAD design. When the prototype devel-
opment is finished, the proposed control strategy overcoming
current limitations will definitely be embedded to it. With the
help of our exoskeleton, we believe swimmers can swim easier
and longer.
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(a) Online motion recognition results.

(b) Online left hip joint angle results.

(c) Online right hip joint angle results.

Fig. 11: The online testing results of (a). motion recognition, where label of 1, 2, 3, 4 represent backstroke, breaststroke,
butterfly and front crawl respectively for recording convenience; (b). the actual and estimated left hip joint angles and the
errors between them; (c). the actual and estimated right hip joint angles and the errors between them
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