
Biomedical Signal Processing and Control 86 (2023) 104938

Available online 22 April 2023
1746-8094/© 2023 Elsevier Ltd. All rights reserved.

Technical note 

Title: Hip and lower limbs 3D motion tracking using a double-stage data 
fusion algorithm for IMU/MARG-based wearables sensors☆ 
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A B S T R A C T   

This paper presents an algorithm to estimate the relative orientation of body segments during 3D motion 
tracking, either as multiple individual body segments or as an articulated body chain. For this purpose, a double- 
stage data fusion algorithm (algorithm-based system) was implemented for inertial measurement units (IMU)/ 
Magnetic Angular Rate and Gravity (MARG)-based wearable sensors during gait. The methodology considers two 
stages of complementary filters for the data fusion of the IMU/MARG sensors and a Proportional-Integral 
controller (PI) to incorporate the processed data. Quaternions were employed for the orientation estimation, a 
Direction Cosine Matrix quaternion-based (DCM) to estimate the relative orientation between the body mobile 
coordinate system and the inertial reference coordinate system, and Euler angles for the orientation represen
tation. A customized Ambulatory Sensing Motion System (ASMS), consisting of seven monitoring devices was 
used for the evaluation. The double-stage algorithm-based system was compared with a digital motion processor 
(DMP) performance. Experimental results of the double-stage algorithm-based system indicated a 0.7◦ RMSE 
(M1) and 1◦ RMSE (M1-M7) with mean values lower than 1◦ concerning the DMP outcomes. Based on the Bland- 
Altman analysis, the level of agreement indicated that the double-stage algorithm-based system is neither 
underestimated nor overestimated and is suitable for the DMP outcome. No singularity conditions nor significant 
levels of noise or drift were observed in the conducted experiments. The results demonstrate the feasibility of 
using the proposed method for 3D human motion tracking of multiple body segments, individually or as an 
articulated body chain. Besides, it suits different IMU/MARG sensor-based wearable sensors.   
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1. Introduction 

3D motion tracking plays an important role in various applications, 
providing valuable feedback for a better understanding of the human 
motion condition [1–4]. Many physicians rely on motion tracking de
vices to assess human motor activity, based on joint kinetics/kinematics 
and the body segments orientation, to guide diagnosis and improve 
rehabilitation treatment [5–9]. Due to the extensive range of applica
tions, gait analysis is one of the most evaluated activities, among which 
stand out health care [10–12], rehabilitation [13], and activities of daily 
living [14]. 

Video-based motion analysis systems are widely used for 3D human 
motion tracking and gait analysis in laboratories and clinical settings 
[15–17]. However, their use may only sometimes be suitable for motion 
tracking, especially in assessing the gait motion of daily living activities 
[18,19]. The main reason is that various factors can affect the images: 
lighting, foreground focus, and background conditions [19–21]. 
Furthermore, video-based motion analysis systems require specialized 
personnel and controlled environments for data capture [22]. 

The Inertial Measurement Units (IMU)/Magnetic Angular Rate 
Gravity sensors (MARG) present a feasible solution for tracking human 
motion in 3D since they allow estimating the kinetics/kinematics and 
the orientation of a moving object based on physical quantities mea
surements: angular velocity, gravity vector, and earth’s magnetic field 
[23,24]. Besides, these small and low-cost sensors do not require 
controlled environments or external references to measure, making 
them suitable for 3D human motion tracking applications [25,26] and 
gait analysis [1,27,28]. 

The use of IMU/MARG sensor for estimating the orientation remains 
a challenge, mainly due to measurement errors, such as high noise levels 
and drift, inherent to using these sensors [29]. Integration of gyroscope 
noise measurements could cause drift in a long-term tracking [9]. Ac
celerometers are sensitive to body accelerations under dynamic motion 
conditions. Also magnetometers suffer from variations in the local 
earth’s magnetic field caused by operating electrical sources or the 
presence of ferromagnetic materials [2,30,31]. Hence, a reliable data 
fusion algorithm is needed to combine IMU/MARG sensor data. The 
effectiveness of the estimated orientation relies on the capacity to pro
cess and compensate for measurement errors [27,32]. 

There are many proposals to estimate orientation using IMU/MARG 
sensor data. Some approaches use the gyroscope data to estimate 
orientation [9,33] and the accelerometer and magnetometer data to 
correct the orientation [1,24,34]. In contrast, others use a digital motion 
processor (DMP) to acquire the orientation in some applications 
[30,35]. 

Human body segments can be modeled as an articulate chain of 
multiple body segments connected by joints. This method individually 
estimates the orientation of two contiguous body segments and their 
relative orientation. The orientation of individual body segments can be 
estimated by the attachment of an IMU/MARG sensor to the evaluated 
body segment. The relative orientation is computed by calculating the 
relative orientation of two adjacent body segments [34,36,37]. 

