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Abstract— Lateral walking gait detection is necessary for
the development of wearable devices applied to side stepping.
To our knowledge, rarely work has been conducted to identify
lateral walking gait by wearable sensors. Based on a hip
exoskeleton, we presented a method for lateral walking gait phase
detection only by two IMUs mounted on the shank. Experiments
were conducted to detect narrow double support, swing of the
leading leg, wide double support, and swing of trailing leg
phases of 12 healthy subjects walking at various speeds. The
performance of four different algorithms including thresholding
(THR), modified k-nearest neighbor named urban buildings
indexing (UBI), random forest (RF), and neural networks (NNs)
was evaluated. The occupation of space resources of NN is the
smallest besides THR. The total recognition accuracy [mean and
standard error of the mean (SEM)] of the RF-based, UBI-based,
and NN-based systems was 97.07% ± 0.07% (off-line), 96.64% ±

0.16% (off-line), and 95.22% ± 0.60% (real-time), respectively.
The recognition time of the models based on RF, UBI, NN, and
THR was 13.3 ± 1.1, 5.7 ± 0.5, 2.6 ± 0.2, and 0.8 ± 0.2 ms,
respectively. The recognition accuracy (cross-subjects) of RF-
based, UBI-based, and NN-based systems was 91.72% ± 0.42%,
89.63% ± 0.48%, and 89.60% ± 0.43%, respectively. The results
demonstrated that the proposed method can be applied to lateral
walking gait detection.

Index Terms— Classification, gait phase recognition, hip
exoskeleton, IMUs, lateral resistance walking.

I. INTRODUCTION

LATERAL resistance walking is a popular hip abductor
strengthening exercise. The conventional realization
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Fig. 1. Lateral walking with hip resistance exoskeleton to replace elastic
band. (a) Lateral walking with elastic resistance band. (b) Lateral walking
with hip resistance exoskeleton.

method is side stepping with an elastic resistance band secured
around the lower extremities [1]. Lateral band walking is
simple and easy to operate. Its disadvantages, however, are
obvious: 1) in the initial phase, the elastic band has no force.
The greater the swing of the leg the greater the resistance.
This will make the muscles increasingly fatigued, which is the
exact opposite of the actual form of muscle exercise. And this
has a greater impact on the blood pressure; 2) during training,
it is impossible to actively control the amount of resistance;
3) when training the muscles on one side of the leg (such
as hip abductors), the muscles on the other side (such as hip
adductors) are not subject to force; 4) it is necessary the person
adapts to the force of the elastic band, rather than the reaction
force of the equipment adapting to the person; and 5) it is
not possible to provide individualized exercise for individual
differences. In order to overcome these disadvantages and to
facilitate the intellectualization and individuation of lateral
resistance walking, our method is to apply resistance to the
hip by exoskeleton during lateral walking, as shown in Fig. 1.

Lateral walking gait detection is a key premise for the
application of hip exoskeleton in lateral resistance walking.
In forward walking, the critical gait events heel strike and
toe off are often used to identify stance and swing phases.
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Most lower limb exoskeletons (LLEs) for forward walking use
pressure sensors to determine stance or swing, and IMUs to
recognize the direction and velocity of walking [2]. However,
lateral walking gait phase division is different from forward
walking. To our knowledge, no work has been conducted for
lateral walking gait detection by wearable sensor system for
now.

