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ABSTRACT Biocooperative control uses both biomechanical and physiological information of the user to 

achieve a reliable human-robot interaction. In the context of neuromotor rehabilitation, such control can 

enhance rehabilitation experience and outcomes. However, the high cost and large volume of the commercial 

systems for physiological signal acquisition are major limitations for the development of such control. We 

present a highly versatile, low-cost and wearable embedded system that integrates the most commonly used 

sensors in this field: inertial measurement unit (IMU), electrocardiography (ECG), electromyography (EMG), 

galvanic skin response (GSR) and skin temperature (SKT) sensors. Additionally, the compact system 

combines wireless communication for data transmission and a high-efficiency microcontroller for real-time 

signal processing and control. We tested the system in two common neuromotor rehabilitation scenarios. The 

first is an upper-limb rehabilitation VR-based exergame, in which the patient must collect as many coins as 

possible. Movement recognition of the hand and arm is performed based on EMG and IMU information, 

respectively. The second is adaptive assistive control that adjusts the level of assistance of a wrist 

rehabilitation robot according to the physiological state and motor performance of the patient using GSR, 

ECG and SKT data. The quality of the recorded signals and the processing capacity of the system meet the 

needs of the two upper-limb rehabilitation applications. The wearable system is highly versatile, open, 

configurable and low cost, and it could promote the development of real-time biocooperative control for a 

wide range of neuromotor rehabilitation applications. 

INDEX TERMS Biocooperative control, embedded system, neuromotor rehabilitation, real-time signal 

processing, wearable sensors. 

I. INTRODUCTION 

The concept of bio-cooperative control emerged in the field 

of robotics, specifically in rehabilitation robotics, during 

the last years of the first decade of the 21st century. The 

first formal appearance of the term biocooperative came 

from R. Riener, who proposed the integration of a human 

into the control loop not only by using biomechanical 

information but also by considering psycho-physiological 

parameters [1], [2]. 

This “human-in-the-loop” integration, from a 

biomechanical viewpoint, is usually performed by 

integrating position and force sensors into a mechatronic 

device. It ensures safety and enables the human to influence 

the movement of the robot (user-cooperative). The 

inclusion of physiological-related or psychological 

information in the loop allows the determination of the 

physical effort and emotional state of the patient, so the 

robot assistance can be challenging while ensuring that not 
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stress or physical harm is caused, leading to an enhanced 

rehabilitation experience. 

A current trend in the field of rehabilitation is the 

development of multimodal human-robot interfaces (HRIs) 

[3], which are able to fuse and interpret data captured by 

multiple sensors, either physiological or biomechanical or 

a combination of both. In this sense, an extended strategy 

to drive rehabilitation robots is to recognize the intention of 

the movement of the user. Zhang et al. developed a human‒

machine interface using electrooculography (EOG), 

electroencephalography (EEG) and electromyography 

(EMG) signals to control a soft robotic hand in real time 

[4]. EMG has also been used in combination with inertial 

measruement units (IMUs) [5], [6] or accelerometers [7] to 

control assistive devices.  

Another strategy commonly used is implementation of an 

assist-as-needed (AAN) paradigm. It is commonly used 

since it has been shown to increase the efficacy of 

rehabilitation. It adjusts the level of assistance of the robot 

to the patient’s condition: the robot assists the human with 

just the necessary force so that the patient can complete the 

desired movement. The level of robot assistance is 

automatically adjusted to the user’s state by evaluating their 

performance through physiological and/or biomechanical 

information.  

AAN controllers have been implemented using 

biomechanical information of the subject extracted from 

accelerometers [8] or force sensors [9]. The torque applied by 

the subject has also been estimated by analyzing EMG 

signals to adapt the level of assistance of a robot by 

implementing EMG-based AAN controls [10-12].  

Scotto et al. [13] adapted the level of assistance of an 

end-effector upper-limb rehabilitation robot considering 

the patient’s performance and fatigue. The level of patient 

performance was determined using the biomechanical 

information extracted from an IMU sensor, while the level 

of muscular fatigue was estimated using EMG signals. 

Novak et al. [14] adjusted the difficulty of an upper 

extremity rehabilitation task by using biomechanics (force 

and movement), task performance and multiple features 

extracted from physiological signals, such as 

electrocardiography (ECG), galvanic skin response (GSR), 

respiration (RESP) and skin temperature (SKT) signals. 