Different ways for representing 3D orientation have been adopted; 
Euler angles, Direction Cosine Matrix (DCM), and quaternions (q) are 
among the most common approaches. Euler angles are commonly used 
for orientation representation since they are relatively easy to imple
ment. However, they are subjected to singularity conditions (e.g., 
gimbal lock). No singularity conditions are reported when DCM or 
Quaternions are used. Nonetheless, both methods entail a higher 
computational cost than Euler’s [9]. 

1.1. Related works 

Inertial Measurement Units (IMUs) and Magnetic Angular Rate 
Gravity sensors (MARGs) have been widely used in motion capturing 
and gait motion tracking applications. Studies for gait analysis focus on 

two main aspects: 1) the estimation of kinematic and spatiotemporal 
parameters and 2) the tracking accuracy of the gait movement. Both 
aspects require the measurements of an established system. The former 
uses the IMU/MARG-based system to collect data from the lower limb 
segments to determine gait speed, stride length, stride time, step length, 
cadence, joints angles, peak-to-peak movements of the joints, etc. 
[27,38], while the latter uses the system’s data recorded to analyze the 
body segments activity during gait [1,9,24,28,30,35]. 

In [27], a validation study of the accuracy of a gait analysis algo
rithm is presented. Two commercial IMUs (Physiolog 5) were used for 
data collection. Data were analyzed using zero-update velocity and 
Kalman filtering methodology to obtain spatiotemporal gait parameters. 
An OptoGait system was used as the reference method for validation 
purposes. Linear regression studies and Bland Altman plots were used to 
identify correlation and suitability between the responses obtained 
using both methods. Based on the experimental results, the authors 
comment that the evaluated algorithm can estimate spatiotemporal gait 
parameters with a precision comparable to similar studies. However, 
more experiments should be performed to verify the deviations in 
assessing long strides. In [38] a method based on inertial sensors is 
presented to estimate the gait parameters of a four-segment leg model 
(Shanks and thighs). Inverse kinematics and a standard two-state Kal
man Filter (Euler angle and gyroscope bias) were used to fuse gyroscope 
and accelerometer data. The system proposed by the authors allows the 
analysis up to 5 points simultaneously offline after a post-processing 
stage. For the evaluation, the angular position of the four-segment leg 
model in the sagittal plane, calculated from the inertial sensors (Kalman 
filter), was compared with data from a 3D motion capture system. Dif
ferences between both data sets were described based on the RMSE 
values. The accuracy of the Kalman-filtered angular position is reported 
to be in the range of 2–6◦. The authors comment that despite the 
experimental results showing a good performance, small errors due to 
the misalignment of the sensors give rise to cumulative underestimation 
values. They suggest that 3D measurement of acceleration and gyro
scope data and appropriate filters for data fusion, could reduce the error 
caused by misaligned sensors. Reference [1] presents a wearable, low- 
cost wireless and embedded system to simultaneously analyze trunk, 
pelvis, hip, knee and ankle kinematic data during gait. Complementary 
Filter (CF) and Kalman Filter (KF) were used to assess the system per
formance. Experimental results were compared with those obtained 
with a commercial video-based system. The Bland-Altman method was 
used for this purpose. The authors comment that CF and KF agree well 
with the results using post-processed video. Roll and pitch angles pre
sent the best results, while yaw angles seem to be affected by magne
tometer distortions. In [9], a system based on inertial sensors and a data 
fusion algorithm is presented to provide biofeedback to user and 
physician practices. The developed system comprises two IMU-based 
portable sensing nodes, a bio-feedback generation unit, and data pro
cessing software. Body motion tracking was done by integrating angular 
information acquired from the sensing platform that sends data to a 
central unit for offline calculations. The DMP on the IMU (Invensense 
MPU9250) was used to acquire data from all sensors providing attitude 
information through a quaternion representation. The orientation ac
curacy of the sensor node was measured by converting the obtained 
quaternions into Euler angles and directly comparing them with those 
obtained using a Polhemus Patriot System. The authors comment that 
only the roll and pitch angles (X and Y axes) were measured since yaw 
angles (rotations around Z-axis) were strongly affected by the magne
tometer field generated by the Polhemus. The experimental results show 
a mean error of 0.8685◦ and RMS of 0.9871◦. In [24], an ambulatory gait 
analysis system based on MARG sensors is proposed. Along with this, a 
calibration method was introduced to avoid measurement errors of the 
magnetometer concerning environmental interference and inherent 
error. For the experimental procedure, healthy and gait-impaired pa
tients were asked to walk through an obstacle-free corridor. Raw data 
from the motion sensors were collected and transmitted to a processing 
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unit for further analysis. A quaternion complementary filtering (CF) 
algorithm based on the PI control strategy was proposed to eliminate 
errors caused by sensor noise. The authors comment that the proposed 
method presents significant advantages in terms of accuracy and effi
ciency (3◦) compared to conventional gait analysis approaches such as 
the traditional Kalman Filter (5◦). The experimental results suggest that 
the proposed method by the authors is less susceptible to magnetic 
disturbances after the proposed calibration procedure. In [28] is eval
uated the validity and reliability of Inertial Measurement Unit (IMU)- 
based gait analysis systems. A total of seven modules, IMU/AHRS 
(Invensense MPU9250), were used to measure and analyze joint angles 
during gait. The gradient descendent algorithm was used to compute 
Euler angles from the gyroscope, accelerometer, and magnetometer 
data. Inaccurate gyroscope measurements were corrected based on the 
accelerometer and magnetometer data. Three healthy adult males 
participate in the study, which consists of a gait of 10-m. The sagittal, 
frontal, and transverse planes inspected the hip, knee, and ankle joints. 
The evaluation was performed using a camera-based system and an 
IMU/AHRS-based system. The differences between the RMSE values of 
the two systems ranged from 1.83 to 3.98◦. Based on the experimental 
results, the authors comment that IMU-based systems can reliably 
replace camera-based systems for clinical analyzes of body movement 
and gait. In [30] a study is presented to validate the accuracy of pose 
estimation techniques using an optical motion capture system and a 
method based on MARG sensors. Three separate motions (knee flexion/ 
extension, walking, and knee flexion/valgus/external rotations) were 
analyzed for the assessment. All the data obtained were computed by the 
software (optical motion capture method - Motiv) and the algorithm 
(MARG sensor-based method – EKF-based algorithm) provided by the 
manufacturers. The RMSE values of the angles measured using both 
methods were compared for validation. Based on the experimental re
sults, the authors comment that the orientation of the MARG sensors was 
adequately estimated. Nonetheless, while it is true that the EKF-based 
method achieves a high estimation accuracy for the Roll/Pitch Euler 
angles (RMSE values between 1.5◦ to 2.92◦), the yaw angle has low 
accuracy. It tends to drift, which could be because the magnetometer 
suffers from distortion and magnetic disturbance and the gyroscope 
suffers from drift bias. In [35], an economical and portable IMU-based 
system for assessing the body joint is presented. Here, a Digital Mo
tion Processor (DMP) was used to calibrate the sensors and compute 
orientation by providing an integrated motion fusion output. Despite the 
good results, the authors suggest including information from magne
tometer sensors to reduce drift and using better algorithms such as 
Kalman filter (KF) or Complementary filter (CF) to obtain more reliable 
and accurate orientation data. 