The detection of lateral walking gait with inertial sensor
alone has advantages of low physical complexity, small size,
and high portability. A few algorithms and methods have
been presented in LLEs and prosthesis to process inertial
signals for forward walking gait detection. Kim et al. [3] used
two IMUs on the anterior part of the thigh and thresholding
(THR) method to detect gait event for hip assistance exosuit.
Chen et al. [4] proposed a probability distribution model-based
approach for foot placement prediction in the early swing
phase with a wearable IMU sensor. Zhang et al. [5] presented a
continuous phase estimation method based on a dual adaptive
frequency oscillator by IMUs for LLEs. Zhong et al. [6] used
foot and ankle IMUs to detect gait phase for a cable-driven
exoskeleton aimed to improve gait symmetry. Among the
algorithms and methods for inertial signals processing, peak
identification [7] and THR [8] methods are the simplest and
most straightforward. Some researchers have also tried neural
networks (NNs) [9], feature extraction [10], hidden Markov
models [11], [12], Gaussian mixture models [13], and other
machine learning methods [14]. Although above researches
are all for forward walking and cannot be transferred to
lateral walking directly. Their thinking and methods have
laid foundation of lateral walking gait detection by IMUs
alone.

There have been many references and targeted improve-
ments for the phase division and recognition algorithms in
normal gait. The difficulty of this work is that there is no
relevant recognition algorithm research for lateral walking.
We need to research the suitable algorithm by ourselves. More
importantly, the publicly available standard lateral gait dataset
was not available. We also need to collect the gait dataset of
lateral walking by ourselves. The above work is heavy and the
cycle is long, but it is necessary.

The aim of this work was to present a real-time lateral
walking gait detection method based on a trained model
utilizing two IMUs of lateral resistance exoskeleton. The major
contributions of this work are as follows.

1) To our knowledge, this is the first work to identify lateral
walking gait phases only by two IMUs. Four lateral
walking gait phases which are important for the lateral
resistance walking exoskeleton were identified.

2) The algorithm performance of THR, modified k-nearest
neighbor (KNN) named urban buildings indexing (UBI),
random forest (RF), and NNs were evaluated. The real-
time recognition accuracy of the NN-based system was
95.22% ± 0.60%. The recognition time of the models
based on RF, UBI, NN, and THR was 13.3 ± 1.1,
5.7 ± 0.5, 2.6 ± 0.2, and 0.8 ± 0.2 ms, respectively.

3) The cross-subjects test was conducted. The recognition
accuracy of RF-based, UBI-based, and NN-based

systems was 91.72% ± 0.42%, 89.63% ± 0.48%, and
89.60% ± 0.43%, respectively.

4) An experiment to assess the effect of the hip exoskele-
tons on wearers in muscle activity was conducted.
The gluteus medius (GMed) muscle activities in
without wearing the hip exoskeleton (No-exo) and
with the hip exoskeleton actively providing resistance
(Exo-on) conditions were 3.9% ± 0.2% maximum
voluntary isometric contraction (MVIC) and 8.7% ±

0.1%MVIC [mean ± standard error of the mean (SEM)],
respectively. The tensor fasciae latae (TFL) muscle
activities in No-exo and Exo-on conditions were 2.3%±

0.1%MVIC and 20.6% ± 0.2%MVIC (mean ± SEM),
respectively.

II. METHODS

A. Experimental Platform and Equipment

The hip exoskeleton platform in this experiment was
provided by Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, as shown in Fig. 2(a) and (b).
This symmetrical exoskeleton has a size-adjusted mechanism
to fully accommodate wearers of different heights and weights.
Two high-power and low-inertial gimbal motor (GBM8008,
DJI, China) are symmetrically mounted on the waist frame of
the exoskeleton and deliver active resistance to hip abduction
through elastic couplings and two connecting rods. In addition,
the connecting rod parallel to the thigh and the metal
connecting rod wrapping the buttock are connected by a pin
shaft. It provides a passive DOF for hip flexion and extension
during forward walking.