Mihelj et al. [15] generated the next action primitives of 

an upper extremity rehabilitation device using a two-stage 

fuzzy logic model. The first stage calculated motor 

performance from position and force, arousal from RESP 

signal and GSR features, specifically the skin conductance 

level (SCL) and response (SCR), and valence from the 

RESP rate and SKT. The second stage selected the action 

primitives (e.g. next haptic stage, keep visual stage, 

previous acoustic stage) based on the physical effort 

associated with the motor performance, arousal and 

valence. 

AAN control has also been implemented by only 

identifying physiological states, such as emotions, affective 

states, or level of stress, without considering biomechanical 

information. For example, Rodriguez-Guerrero et al. [16] 

modulated the assistance provided by a haptic controlled 

robot as a function of user emotions. Emotions were 

estimated considering the 3-dimensional emotion model 

(arousal, dominance, and valence) using the HR mean, SCL 

mean and SCR frequency as inputs of a fuzzy logic model. 

Emotion recognition (pleasant, neutral, or unpleasant) 

was addressed using both gradient boosting machines 

(GBMs) and convolutional neural networks (CNNs) based 

on EEG, blood volume pulse (BVP), SKT and SCL 

recordings [17]. An emotion recognition model was also 

developed considering six basic emotions (anger, sadness, 

fear, disgust, happiness and surprise) using EEG, EMG, 

electrooculography (EOG), BVP, SCL and interbeat 

intervals (IBI) signals. A weighted linear fusion model was 

proposed, and different combinations of features and 

classification methods, such as support vector machine 

(SVM) and k-nearest neighbors (KNN), were tested, 

obtaining accuracies ranging from 65-82% [18]. Detection 

of basic emotions, considering two, three or four states 

(regret, rejoice, blended, and none), was also investigated 

using heart rate (HR) and SCL measurements. The study 

compared the emotion detection accuracy when 

implementing different classification and regression 

algorithms and using different sliding window lengths, 

obtaining a maximum accuracy of 67% for binary 

classification using the classification and regression trees 

(CART) algorithm [19]. 

Koelstra et al. [20] used EOG, four EMG signals, 32 EEG 

electrodes, and GSR, BVP, SKT and RESP data to map 

emotions in a two-dimensional model (arousal and 

valence). J. Kim et al. acquired EMG, SC, ECG and RESP 

signals for determining arousal and valence [21]. Mandryk 

et al. [22] also identified these two emotions using 

normalized GSR, HR and EMG signals as inputs to a fuzzy 

logic control scheme characterized by 22 rules 

Liu et al. [23] developed a model for affection 

recognition considering three target affective states 

(anxiety, engagement and liking) with an accuracy rate of 

69-82%. The SVM-based recognizer model used different 

features derived from electrocardiography (EEG), 

photoplethysmography (PPG), heart sound, bioimpedance, 

GSR, EMG and SKT signals. Picard et al. [24] used KNN 

to classify eight emotions using features extracted from 

EMG, GSR, RESP and BVP waveforms.   

Differentiation of stress and normal states was carried out 

using SVM with an 80% accuracy using features derived 

from BVP, GSR and pupil diameter (PD) signals [25]. A 

classification method to detect three different levels of 

stress (relaxed, medium level and overstress) was 

developed using the pulse rate, the RESP rate, the SKT and 

SCL and SCR features of the GSR using different learning 
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algorithms with an accuracy of up to 91%. The detected 

level of stress was used to adaptively and dynamically 

modify the level of difficulty of an end-effector upper-limb 

robotic device and a virtual reality (VR) system [26]. The 

evolution of HRIs in this field is going toward using 

multimodal information, combining different sensors to 

acquire physiological and/or biomechanical data [27]. 

Although there is great diversity in the selection of 

physiological signals and their features in HRI studies, to 

estimate cognitive or emotional aspects, ECG, GSR, SKT 

and EMG signals are commonly used. 

However, one of the main challenges of using 

physiological signals, in addition to the complexity of 

designing a reliable control loop, is the high cost and 

volume of the required acquisition systems. It is important 

to remark that only a very few studies have developed their 

own sensing platform [28], and the vast majority of 

previous works integrate costly and bulky commercial 

products such as the MP150 system (BIOPAC, CA, USA) 

[12], [16], [23], Neuroscan NuAmps Express system 

(Compumedics Ltd., Australia) [4], ActiveTwo system 

(Biosemi, Netherlands) [20] and ProComp/FlexComp 

Infiniti System (Thought Technology Ltd., Canada) [17], 

[18], [21], [22], [24]. 