This paper presents a method for the hip and lower limb 3D motion 
tracking based on their individual and relative orientation, either as 
multiple individual body segments or as an articulated body chain. The 
method performance was assessed by a customized Ambulatory Sensing 
Motion System (ASMS) consisting of seven monitoring devices. A 
Double-Stage Data Fusion Algorithm (algorithm-based system) for IMU/ 
MARG-based wearable sensors was proposed to estimate the body 
segment orientation. Gyroscope data was used for the orientation esti
mation during movement and the accelerometer/magnetometer data for 
the orientation correction. Compensations of magnetic distortions (hard 
iron) and the effects of erroneous measurements due to declination/ 
inclination magnetic disturbances (soft iron) were included. Two com
plementary filters were used to eliminate error measurements and to 
combine the responses obtained as a first approximation. A Proportional 
Integral controller (PI) incorporated the processed data. An approach 
based on quaternions was employed for the orientation estimation, a 
Direction Cosine Matrix quaternion-based (DCM) for estimating the 
relative orientation between the body segments, and Euler angles for the 
orientation representation. The double-stage algorithm-based system 
was compared with a digital motion processor (DMP) performance. 
RMSE values and the Bland-Altman method were used for this purpose. 

2. Methodology 

2.1. Ambulatory sensing motion system 

The Ambulatory Sensing Motion System (ASMS), Fig. 1, consists of a 
modular system of seven elements: one monitoring&computing module 
(M&C), which is used both for estimating the orientation of the hip as 
well as for the acquisition, processing, and fusion, and sending/ 
receiving of data of the whole system, and six monitoring modules (M2− 7), 
used for estimating the orientation of the lower limbs; left and right thigh, 
leg and foot. 

Magnetic Angular Rate Gravity (MARG) sensors were used as a main 
source of information for motion tracking. Each MARG sensor is a 
combination of triaxial magnetometers and an Inertial Measurement 
Unit (IMU), which contains triaxial gyroscopes, triaxial accelerometers 
and a digital motion processor (DMP). 

An open-source development board (Arduino) was used for the data 
interface between the M&C and M2− 7 modules, via Inter-Integrated 
Circuit serial protocol (I2C), two Multiplexers (MUX) were used to 
select the monitoring module of interest. The ASMS and PC communi
cation was carried out using radio frequency modules (Xbee). Data 
acquisition and storage, motion analysis, and motion tracking were 
performed using the Matlab R2018a software. The components of the 
ambulatory Sensing Motion System are summarized in Table 1. 