Two IMUs (LPMS-B2, Alubi, China), small and lightweight
attitude sensor with nine-axis and capabilities of wirelessly
transmitting data, were mounted on the shank of subject. The
LPMS-B2 contains three sensors: a gyroscope, an accelerom-
eter, and a magnetometer. Gyroscope and accelerometer are
used in this experiment. The installation position of IMU is
shown in Fig. 2(b) and (c). The x-axis of the IMU points
to the direction of the subject’s lateral walking, the y-axis
of the IMU is perpendicular to the palm of the foot, and
the z-axis of the IMU points to the toe. The pressure insole
module (RX-ES-48P, RouXi Technology, China) is used to
detect plantar pressure during lateral walking as a label for
dividing gait phase. The control module of the exoskeleton
consists of a micro controller unit (MCU) and an application
processor unit (APU). The MCU is based on 168 MHz
Cortex-M4 processor and the APU is based on 1.5 GHz
Cortex-A72 (ARMv8) processing system. The MCU is used
to collect IMU signals and plantar pressure signals, which are
sent to APU via SPI. And then the APU performs real-time
recognition of gait information. Eventually, the APU sends the
recognition results, IMU signals, and plantar pressure signals
together to the computer after packing to facilitate further
analysis.

B. Lateral Walking Gait Phase Division

There are very few studies on lateral walking gait, and
the way to divide the gait is not uniform. For example,
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Fig. 2. Hip exoskeleton and identification system. (a) Major dimensions and components of the hip exoskeleton. (b) Prototype with wearer. (c) Sensors and
control boards. (d) Flowchart for recognition system establishment.

Yamashita et al. [15] divided the lateral gait phase according
to different lateral walking modes (walking, galloping, and
running). Berry et al. [16] focused on lateral sidestepping and
crossover stepping. Kuntze et al. [17] distinguished between
lateral strides in an upright and squat posture. Compared
to them, we are dividing the lateral gait according to the
project task. And our division is sufficient for lateral resistance
walking. In this study, the left leg is the leading leg and
the right leg is the trailing leg. A complete gait cycle can
be divided into different gait stages according to typical gait
events during walking [18]. As shown in Fig. 3, a complete
lateral walking gait cycle was defined for this study. Gait cycle
starts with trailing foot contacts ground (TFCG). At this point,
both legs stand almost straight and body weight gradually
shifts from leading to trailing legs. This stage is defined
as narrow double support (NDS, phase 1). As the weight
gradually moves from leading leg to trailing leg, leading leg
gradually lifts. The instant of leading foot off (LFO) the
ground is regarded as the end of phase 1 and the opening
of phase 2, which is defined as the swing of the leading leg
(SLL, phase 2). Leading foot contacts ground (LFCG) marks
the end of phase 2. Next, enter a stage called wide double
support (WDS, phase 3). During this phase, the legs stand apart
and the body center of gravity gradually shifts to the leading
leg. When the body center of gravity is fully transferred to the
leading leg, the trailing leg off (TFO) the ground and moves
from phase 3 to phase 4. This phase, which continued into the
TFCG, was defined as swing of trailing leg (STL, phase 4).

As can be seen in Fig. 3(b), the lateral roll curve of the leading
leg and the lateral roll curve of the following leg are reversely
symmetrical with respect to the middle of the NDS or WDS
phase. That is, starting from the middle of the NDS or WDS
phase (the intersection point of the two curves), one of the two
curves goes forward and one goes backward. It can be seen
that they show a symmetrical trend. This trend was consistent
with the predicted change in the Angle of both legs during
lateral walking.

In this study, the plantar pressure signal is used as a label
for the occurrence of gait events, and then the gait cycle is
divided into different gait stages based on these labels. Gait
phase divided based on plantar pressure are regarded as actual
classes. Correspondingly, gait phase divided by recognition
systems based on signals of IMUs is regarded as predicted
classes.

This following experiment can be divided into three
stages: 1) collection of experimental data; 2) establishment
of recognition system; and 3) performance evaluation of the
system. The subjects were asked to walk laterally in different
speeds during the experimental data collection periods. Then
the posture data of their legs were collected to prepare for the
follow-up work. In the establishment stage of the identification
system, these pose data need to be screened and processed
to extract feature vectors. This feature training is then used
to train immature models. Finally, these trained models are
transplanted into the recognition system to identify the gait
phase of lateral walking.
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Fig. 3. Lateral walking gait division. (a) Labels derived from plantar pressure.
(b) Variation curve of angle of roll under single gait cycle. (c) Variation curve
of angular velocity of x-axis under single gait cycle. (d) Variation curve of
linear acceleration of z-axis during a single gait cycle.