An approach for minimizing the volume is to integrate 

the sensors into the system itself. Jakopin et al. [29] 

integrated an ECG sensor, a GSR sensor, an NTC 

thermistor (temperature sensor), a pulse sensor (PPG) and 

a force cell into the handle of an end-effector rehabilitation 

robot. Postolache et al. [30] embedded ECG and skin 

conductivity (SCK) measuring channels, an accelerometer 

and flexible force sensors on a wheelchair. Heuer et al. [31] 

proposed an in-vehicle physiological data acquisition 

system that integrated direct contact sensors on a steering 

wheel to measure ECG, GSR, SpO2 level and SKT signals. 

Ilius Faisal et al. [32] developed a wearable device to 

monitor and assess the knee joint and mobility, which 

integrated IMU, temperature, pressure and GSR sensors. 

However, this approach not only minimizes the volume but 

also reduces the flexibility. 

Although the vast majority of analyzed works have been 

developed using costly and bulky commercial systems 

without any processing capabilities, emerging multimodal 

fusion strategies require wearable sensing devices with 

high computational power, a small size, and a low cost to 

detect human physical activity and emotions [33]. 

Considering the portability and comfort of sensor wearing, 

it is necessary to carefully choose the number of sensors so 

that the system can be fast, energy efficient and convenient. 

Furthermore, a small set of sensors with the proper location 

can enhance the user’s acceptance [33]. 

For this reason, a compact embedded system that 

integrates different low-cost sensors for implementation of 

a wide range of neurorehabilitation training exercises is 

presented in this paper. The system includes IMU, ECG, 

EMG, GSR and SKT sensors, which are some of the most 

commonly used sensors in biocooperative systems but can 

also be embedded such that they can be worn as an armband 

so that they will be comfortable. The small-sized system is 

wearable and features Bluetooth technology for data 

transmission. Furthermore, the system is open and highly 

configurable and integrates a high computational 

performance microcontroller to enable developers to 

implement signal processing and control algorithms in real 

time without the need for additional computing systems. 

II. METHODS 

The proposed embedded sensor wearable device combines 

various sensors along with a high-efficiency real-time 

microcontroller (MCU) and wireless communication, 

providing high flexibility and processing capacities for 

implementing biocooperative controllers. The high-level 

block diagram is shown in Fig. 1. The device is battery 

powered and includes five sensors (IMU, ECG, EMG, GSR, 

and SKT), which are directly connected to a 32-bit 

TMS320F28069M MCU (Texas Instruments, TX, USA) for 

real-time data processing and control. The acquired and 

processed data can be transmitted by a Bluetooth low energy 

(BLE) MCU CC2650 (Texas Instruments, TX, USA). 

Temporary access to the MCUs is allowed using a JTAG 

connection. Snap-lead pre-gelled electrodes are used for 

recording biopotentials (EMG and ECG), and two finger 

electrodes allow GSR collection. For movement and SKT 

measurements, the device must rest on the user. 

 

FIGURE 1. Block diagram of the proposed embedded platform. 

 

A. SIGNAL ACQUISITION FRONT-END 

The main component that allows identifying user 

movements is an ICM-20948 9-axis MEMS motion 

tracking device (InvenSense, CA, USA). It consists of a 3-

axis gyroscope, an accelerometer and a compass with 

programmable filters and sensitivities. It also incorporates 

a digital motion processor (DMP) that offloads 

computation of the motion processing algorithm from the 

TMS320F28069M, improving the system power 

performance. The ICM-20948 is powered at 1.8 V, and it 

interfaces with the TMS320F28069M via Fast Mode i2C. 

ECG measurements can be performed with the fully 

integrated single-lead ECG front-end AD8232 (Analog 

Devices Inc., MA, USA). It amplifies and filters the ECG 
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signals, which are then analog-to-digital converted in the 

TMS320F28069M with 12-bit resolution. The AD8232 

chip also includes an AC lead-off detection mode to check 

whether both electrodes are properly connected. Using two 

digital signals, the AD8232 indicates the status of the 

electrode connection. The AD8232 is powered by 3.3 V, 

and the electrodes are connected using a jack connector. 