2.2. Estimation of the orientation 

A Double-Stage Data Fusion Algorithm (algorithm-based system) 
was proposed, combining data from the gyroscope, accelerometer, and 
magnetometer sensors. The Digital Motion Processor (DMP) contained 
on the Invensense MPU was used as a reference system for validating the 
information. In both cases, the gyroscope and accelerometer were 
configured at ±250◦

/s and ±2g, respectively, with an output speed of 1 
kHz and a digital low-pass filter (DLPF) with a bandwidth of 5 Hz (19 
ms). The magnetometer was configured at ±1.3Gauss with a digital 
resolution of 0.92 mG. The sensors configuration is summarized in 
Table 1. These parameters are based on the reported values in the joint’s 
kinematics evaluation [39–41]. The motion processing algorithms were 
executed at 200 Hz, to provide accurate results with low latency; no 
clipping was observed in the measurements. 

2.2.1. Estimation of the orientation of hip and lower limbs using a Double- 
Stage data fusion Algorithm. 

For estimating the orientation of the hip and lower limbs, either as 
multiple individual body segments or as an articulated body chain, a 
Double-Stage Data Fusion Algorithm (algorithm-based system) was 
proposed, Fig. 2. For the first stage, two coordinate systems were 
defined: a body coordinate system (σω) associated with the movement of 
the body segment under analysis, and a reference coordinate system 
(σλ), used for motion analysis as a reference frame. In the second stage, 
the orientation of one body segment was estimated with respect to the 
orientation of another contiguous segment from the spatial relationship 
between them. This offers great potential to be used in motion analysis 
and motion tracking applications of multiple body segments [24]. 

The body coordinate system (σω) uses gyroscope data (ωxyz) and its 
offset values (ωoffxyz ) for the orientation estimation during motion, over 
the sampling interval (Δt), Eq. (1). 

ωxyz=[gx ,gy ,gz]

ωof fxyz =

∑n=1000

i=1

(
ωxyz

)

i

n

⎫
⎪⎬

⎪⎭
σω =

(
ωxyz − ωof fxyz

)
*Δt (1) 

The reference coordinate system (σλ) uses accelerometer (λaxyz ) and 
magnetometer data (λhxyz ) for the orientation correction. Two orienta
tion correction vectors were defined for this purpose. The first one (σλa ) 
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uses vector observations from gravity for Roll&Pitch orientation 
correction. The other one (σλh ) uses vector observations of magnetic field 
measurements for Yaw orientation correction. 

The orientation correction vector (σλa ) was computed as the vectorial 
product between inertial ( v→) and local gravity vector (v̂), Eq. (2). 

Fig. 1. Ambulatory Sensing Motion System (ASMS).  

Table 1 
Components of the Ambulatory Sensing Motion System (ASMS).  

Module Body segment Function Components Configuration 

M&C Hip Motion tracking Magnetic Angular Rate Gravity sensor (MARG/GY-87 module)  
• Triaxial magnetometers (Honeywell HMC5883L) ±1.3Gauss/0.92mGauss  
• Inertial Measurement Unit (IMU/Invensense MPU-6050)  1 kHz − 5Hz(19ms)
- Triaxial gyroscopes ±250◦

/s  
- Triaxial accelerometers ±2g  
- Digital Motion Processor (DMP) 200Hz 

Interface between 
M&C and M2− 7 modules  

- Arduino Mega 2560 (Arduino)  
- Multiplexers (MUX/CD74HC4051E) 

I2C 

Communication between 
ASMS and PC 

Radio frequency modules (Xbee/Xbee-Series1-XB24AWI-001) 

M2 Left Thigh Motion tracking Magnetic Angular Rate Gravity sensor (MARG/GY-87 module) 
M3 Left Leg  - Triaxial magnetometers (Honeywell HMC5883L) ±1.3Gauss/0.92mGauss 
M4 Left Foot  • Inertial Measurement Unit (IMU/Invensense MPU-6050) 1kHz − 5Hz(19ms)
M5 Right Thigh  - Triaxial gyroscopes ±250◦

/s 
M6 Right Leg  - Triaxial accelerometers ±2g 
M7 Right Foot  - Digital Motion Processor (DMP) 200Hz  
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λaxyz =
[
ax, ay, az

]

v→=
λaxyz

‖λaxyz‖

v̂ = [0, 0, 1]*DCM

⎫
⎪⎪⎬

⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

σλa = v→× v̂ (2) 

The orientation correction vector (σλh ) was estimated from the cross 

product between magnetic flux ( h
→

) and directional (ĥ) vectors, Eq. (3). 
The first one uses magnetometer data (λhxyz ) and its offset values (λhoff ) for 
compensating magnetic distortions (hard iron). The second one was 

computed by relating ( h
→

) to its relative orientation, thus, defining the 
magnetic field direction (h). To avoid the effects of declination and 
inclination magnetic disturbances (soft iron), the magnetic field direc
tion (h) was denoted in terms of the horizontal and vertical axes of the 
reference system defining the directional vector (m̂) which is related to 
its relative orientation to obtain the corrected directional vector (ĥ). 