C. Collection and Processing of Data

In this study, the IMUs signals of nine channels are
collected as raw data: three tilt angles (roll, pitch, and
yaw), angular velocity, and linear acceleration in the x-axis,
y-axis, and z-axis, respectively. At the same time, plantar
pressure signals are collected as labels. The MCU is used to
synchronously collect the posture signal and plantar pressure
signal of the experimental subject during the experiment in
real-time. Among these signals, the attitude signal is sent by
the IMU through Bluetooth technology, and the foot pressure
signal is sent by the pressure sensor through a universal
asynchronous transceiver (UART). The signal acquisition
frequency is 100 Hz.

Twelve adults were recruited to complete the designed
experimental tasks. They were required to sign an informed
consent prior to participate in the experiments. This study

was approved by the Medical Ethics Committee of Shenzhen
Institute of Advanced Technology (SIAT-IRB-200715-H0512,
valid time from January 2020 to December 2022). They
were divided into two groups, A and B. Group A consists
of nine subjects whose experimental data are all included
in the training set to generate the recognition model and
classifier. Group B included three subjects who underwent
two experiments. The data from the first experiment were
included in the training set, and the second experiment was
a real-time recognition test of their lateral gait. Before the
experiment, we conducted the necessary training for each
subject to acclimate to experimental process. Before starting
each data acquisition, participants were asked to stand in the
initial position in the NDS phase pose in order to zero the
IMU device with the upper computer. This addressed the error
due to the experimenter’s installation of the IMU. In this
experiment, subjects were asked to walk laterally in three
different modes. The three modes are fast (0.4 m/s), slow
(0.26 m/s), and “normal speed” (the normal speed as perceived
by the participants), which needs to be conducted twice
(30 steps of lateral walking are required each time). After each
trial, the subjects need to return to the origin to prepare for
the next experiment. The whole experiment was conducted on
the flat ground. We used a metronome to control the subject’s
stride frequency and marked the ground to control the subject’s
stride length (50 cm).

Above collected data need to be filtered and processed
before it can be used to train the model. Dispersion,
redundancy, and correlation are all important metrics for
screening data. In this study, the function xcorr in MATLAB
was used to correlate the signal to eliminate some redundant
signal paths. The signals of three channels were retained:
roll, angular velocity of x-axis, and linear acceleration of
z-axis. Among them, the roll angle was zeroed according to
the collected data of the subject at the initial position to reduce
the influence of IMU position error on the signal.

In addition, the Kalman filter is used to filter the signals of
these channels for removing noise from the signals. Processed
data are shown in Fig. 4. In this experiment, we use a sliding
window to extract the characteristics of the signal. Since the
duration of each phase of the lateral gait is less than 0.8 s,
the length of the sliding window is set to 800 ms, and the
sliding increment is 10 ms. The time domain features of the
filtered data are extracted, mainly including: maximum value
(Max), minimum value (Min), zero crossing (ZC), variance
(VAR), and mean. They are composed in vector form into
the training set (181 350 × 30). They included data for three
modes of fast, slow, and “constant speed” for subjects in
groups A and B. These data were used to train the model and
make the model more capable of gait recognition for lateral
walking. Finally, the mature model is converted into a classifier
dedicated to classification work, which is used to implant
the corresponding recognition system for real-time recognition
experiments. Fig. 2(d) shows the generation process of the
recognition system. We take NN as an example to introduce
how it is integrated into the recognition system. First, based
on the MCU, the subject’s posture data and plantar pressure
data are collected by the IMU and pressure sensors. These
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Fig. 4. Filtered IMU signal. (a) Labels derived from plantar pressure. (b) Variation curve of angle of roll. (c) Variation curve of angular velocity of x-axis.
(d) Variation curve of linear acceleration of z-axis.