A 2-channel electromyographic data acquisition unit is 

integrated into the printed circuit board. The two 

differential EMG signals are amplified and filtered prior to 

sampling using the analog front-end (AFE) MCP3912 

(Microchip Technology Inc., AZ, USA). Compensation of 

differential input offset has also been considered in the 

design. The MCP3912 analog-to-digital converter (ADC) 

is fully configurable and interfaces with the 

TMS320F28069M using SPI communication [34]. The 

GSR is measured by attaching two electrodes to two hand 

fingers. The GSR module uses a low constant voltage 

technique; an electrical potential is applied between two 

skin contact points, and the resulting current flow between 

them is measured. The module is mainly composed of an 

LM324 quadruple operational amplifier (Texas 

Instruments, TX, USA). The analog output, which is the 

amplified and filtered voltage difference of the two 

electrodes, is transmitted to the ADC of the 

TMS320F28069M. 

The body temperature is measured by an MLX90614 

infrared (IR) thermometer (Melexis, Belgium). The 

advantage of IR technology is that there is no need for 

physical contact; therefore, skin temperature can be easily 

continuously monitored. The MLX90614 integrates an IR-

sensitive thermopile detector chip and a signal conditioning 

application-specific standard product, which counts with a 

low-noise amplifier, a 17-bit ADC and a digital signal 

processing unit, resulting in a measurement resolution of 

0.02 °C. The thermometer is powered at 3.3 V and interfaces 

with the TMS320F28069M via i2C. 

B. SYSTEM LEVEL DESIGN 

The real-time TMS320F28069M MCU is responsible for data 

processing and interfacing with the sensors, and its Harvard 

architecture is optimized to perform real-time tasks. It has a 

high-efficiency 32-bit CPU that runs at up to 90 MHz, a 

floating-point unit and a programmable control law 

accelerator (CLA), which executes code independently from 

the main CPU. This MCU allows efficient processing of the 

acquired signals and implementation of the required 

algorithms. It is equipped with 100 KB of flash, 100 KB of 

RAM and 2 KB of one-time programmable ROM. It has a 

built-in 12-bit ADC allowing sampling up to 3.46 MSPS 

(mega samples per second), several serial port 

communication peripherals (SPI, i2C, UART...) and timers, 

which are used to interface with the other elements of the 

proposed wearable solution. This powerful MCU has been 

chosen to allow advanced onboard processing of the 

acquired data with a normal current consumption of 245 

mA, although it allows low-power operating modes. 

To obtain a wireless and wearable device, the CC2650 

MCU was incorporated into the proposed system. This 

system-on-chip provides an ultralow power BLE solution 

using a 2.4 GHz RF transceiver. The device is built on an 

ARM® Cortex®-M3 processor that handles the application 

layer and BLE protocol stack and an autonomous radio core 

centered on an ARM Cortex®-M0 processor that handles 

all the low-level radio control and processing associated 

with the physical layer and parts of the link layer. This 

single-chip interfaces with the TMS320F28069M using 

serial communication (i2C, SPI or UART) and transmits 

the processed data to a central device. The printed circuit 

board (PCB) integrates a BLE antenna, which was designed 

based on the TI specifications and built on the top copper 

layer of the board. Hence, there is no need to externally add 

an antenna. The board integrates 11 pads to simply and 

independently access the JTAG ports of the two MCUs for 

debugging and programming purposes. 

The device is powered by a rechargeable lithium ion 

polymer battery with a capacity of 3500 mAh at 3.7 V 

(68x55x7 mm). The battery life is approximately 5 hours, 

considering that the estimated total maximum power of the 

device is approximately 1250 mW. The battery is recharged 

from a USB-C port using an MCP73831 dedicated 

integrated circuit (Microchip Technology Inc., AZ, USA). 

It uses a constant current followed by a constant voltage 

charging method. While the battery is recharging, the 

circuit is still powered by a USB port. The linear charge 

management controller automatically detects if the battery 

is present and continuously monitors the voltage to 

recharge the battery if the voltage drops below the recharge 

threshold. 

The 2-layer PCB has been designed to maximize the signal 

integrity. It has split power planes (separated analog and 

digital signals), and the trace width is 12 mils except for the 

traces of the power signals, which are 24 mils wide. SMD 

components are used to reduce the board size, placing 0402 

(1005 metric) SMD passive components on it. All discrete 

components are placed on the top layer to reduce assembly 

costs, with the exception of the thermometer. Three holes are 

included in the board to attach it to a cover box. The layout of 

the components was designed considering the different 

submodules (Fig. 2.a), resulting in a board size of 63x83 mm. 