λhxyz =
[
hx, hy, hz

]

λhoff =
max(λh) − min(λh)

2

⎫
⎪⎪⎬

⎪⎪⎭

h
→

=

(
λhxyz

‖λhxyz‖

)

− λhoff

h = h
→*DCM

m̂ =
[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

h2
x + h2

y

√

, 0, hz

]

⎫
⎪⎬

⎪⎭
ĥ = m̂*DCM

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

σλh = h
→

× ĥ (3) 

Two complementary filters were used; (C. filter σλa ) to eliminate error 
measurements from σλa , Eq. (4), and (C. filter σλa &σλh ) for defining the 
reference coordinate system (σλ), Eq. (5). 

[σλa ]t = Wx[σλa ]t− 1 +Wy[σλa ] (4)  

σλ = Wx′ [σλa ]t +Wy′
[
σλh

]
(5) 

Heuristics were used for weighted values of Wx, Wy, W′

x, W′

y. 
A PI controller (σω&σλ) was used for gradually incorporate data be

tween coordinate systems: σω and σλ, as angular displacements (σ), Eq. 
(6). 

Fig. 2. Double-Stage Data Fusion Algorithm: Stage 1: Individual orientation of a body segment; the same process is applied for estimating both, the orientation of the hip, 
and the orientation of the lower limbs, separately. Stage 2: Relative orientation between body segments (qrm); orientation of one body segment (qr) to another (qm). 
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σ = σω +

[

kp(σλ)+ ki

∫ t

0
f (σλ)

]

= [α,ϕ, θ] (6) 

The good gain method [42,43] was used for kp & ki values. 
The angular displacements (σ) were used to estimate the spatial 

relationship between coordinate systems using quaternions (q), 
normalized quaternions to guarantee orthogonality and normativity of 
the estimated body segment orientation, and a Direction Cosine Matrix 
quaternion-based (DCM) for defining the new coordinate systems rela
tive orientation, Eq. (7) and Eq. (8). The same process was applied for 
estimating both, the orientation of the hip, and the orientation of the 
lower limbs, separately. 

q = qt− 1 +

∫ t

0
q(dt) = qt− 1 ⊗ qt =

⎡

⎢
⎢
⎢
⎢
⎣

q0

q1

q2

q3

⎤

⎥
⎥
⎥
⎥
⎦

t− 1

+
1
2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− αq1 − ϕq2 − θq3

αq0 + θq2 − ϕq3

ϕq0 − θq1 − αq3

θq0 + ϕq1 − αq2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

t

q =
q
‖q‖

(7)  

DCM =
(
q2

0 − q′ q
)
−

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦+ 2qq′

+ 2q0

⎡

⎣
0 − q3 q2
q3 0 − q1
− q2 q1 0

⎤

⎦ (8)  

DCM =

⎡

⎢
⎢
⎣

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 + q0q3) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

⎤

⎥
⎥
⎦

Once hip and lower limbs orientation was estimated separately, the 
orientation of one body segment (qr) to another (qm) is computed as 
shown in Eq. (9). 

qrm = q*
r ⊗ qm (9)  

qrm =

⎡

⎢
⎢
⎣

(
q1r *q1m

)
+
(
q2r *q2m

)
+
(
q3r *q3m

)
+
(
q4r *q4m

)

(
q1r *q2m

)
−
(
q2r *q1m

)
−
(
q3r *q4m

)
+
(
q4r *q3m
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)
+
(
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)
]

Where q*
r is the conjugate orientation quaternion of the reference 

body segment and qm the orientation quaternion of another body 
segment. 

The same process is applied for estimating the relative orientation 
between the body segments. Each body segment is differentiated by 
subscripts labeled according to the module location (see 2.3.1 Location of 
the modules: monitoring&computing, and monitoring modules). 

2.2.2. Orientation estimation of the hip and lower limbs using a Digital 
motion Processor 

Two stages were defined for the orientation estimation using a Dig
ital Motion Processor (DMP). In the first stage, the DMP was used to 
obtain the orientation quaternion (q) of the hip and the lower limbs 
independently. In the second stage, the information of each body 
segment, obtained from the DMP, was used to determine the orientation 
of one segment concerning the orientation of another (q′

rm), as described 
in equation (9). 

2.3. Study procedure 

2.3.1. Location of the modules: monitoring&computing, and monitoring 
modules 

Seven modules were used to track the movement of the hip (M1- 
M&C), and lower limbs (M2-M7) during their movement, Fig. 3a. 
M1 − M&C was placed in the pelvis, aligned on the sagittal plane and the 
medial line of the body, and in transverse and coronal planes with the 
iliac crest. M2-M7 were divided into two sections; left & right, and three 
subsections; thigh, leg, and foot. Modules M2&M5 were located at the 
anterior portion of the thigh, centered on sagittal plane and the medial 
line of the leg, and the coronal plane in the middle distance between the 

Fig. 3. Location of the modules; monitoring&computing module (M1 − M&C) y monitoring modules (M2 − M7), and initial position for the experimental procedure.  