data are then processed by the corresponding programs to
form a training set. The training set is then imported into
MATLAB. The training set contains feature vectors and labels,
which are randomly partitioned into three groups: training
(70%), validation (15%), and testing (15%). The number of
hidden layer neurons is set to 30. The training method uses
scaled conjugate gradient (SCG). Cross-Entropy is used as the
loss function. Sotfmax was used as the activation function,
and tenfold cross-validation was used. After the training is
completed, the mature model is derived and the specific
parameters in the model are extracted. These parameters
include the weight matrix (30 × 30) and offset matrix (30 × 1)
for the hidden layer, the weight matrix (1 × 30) and
offset matrix (1 × 1) for the output layer, offset, gain,
etc. Immediately after, the NN-based classification function
NN-Function is written by applying these specific parameters.
After that, this function is composed of the recognition
program together with the signal processing function. Finally,
the data of group B members are collected and their feature
vectors (1 × 30) are input into the NN-Function function to
get the recognition results. Then the labels are combined to
get the accuracy rate. At the same time, the data of group B
members are packaged into a test set and provided to other
algorithms for testing.

D. Recognition Algorithm

The choice of the recognition algorithm is crucial. Some
recognition algorithms have been designed by researchers
to deal with different scenarios. These algorithms have
achieved considerable results and high accuracy in their
fields of expertise. Since there is no reference in the field
of lateral walking gait recognition by IMUs, it is difficult

to determine which algorithm is more friendly to lateral
walking gait recognition before the experiment. For these
reasons, various mainstream recognition algorithms will be
used for reference and comparison. First, the filtered data
and pressure signals are imported into MATLAB to generate
corresponding feature vector sets and labels. Second, the
recognition algorithms in the MATLAB platform are used
to train and test the feature vector set based on the
labels. Finally, the results of preexperiment, which only have
relative reference significance, are shown in Table I. The
accuracy of some types of algorithms is awfully unsatisfactory.
By contrary, KNN, decision tree, and NNs showed anticipated
potential. Therefore, they were selected for corresponding
transformation and finally used to design the recognition
system. In order to further understand the performance of these
algorithms, a specific THR was developed to compare with the
above three algorithms. Ultimately, four suitable algorithms
were selected for designing the recognition system: THR, UBI
(evolved from KNN, explained subsequently), RF (a kind of
decision tree), and NN.

1) Thresholding: The establishment process of THR is
as follows: Based on the collected data and labels, time
domain features of signals closely related to specific events
are identified. These selected features are used to design
appropriate THR according to the certain logic which will be
written into a program for discriminating the target. The results
of the gait phase division according to the labels are shown in
Fig. 3. It can be clearly observed that the corresponding signals
of IMUs have distinct characteristics at the demarcation line
between different gait phases. As shown in Fig. 5, a schematic
of the THR algorithm for gait division is presented. The used
THR is based on feature factors which include four kinds of
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TABLE I
SELECTION OF ALGORITHM (ACCURACY: %)

data: time, the max/min value of the roll angle of the two
legs and the max/min value of the difference between them,
the max/min value and the ZC of the angular velocity of
the x-axis, and the max/min value and the ZC of the linear
acceleration of the z-axis. We take the detection of SLL as an
example. First, when the feature factors related to the lateral
roll angle of both legs appear, it is detected by the feature
factors monitor. Then the detector is passed to the feature
factors accumulator, which causes the accumulator to add 1.
Similarly, the feature factors related to the angular velocity
of the X -axis and the linear acceleration of the Z -axis are
detected when they appear. When the value of the accumulator
exceeds a given value (4 in this article), the feature factors
accumulator outputs the corresponding gait events, such as
front-foot swing and rear-foot stance. At the same time,
the program needs to check if the time factor satisfies the
condition. Finally, after satisfying above conditions, the gait
phase divider derives the gait phase as SLL according to the
combined mode of gait events of both legs. Similarly, using
this approach, other stages of gait phase can be identified.