In summary, a versatile compact wireless embedded 

solution has been designed. The system incorporates several 

sensors and the AFE necessary to acquire different signals 

(ECG, EMG, GSR, SKT and motion). The processing of the 

recorded signals can be carried out on either the 

TMS320F28069M or the CC2650 or by combining both 
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FIGURE 2. System design. (a) Layout of the components (b) Top view of the assembled PCB. 

 

 

MCUs. The resulting data can be transmitted using BLE 4.1 to 

a central device. Furthermore, the developed solution has a 

relatively small size and a very low cost considering the large 

number of sensors and components (MCU; BLE 

communication, GSR, ECG, and EMG components; position 

sensor; thermometer; and power system). The final solution 

(Fig. 2.b) is housed in a 3D printed box and can be adjusted on 

the user arm using Velcro straps. 

III. RESULTS 

One of the requirements of the presented system is that it 

should be versatile so that it can be used in multiple 

applications in the field of neuromotor rehabilitation. In this 

section, two different rehabilitation scenarios are proposed. 

The first is based on the recognition of hand and arm 

movements using a VR-based exergame (Fig. 3.a). The second 

is an implementation of adaptive assistance control based on 

the emotional state and motor performance using a wrist 

rehabilitation robot (Fig. 3.b). Additionally, a detailed analysis 

of the system power consumption is carried out in this section. 

 

FIGURE 3. Proposed rehabilitation scenarios (a) Upper-limb 
rehabilitation using VR-based exergames (b) Rehabilitation setup for 
adaptive control using a wrist rehabilitation robot. 

 

 

A. MOVEMENT RECOGNITION CONTROL 

The first scenario is a VR-based exergame for upper-limb 

rehabilitation. The aim of the exergame is to collect as many 

coins as possible in a predefined time. For this purpose, the 

participant must move their arm and hand to interact with the 

environment. Specifically, to collect a coin, the user must 

move the arm to position the open or resting hand over the coin 

and then close the hand. 

The exergame is designed to recognize arm and hand 

movements, allowing interaction with the target coins in the 

virtual environment. The arm orientation is computed from 

data measured by the ICM-20948, which is located on the 

user’s arm. The hand gesture (open, rest or close) is 

determined from the EMG signals captured from the flexor 

digitorum superficialis (FDS) and extensor digitorum (ED) 

muscles, which are the muscles responsible for hand opening 

and closing. Arm orientation estimation and hand gesture 

recognition are performed in real time in the 

TMS320F28069M MCU and transmitted to the PC via BLE 

to update the VR scenario according to the estimated subject 

movements (Fig. 4). The VR scenario, which is mainly 

composed of a human arm and a coin, was designed in Unity 

and receives the processed data from the wearable system. 

Hence, the human arm orientation is updated using the 

estimated orientation, while the hand finger positions are 

updated according to the recognized gesture. 

 

FIGURE 4. Integration of the proposed system with the virtual VR-based 
exergame for hand and arm rehabilitation. 

 

Additionally, the exergame provides real-time adaptation of 

the difficulty to avoid frustration and maintain user 

motivation. The difficulty level is updated after collecting a 

coin and is based on the time spent collecting the last coin. The 

difficulty is modified by the degree of hand closure  
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FIGURE 5.  Signal processing for the proposed motion recognition control (a) Linear acceleration, angular velocity and estimated orientation (b) Raw 
EMG and rectified signals of ED and FDS muscles. 

 

required to collect the coin and by the size and position relative 

to the current position of the new coin. 

Fig. 3.a shows user rehabilitation with the VR-based 

exergame. The embedded platform is placed on the arm of the 

user, and two pairs of surface electrodes for recording the 

EMG signals are attached to the ED and FDS muscles, while 

the reference electrode is attached to the olecranon. 

1) ACCELERATION AND GYROSCOPE READINGS 

The ICM-20948 includes a 16-bit 3-axis gyroscope and an 

accelerometer. The gyroscope and accelerometer are 

configured to work with a full-scale range of ±250 dps 

(degrees per second) and ±2 g (19.6 m/s2), respectively. 

Hence, the ADC resolution is 131 LSB/dps and 16384 LSB/g. 

Linear acceleration and angular velocity are sampled at 100 

Hz and transmitted to the MCU via 400 kHz Fast Mode i2C. 

The orientation is estimated using a model whose inputs are 

the accelerometer and gyroscope readings. The model 

integrates an indirect Kalman filter, and it tracks the errors in 

the orientation, linear acceleration and gyroscope offset. The 

software code used to calculate the orientation is based on 

[35]. The recorded linear acceleration and angular velocity and 

the estimated orientation of the arm of the user are shown in 

Fig. 5.a. 