J.A. Barraza Madrigal et al.                                                                                                                                                                                                                  



Biomedical Signal Processing and Control 86 (2023) 104938

7

iliac crest and the patella; M3&M6 on the anterior portion of the leg, 
centered on sagittal plane and the midline of the leg, and the coronal 
plane at the median distance between the patella and the ankle; M4&M7 
on the front face of the foot (metatarsal), centered on sagittal plane and 
the midline of the foot, and in the transverse plane in the middle dis
tance between the ankle and the ball of the foot. Elastic bands were used 
for attaching the modules to the body segments. 

2.3.2. Participants 
Six women and six men, 25–35 years and 160–185 cm average 

height, were recruited for the study. Subjects without apparent neuro
muscular problems, injuries, or recent surgeries were admitted as in
clusion criteria. The testing was explained to the participants before and 
during its development, an informed consent was signed for each of the 
participants. The experimental tests were performed with the consent of 
the Instituto Politécnico Nacional Ethics committee. 

2.3.3. Initial position 
The initial position was upright posture, Fig. 3b, straight arms, palms 

resting at the body sides, shoulders and legs alignment on the sagittal 
plane, and feet flat on the floor placed over a horizontal line marked on 
the base (floor) used as a reference/starting point. 

2.4. Evaluation of the algorithm-based system 

This process consisted of measuring and recording the sensors’ data 
to discard error measurements before the evaluation. Wearing the sen
sors modules’, the participants were asked to adopt the initial position, 
placing both feet on the horizontal reference line and staying in that 
position during the calibration procedure. Then participants were asked 
to gait in a straight line, at a steady speed, until completing ten steps (5 
steps for each leg), starting with the right foot, and ending the move
ment with the alignment of both feet (same as on the initial position). 
Two audible marks were used to indicate the beginning/ending of the 
test to participants. The test was realized on a flat walkaway of 10 m 
with no obstacles. 

The algorithm-based system and the digital motion processor (DMP) 

were used for simultaneously recording the hip and lower limbs’ Range 
of Motion (RoM). The recorded data was used for performing a 2D&3D 
motion representation of the described trajectory by the hip and lower 
limbs, Fig. 4. 

For the 2D representation, a conversion from the orientation 
quaternion (q) to Euler angles was performed, as shown in equation 
(10). 

⎡

⎣
α
ϕ
θ

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

arctan
2(q0q1 + q2q3)

1 − 2(q2
1 + q2

2

)

arcsin(2(q0q2 − q3q1))

arctan
2(q0q3 + q1q2)

1 − 2(q2
2 + q2

3

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10) 

Twenty-one plots were arrayed into seven sets of three graphs within 
the same figure. The first set was used to represent the angular dis
placements (α,ϕ, θ) described by the hip (M1 − M&C) around each of the 
reference coordinate axes (X,Y,Z). The following three sets were used for 
the angular displacements of the lower left limb: left thigh (M2), left leg 
(M3), and left foot (M4). Finally, the last three sets were used for the 
lower right limb: right thigh (M5), right leg (M6), and right foot (M7). 

For the 3D motion representation, a 3D arbitrary point with co
ordinates [0, 0, − 1] was defined as an initial stage (t0), the DCM 
quaternion-based equation (8), was used for defining new coordinates 
[x, y, z] of this point, equation (11). 

[x, y, z] = [DCM*[0, 0, − 1] ]nt0 (11) 

Where n is represents total number of samples. 
Considering that different methods were used for recording data, a 

qualitative/quantitative analysis was performed to identify drift and 
noise levels, and to verify the agreement between the algorithm-based 
system and DMP responses, the latter based on the Bland-Altman 
method [27,44–46]. For this purpose, the X, Y, and Z values of each 
data set were compared, in search of systematic errors and possible 
outliers, based on the mean between the results obtained of both 
methods (mean of algorithm & DMP) and, the average differences 
regarding its limits of agreement (Differences), Fig. 5 and Fig. 6. 

Fig. 4. 2D and 3D representation of the trajectory described by the evaluated body segments: angular displacements (α,ϕ, θ) described by the hip (M1-M & C), and 
the segments of the lower extremities, left and right; thigh (M2&M5), leg (M3&M6), and foot (M4&M7), with respect to each of the coordinate axes of evaluation (X,
Y,Z), during the execution of the gait movement, using the proposed algorithm-based system and the DMP. 
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3. Results 

For its analysis, the 2D representation of the trajectory described by 
the hip and lower limbs, Fig. 4, was divided into thirteen segments and 
four stages. The first segment corresponds to the first stage (stationary 
phase/Initial position). The following ten segments - second stage (Gait 
movement), in which ten steps are performed (5 steps for each leg). The 
twelfth segment - third stage (alignment phase), in which the rear limb 
gradually advances until it is aligned with its counterpart. In the thir
teenth segment - fourth stage (stationary phase/Initial position), both 
limbs are aligned, and the body adopts the initial position. 