2) ELECTROMYOGRAPHY 

The implemented hand gesture recognition algorithm is the 

same as that presented in [34]. Before starting the 

rehabilitation exercise, the subjects are asked to perform a 

calibration to determine the maximum voluntary contraction 

(MVC) values and two EMG threshold values. The MVC 

values of each muscle (MVCED and MVCFDS) are computed as 

the maximum value of the corresponding rectified EMG signal 

(rEMG) during the calibration. The flexor (µ) and extensor (ε) 

thresholds are the maximum limit values corresponding to 

muscular deactivation of the FDS and ED muscles, 

respectively. The raw EMG signals are sampled at 200 Hz and 

transmitted to the TMS320F28069M MCU via i2C 

communication. The signals are filtered with a notch filter (50 

Hz center frequency) and a high-pass filter (0.01 Hz stopband 

frequency and 10 Hz passband frequency) (Fig. 5.b). The 

filtered signals are rectified by calculating the root mean 

square (RMS) with a 10-point window and low-pass filtered 

(1 Hz passband edge frequency). The rectified signals are 

normalized (nEMG) with respect to their MVC. 

The determination of the hand gesture depends on the 

instantaneous values of the nEMG signals and the thresholds. 

The closed hand gesture is recognized when nEMGFDS crosses 

over the flexor threshold µ while nEMGFDS is larger than 

nEMGED if it exceeds ε. Similarly, the open hand gesture is 

recognized when nEMGED crosses over the extensor threshold 

ε while nEMGED is larger than nEMGFDS if it exceeds µ. The 

rest gesture is determined when both EMG normalized signals 

are lower than their respective threshold. 

B. ADAPTIVE CONTROL 

The second proposed rehabilitation scenario is the 

implementation of an AAN strategy that adjusts the level of 

assistance of a wrist rehabilitation robot according to the 

emotional state of the patient and the motor performance. The 

3-DoF wrist rehabilitation robot has one encoder for each 

degree and a cylindrical handle with a force sensor [36] for 

biomechanical measurements and thus determination of the 

user performance. 

Previous studies have shown that the HR increases as a 

response to physical effort, the SCL and SCR frequency 

increase with arousal or emotional excitement and mental 

workload, and the SKT decreases as a result of cognitive 

workload and anxiety [37]. Considering this, the application 

uses three different physiological signals (ECG, GSR and 

SKT) to estimate the user’s emotional state in the two-

dimensional model (arousal and valence). 

A two-stage fuzzy logic approach based on [16], [22] was 

developed to adaptatively estimate the level of assistance 

considering the user emotion and motor performance (Fig. 6). 

First, arousal and valence changes (increase, constant, or 

decrease) are determined based on the variations in the HR, 

SCL, SCR frequency and SKT signals normalized with 

respect to their resting values (previously determined in a 

calibration process). The motor performance is evaluated 

considering the biomechanical information provided by the 

sensors embedded in the robot: user motion and applied 

forces. 
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The second stage of the fuzzy logic approach determines 

whether to increase, maintain or decrease the level of 

assistance of the wrist rehabilitation platform considering the 

arousal and valence values in combination with motor 

performance. 

The AAN paradigm is based on a robot closed-loop 

admittance controller [38]. The M, B, and K parameters, 

which characterize the admittance controller, are updated 

(increase, decrease, or no change) every second according to 

the fuzzy logic output. 

GSR, ECG and SKT analyses are computed in the real-time 

microcontroller. Then, the extracted features (SCL, SCR, HR, 

and SKT) are sent via BLE to the PC. Hence, these features 

along with the force and motion are used to run the fuzzy logic 

control in the PC to estimate the level of assistance and to send 

the K, B, and M variables back to the robot to update the 

admittance controller. 

 

FIGURE 6. Two-stage fuzzy logic model for mapping physiological 
(GSR, ECG and SKT) and biomechanical (motion and force) information 
to the assistance level of the rehabilitation robot. 

 

User training with the wrist rehabilitation robot is shown in 

Fig. 3.b. Disposable pre-gelled electrodes are attached to the 

user for ECG recording (two electrodes on the torso and one 

on the umbilical region). Additionally, two electrodes are 

placed at the fingertips of the index and middle fingers for 

GSR measurements. The IR thermometer that sits underneath 

the embedded platform is used for determining the SKT. 