The angular displacements in the X axis are abduction–adduction/ 
inversion-eversion movements (rotation axis; anteroposterior, the plane 
of execution; frontal), Y axis, flexion–extension/plantarflexion-dorsi
flexion movements (rotation axis; transverse, the plane of execution - 
sagittal), and Z axis, internal-external/medial–lateral rotations in its axis 
(rotation axis; vertical, the plane of execution; transverse). 

Regarding the Bland Altman representation (agreement between 
methods), Fig. 5 and Fig. 6, the data was plotted as a function of the 
responses obtained of both methods (mean of algorithm & DMP), the 
DMP as our reference method. The average differences between the 
responses of the algorithm-based system and DMP (Differences) suggest 

the absence of systematic errors or significant outliers. This is based on 
the symmetry of the distribution of data points regarding the bias and 
considering that these points are within the limits of agreement (LoA). 
The upper and lower limits of agreement (LoA) represent the maximum 
variation range between methods. These ranges were defined with a 
95% confidence interval. 

4. Discussion 

Many proposals IMU/MARG sensors-based, including commercial 
systems, have been reported, some of them are oriented to the assess
ment of specific activities, providing processed information [33,47,48], 
and in some other cases, the information is recorded in SD memory or 
transmitted to a PC for processing [49–51]. This supposes a limitation 
for motion tracking unless an external source for data post-processing is 
available, especially in applications oriented to ambulatory motion 
tracking, either during the assessment of multiple individual body seg
ments or as an articulated body chain, such as the case of gait motion. 
Most of the proposed methods in the literature are centered on the 
orientation estimation of the body segments individually, which could 
be sufficient for analyzing specific applications such as evaluating the 
individual lower limbs [9,30] and gait parameters [29]. Nonetheless, 

Fig. 5. BlandAltman (Agreement between Algorithm-based system&DMP): Comparison of the angular displacements (α,ϕ, θ), described by the hip (M1-M&C) and 
the segments of the left; thigh (M2), leg (M3) and foot (M4), with respect to each of the evaluation coordinate axes (X, Y, Z). 

Fig. 6. BlandAltman (Agreement between Algorithm-based system&DMP): Comparison of the angular displacements (α,ϕ, θ), described by the hip (M1-M&C) and 
the segments of the right; thigh (M5), leg (M6) and foot (M7), with respect to each of the evaluation coordinate axes (X, Y, Z). 

J.A. Barraza Madrigal et al.                                                                                                                                                                                                                  



Biomedical Signal Processing and Control 86 (2023) 104938

9

estimating the relative orientation between the body segments could 
offer an advantage in applications oriented to motion tracking and 
motion analysis of multiple body segments [24]. In both cases, a data 
fusion algorithm is needed for combining IMU/MARG sensor data to be 
used in motion-tracking applications [35,38]. In this regard, many 
proposals, for combining sensor data demonstrated good performance in 
their application have been presented by [1,9,24,28,30,38]. Deviation 
problems [27], small errors due to misalignment of the sensors that rise 
to cumulative underestimation values [38], noise measurements, drift, 
and magnetometer distortions [1,9,24,30], have been reported. 

Concerning this work IMU/MARG sensor-based, Ambulatory Sensing 
Motion System (ASMS) Fig. 1, and Table 1, in combination with a 
Double-Stage Data Fusion Algorithm (algorithm-based system) Fig. 2, is 
presented, which provides not only the processed data during the 
assessment but also allows to store and transmit raw data to a PC for 
post-processing purposes if necessary. The proposed method allows 3D 
motion tracking of the hip and lower limbs movement (7 segments; hip 
and the lower body segments, left and right thigh, leg, and foot), either 
as multiple individual body segments or as an articulated body chain, 
allowing it to be used in motion tracking and motion analysis of multiple 
body segments. A double-stage complementary filter (CF) and PI con
trol, including compensations of magnetic distortions, was used to 
combine IMU/MARG sensor data. Experimental results were compared 
with those obtained using a Digital Motion Processor (DMP). In [35] it 
was demonstrated that the DMP could provide reliable and accurate 
orientation data, especially if magnetic distortion compensations along 
with a data fusion algorithm such as the KF or CF is included. 

The experimental results of this work, Fig. 4 shows that both re
sponses, algorithm-based system and DMP, are close to each other; from 
this, the hypothesis is that both methods allow estimating the orienta
tion with similar performance. It can be observed that the initial and 
final positions of the trajectory described by the body segments are close 
to each other. This behavior is expected, especially considering the 
initial position starts from the idle stay while the final one ends in the 
same body position after the gait evaluation. These observations suggest 
no significant drift values, especially considering that no amplitude 
changes that denote this phenomenon in addition to the initial and final 
position. Besides, there is no evidence of noise levels that suggest that 
the information could be corrupted. This is demonstrated by considering 
that the integration of erroneous measurements during the orientation 
estimation will cause an accumulation of drift over time [9]. This can 
also be seen in the 3D reconstruction of the trajectory described by the 
body segments, since the estimation of the orientation is concerning 
another body segment. If the measurements drifted, the 3D trajectory 
reconstruction would show an offset between the segments describing 
the movement performed on different planes/spaces [27]. Furthermore, 
no abrupt changes in the trajectory described were observed, e.g., from 
90◦ to − 90◦, even when it is based on the representation of the angular 
displacements. This could be because the orientation estimation was 
performed on a quaternion-based approach, which allows the formation 
of a non-singular representation [9]. 