1) ELECTROCARDIOGRAM 

The ECG signal is analog-to-digital converted in the 

TMS320F28069M with a sampling frequency of 500 Hz. The 

heart rate is determined from the RR intervals of the ECG 

signal, which are detected using the well-known real-time 

algorithm developed by Pan and Tompkins [39]. The 

processed ECG signal indicating the R events of a person at 

rest is shown in Fig. 7. 

 

FIGURE 7. ECG signal including R events detection.  

2) GALVANIC SKIN RESPONSE 

The GSR signal can be split into two main components: the 

tonic component or SCL and phasic component or SCR. The 

SCL changes slightly over time and is known to be related to 

hydration, skin dryness and automatic regulation. It reflects 

general changes in autonomic arousal. The SCR shows faster 

changing elements of the signal and is sensitive to emotionally 

arousing stimulus events. 

The output of the GSR module is analog-to-digital 

converted in the TMS320F28069M with a sampling frequency 

of 225 Hz. The raw SC signal is filtered (10 Hz low-pass filter) 

to reduce high-frequency noise and thus decrease false-

positive detection of phasic events. Then, the SCL (baseline of 

the SC) and SCR (evoked changes in skin conductance) 

components are calculated based on [40], in which a 

deconvolution technique is implemented. The raw and filtered 

SC signal and its tonic and phasic components of a person 

under different visual stimuli are shown in Fig. 8. 

 

FIGURE 8. Raw and filtered SC signal, tonic skin conductance level 
(SCL) and phasic skin conductance response (SCR). 

C. POWER CONSUMPTION 

An important feature of the presented system is its 

computational capabilities and power consumption. As 

previously mentioned, the battery lasts for 5 hours with a 

maximum power consumption of approximately 1250 mW. In 

this section, the system consumption is analyzed in detail. For 

this, the system is divided into three main parts: sensor 

modules, TMS320F28069M MCU and CC2650 MCU. 

The EMG, IMU, ECG, GSR and TEMP modules when 

active and configured with the specifications previously 

defined have a power consumption of 40.6 mW, 5.6 mW, 0.6 

mW, 3.3 mW and 5.6 mW, respectively. On the other hand, 

their power consumption in sleep mode is 9.6 mW, 0.02 mW, 

0.001 mW, 2.6 mW and 0.01 mW. 

Furthermore, the power consumption of the 

TMS320F28069M microcontroller was analyzed for the two 

proposed scenarios. The breakdown of the average power 

consumption of each peripheral for each application is detailed 

in Fig. 9. During data acquisition from the sensors (using 

ADC, SPI or i2C interfaces), the DMA is triggered and used 

to transfer sampled data to the internal memory. The CLA 

module is used to carry out the signal processing 

independently of the main core. The DMA energy 

consumption depends on the number of active channels, and it 

is proportional to the amount of data and transfer rate, while 

the CLA energy consumption is proportional to the 

computational load, i.e., to the algorithm complexity. 
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The power consumption of the system is highly influenced 

by the application and, consequently, the MCU configuration. 

Additionally, the energy consumption of the microcontroller 

is extremely variable according to the computational load. The 

microcontroller can be programmed to go into an IDLE mode 

(main CPU is halted while peripherals and other clocks remain 

active) when the desired computation is over, which 

drastically decreases the power consumption from 272.3 mW 

to only 82.5 mW. Since the signal processing is mainly carried 

out in the CLA, the MCU spends more than 80% of its duty 

cycle (90 MHz) in IDLE mode. We found a 203 mW power 

consumption for motion recognition control and 249 mW for 

adaptive control. 

 

FIGURE 9. Breakdown of the microcontroller power consumption for 
the two proposed scenarios: (a) motion recognition control and (b) 
adaptive control. 

 

The power consumption of the CC2650 module is mostly 

due to BLE communication. The average power consumption 

of the BLE communication is proportional to the amount of 

sent data and can reach a maximum of 32.7 mW when 

streaming the raw data from the five sensor modules 

simultaneously at 1 kHz. In the proposed scenarios, the 

CC2650 MCU only receives information through the i2c 

interface to send it to a central node using BLE. Therefore, 

neither additional modules nor data processing is carried out, 

which would increase the power consumption of this module. 