The Bland Altman analysis Fig. 5 and Fig. 6 showed that the 
algorithm-based system is neither underestimated nor overestimated. 
Concerning the DMP, both systems’ responses are within the ranges 
established by the limits of agreement (LoA) without exceeding the 
acceptable difference [27,44,45]. The 0.7◦ RMSE value (M1) and 1◦

RMSE value (M2-M7) indicated that the algorithm-based system com
petes with similar proposals [1,9,24] and even with some visual-based 
systems [28,30,38]. These results suggest that the proposed algorithm- 
based system is suitable to the DMP. 

4.1. Limitations of the proposed method and future work 

In contrast to video-based systems, the proposed method does not 
need specialized personnel or a controlled evaluation environment for 
data capture; it is not susceptible to background conditions or occlusion 

problems [18,19]. Nonetheless, further research is required to compare 
the proposal performance concerning a video-based system to assess the 
feasibility of its use in clinical settings. In this regard, the performance 
should be evaluated with healthy subjects and with mobility conditions 
to determine its usefulness for healthcare and rehabilitation applica
tions. Numerous evaluations report interference due to magnetic dis
turbances, even in controlled environments, when IMU/MARG sensors 
are used [1,9,30,35]. To overcome this issue, compensations for mag
netic distortions (hard iron) and the effects of erroneous measurements 
due to declination/inclination magnetic disturbances (soft iron) were 
included in the present proposal. Although no variations due to mag
netic disturbances were observed, additional tests must be done to 
evaluate its performance in different settings, including outdoor envi
ronmental magnetic perturbances and other motion conditions. The 
proposed algorithm-based system presents similar results to a commer
cial Digital Motion Processor (DMP), except that it has a slower response 
than the DMP, which could be attributed to the parameters of the Pro
portional Integral controller (PI) used to integrate the orientation. In 
that sense, additional tests are required to define the ideal parameters 
for different applications. 

4.2. Contributions 

The proposed method allows 3D motion tracking of the hip and 
lower limbs movement (7 segments; hip and the lower body segments, 
left and right thigh, leg, and foot), either as multiple individual body 
segments or as an articulated body chain; one body segment with respect 
to another contiguous segment, providing information both during the 
assessment without the necessity of a post-processing stage, and for its 
posterior analysis. This feature presents an advantage compared with 
proposals that require a post-processing stage to analyze data, such as in 
the case of [9,24,38]. The proposed method offers a great potential to be 
used in ambulatory motion analysis and motion tracking with applica
tions in different environments. 

The proposed algorithm-based system presents similar results to a 
commercial Digital Motion Processor (DMP). The experimental results 
indicated 0.7◦ RMSE (M1, Hip) and 1◦ RMSE (M2-MT, left and right 
thigh, leg, and foot) with mean values lower than 1◦ when comparing 
the responses of both methods, no singularity conditions or significant 
levels of noise or drift were reported, which are comparable with those 
reported in [1,9,24,28,30,38]. Besides, the Double-Stage Data Fusion 
Algorithm proposed here is not limited to a specific system: it can be 
applied to different devices based on IMU/MARG sensors. 

The 2D and 3D representations showed their application in motion 
tracking of the lower limbs during motion gait; this presents valuable 
information to both the user and the evaluator for visualizing and 
interpreting how the human motor activity was executed. The results 
demonstrate the feasibility of using the proposed algorithm-based sys
tem for orientation estimation of different body segments with appli
cations in medical telerehabilitation. 

5. Conclusions 

This manuscript presented a method for tracking the 3D movement 
of the hip and lower limbs based on orientation estimation using a 
Double-Stage Data Fusion Algorithm for IMU/MARG sensor-based 
monitoring devices. A customized ambulatory sensing motion system, 
consisting of seven monitoring devices, was implemented for this 
application. 

The combination of gyroscope, accelerometer, and magnetometer 
sensor data presents a feasible solution for estimating the 3D orientation 
of multiple body segments. The double state of complementary filters for 
eliminating measurement errors and a Proportional Integral controller 
to incorporate sensor data gradually allowed the proposed algorithm- 
based system to compete with a commercial Digital Motion Processor 
(DMP) with similar performance. No singularity conditions or 
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significant noise or drift errors were reported. 
The experimental results show that the proposed method can be used 

for 3D human motion tracking of multiple body segments, individually 
or as an articulated body chain, providing information both during the 
assessment, without the need of a post-processing stage, and for its 
posterior analysis. Besides, the proposed method suits different IMU/ 
MARG sensor-based wearable sensors. 
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Instituto Politécnico Nacional - Research project SIP: 20230190 and 
20231622. 

Ethical approval 

The experimental tests were performed with the consent of the 
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