IV. DISCUSSION 

We have presented a low-cost wearable embedded platform 

for implementation of biocooperative control in the context of 

neuromotor rehabilitation. The compact platform is highly 

versatile in terms of the diversity of the sensors that it 

integrates (IMU, EMG, SKT, GSR, and ECG). Although 

some low-cost wearable platforms have been previously 

proposed, they did not integrate so many sensors since they 

were not developed with this approach. For instance, [41]–

[43] only integrated EMG sensors, [44],[45] only developed 

an ECG sensor and [46] only used IMU sensors. [47] 

incorporated ECG and GSR sensors, [48] integrated IMU and 

ECG sensors, and [49] incorporated GSR, SKT and IMU 

sensors. 

The selection of these five sensors is based on a review of 

the related literature. The detection of motion based on data 

collected from IMUs has been widely used for rehabilitation 

purposes. In [50]–[55], a wireless IMU was used for stroke 

rehabilitation in combination with or without motion-sensitive 

games based on VR (IMU-based exergames). IMU 

information has also been used for biomechanical analysis 

[56]–[60], such as gait analysis, which can be used to evaluate 

motor recovery. It can also be used with assistive devices 

[61]–[64] and in combination with other sensors, such as EMG 

sensors [5], [7]. Features extracted from EMG signals have 

been used as inputs of the control loop of rehabilitation robots 

[65]–[68]. EMG has also been used to identify fatigue during 

rehabilitation [13], [69] and even emotional states [17], [19]–

[21]. Although there is no consensus as to which physiological 

signals are the best to use to determine the 

psychophysiological state, measurements of the SCR 

frequency, SCL, HR and SKT can give reliable information 

about the psychophysiological state of the patient [36], [70]. 

The presented system is open and configurable so that 

researchers can easily develop new biocooperative control 

strategies as well as modify and optimize existing algorithms. 

The high-efficiency real-time microcontroller provides high 

processing capabilities for implementing this kind of 

biocooperative control, which requires complex signal 

processing. Additionally, its high flexibility regarding the 

diversity of sensors and wireless communication allows the 

development of a multitude of rehabilitation applications. 

Two possible applications have been proposed. The 

applications use different signals, and the training approaches 

are different; while the first one does not require an assistive 

robotic device and uses EMG and IMU information, the 

second one needs an assistive robot and uses GSR, ECG and 

SKT data. It has been verified that even though the system is 

low cost, the quality of the acquired signals is reliable for 

implementing biocooperative control algorithms. Raw and 

processed data from all sensors have been shown: motion has 

been identified using IMU measurements, hand gestures have 

been recognized using EMG signals, the HR has been detected 

from ECG signals, the SCL and SCR have been acquired from 

recorded GSR data and the SKT has been continuously 

monitored. 

Additionally, the power consumption of the system has 

been carefully analyzed for the two scenarios, which are fully 

compliant with the energy constraints of the wearable system. 

Furthermore, the high-efficiency processing capabilities of the 

platform have been tested. This platform supports the real-

time execution of more complex algorithms than those 

presented for the two rehabilitation scenarios. 

In summary, an embedded platform for implementing real-

time biocooperative control in the context of 

neurorehabilitation has been presented. The open and highly 

customizable system is more convenient for developers than 

proprietary solutions; it can be used for any purposes (from 

only physiological signal acquisition for later offline analysis 

to implementation of complex biocooperative control) since 

researchers can freely modify the program and add new 

features and capabilities without any restrictions. The platform 

includes a high diversity of sensors and wireless 

communication while being low cost, compact, and 
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comfortable to wear. For these reasons, the quality level of its 

signals will never reach that of the signals recorded by 

commercial acquisition systems. On the other hand, it has been 

verified that the quality of the signals is reliable enough for the 

two proposed scenarios, and therefore, good performance is 

expected in other related applications. 

The design of the presented wearable system was based on 

a trade-off between complexity, price, and performance: 

volume, flexibility, energy consumption, onboard processing, 

signal quality, etc. The final solution can record and process 

real-time multimodal information with a decent quality for at 

least 5 hours. However, it is not suitable for applications that 

require a high signal quality or a long-term life battery, but 

these requirements are not expected in most of the potential 

applications related to neurorehabilitation. 

V. CONCLUSION 

The presented platform is low-cost, wearable, customizable 

and open for implementing real-time biocooperative control. 

The high versatility of the system along with the high-

efficiency real-time microcontrollers will enable researchers 

to translate biocooperative control strategies that rely on 

physiological signals into affordable real-word solutions. 

Furthermore, the quality of the recorded signals meets the 

needs of two common use cases in the context of upper-limb 

neuromotor rehabilitation. The accessibility of this 

technology may promote research and development of 

biocooperative control since one of the main limitations is 

the high cost of the necessary signal acquisition systems. 
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