2) Urban Buildings Indexing: Since the KNN requires
numberless sorting work, as the amount of data becomes larger
and larger, this work will become more and more difficult for
MCU. So that, in the later stage, the model designed with
KNN will not achieve the effect of fast real-time recognition.
However, inspired by the idea of the KNN, the author of this
article has developed a search model named “UBI” which
can perform fast real-time identification. The so-called “UBI”
refers to, in the MCU, a special and preestablished database
which is composed of a 2-D array and a group of 1-D arrays.
The address pointer is stored in the 2-D array which is similar
to the land of a city. The array subscript is used to number
each address, so that the address pointer in the array can be

Fig. 5. Schematic of THR algorithm for gait phase division in lateral walking.

Fig. 6. Roll curve (mean and SD) of single gait cycle of three subjects in
group B.

quickly retrieved. Significantly, these address pointers point to
different 1-D arrays which are similar to high-rise buildings
located in a city. The 1-D arrays store preclassified values
arranged in order. From a certain point of view, the entire
database can be considered as a 3-D database. When a 3-D
data is given, such as the IMU signal, the model can quickly
query the category of the value closest to the signal by using
the array subscripts in the 3-D database to determine the class
of the signal.

Compared to the traditional KNN approach, UBI differs
in that the traditional 2-D addressing is changed to 3-D
addressing. It makes UBI take up less space than the traditional
KNN, but the speed decreases. The construction of the UBI
model requires abundant training data. In this article, it refers
to the signals of the three channels of the IMU after filtering.
The model construction process is as follows.

1) First, two of the three channels of data are used to build
the city’s land (2-D array). According to the variation
range of the two data, it is divided into M parts and
N parts with certain rules and proportions. Meanwhile,
M and N, respectively, correspond to the two dimensions
of the 2-D array.

2) Second, the remaining data in the three channels are
also divided into several parts according to certain
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rules. A sequential linked list is established on the
corresponding 2-D array address. This can speed up
model building.

3) Finally, in order to save storage space, the values in
the sequential linked list need to be extracted and
reconstructed into a 1-D sequential array.

3) Random Forest: RF was formally proposed by
Breiman [19] in machine learning. RF is a decision tree
algorithm. Its basic idea is that multiple decision trees perform
the decision task together to compensate for the lack of
capability of a single decision tree. The RF algorithm used
in this article was proposed by Raileanu and Stoffel [20] in
Annals of Mathematics and Artificial Intelligence. It is based
on the Gini coefficient (a concept in the field of economics,
an indicator used to judge the fairness of income distribution,
with a value between 0 and 1) as a criterion to select attributes
for division. The equation of this Gini coefficient is

Gini(D) = 1 −

N∑
k=1

p2
k (1)

where D = {(x1, y1, z1), (x2, y2, z2), . . . , (xn , yn , zn)} is the
sample set, N is the total number of sample classes (in this
experiment, N = 4) and pk is the proportion of samples in
category k (0 ≤ pk ≤ 1,

∑N
k=1 pk). The smaller the Gini (D),

the higher the purity of the sample set.
4) Neural Networks: A typical NN algorithm mainly

includes input layer, hidden layer, output layer, neuron, and
weights. The main principle of the NN is to continuously
adjust the value of the weight through appropriate strategies,
so that the output value obtained by combining them with the
input according to the given rules will constantly approach
the expected output value. The inputs of the neurons are
transformed into outputs by an activation function. The NN
eventually selected is the Back Propagation Neuron Network,
and its training method is the SCG. It contains two hidden
layers, and the activation function adopts the Softmax. Its
equation is as follows:

Softmax(hi ) =
exp(hi )∑
j exp(h j )

(2)

where h is input of neurons, hi and h j are one of the
elements in the input. In order to simplify the problem,
the output is converted from the original 4 × 1 vector to
the 2 × 2 vector, so the four-classification problem is split into
two two-classification problems. In this study, the loss function
adopts the cross-entropy. For the cross-entropy of binary
classification problem, the loss function can be simplified into
the following form:

L(y′, y) = −[y ln y′
+ (1 − y) ln(1 − y′)] (3)

where y′(y′
= softmax(h)) is the probability of the model

predicts that the sample is a positive example and y is the
sample label (if the sample belongs to a positive example, its
value is 1, otherwise the value is 0).

E. Principle of System Performance Evaluation

The performance of the recognition system is evaluated
using the repeatability of signals, time performance, space
resource occupancy, and recognition accuracy.

1) Repeatability of Signals: Similar to normal gait, lateral
walking gait is a periodic movement. Therefore, in this article,
the variance ratio (VR), which is commonly used to describe
the repeatability of normal gait signals [21], [22]. It was also
used to assess the lateral walking gait. In order to standardize
the data and make the amount of data in each gait cycle
consistent, each set of experimental data of the three members
of group B was cut into 30 steps according to the label
(30 steps for each group). The data for each step is then
interpolated. The formula for calculating VR is as follows [23]:

VR =

1
n

∑n
i=1

( 1
N−1

∑N
j=1 (X i j − X i )

2
)

1
n−1

∑n
i=1

∑N
j=1 (X i j − X)2

(4)

where n represents the amount of data in a single gait cycle,
N represents the number of steps, X i j represents the value of
the roll angle of the i th leg in the j th step, X i is the average
value of the i th data point in step N , and X is the average
value of the gait cycle X i .

2) Time Performance: Model training time and recognition
time are included in the time performance. Training time is the
amount of time spent importing the training data set into the
initial model, training, and producing the mature model.
The recognition time is divided into real-time recognition
time and off-line recognition time. The IMU signals collected
online are filtered and integrated into feature vectors, then
imported into the classifier, and finally the classification
results of the signals are obtained. The time required for this
whole process is called real-time recognition time. The only
difference between the off-line recognition time and the real-
time recognition time is that the recognition procedure takes
place off-line.

3) Occupation of Space Resources: The space resources
occupied by the identification system mainly include three
parts, they are: the space resources occupied by the code of
the whole system before the program runs, the space resources
occupied by the input data in the process of the program
running, and the extra space resources temporarily occupied
by the program running. Due to the different algorithms used
in the models, the space resources occupied by the recognition
systems are also different. It is necessary to calculate the space
occupied by the system in order to understand the performance
of these recognition systems.

4) Recognition Accuracy: Recognition accuracy includes
the total accuracy of the model for the whole gait recognition
and the prediction accuracy of the model for each class (each
gait phase). In this article, the confusion matrix is considered
to calculate the accuracy. The certain value of confusion matrix
is calculated according to (5), and the calculation method of
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total accuracy is defined in (6)

Prediction(i, j) =
Ni j

Ni
(5)

Accuracy =

∑K
i= j Ni j

N
(6)

where K is the number of categories and K = 4 for the four-
class problem. The i represents the i th class in the actual class
(class represented by the label) and the j represents the j th
class in the predicted class (i and j take values of 1, 2, 3,
and 4). Ni j is the number of class i predicted as class j , and
Ni is the total number of actual class i . Prediction (i , j) is the
probability that class i is predicted as class j in each class i .
When i = j , Prediction (i , j) refers to the prediction accuracy
of class i . Accuracy is the proportion of the correct number
(i = j) of predictions over the total number, that is, the total
accuracy.

III. RESULTS

In this experiment, group A had a total of 32 valid datasets,
all of which were used to form the training dataset. Among
them, there are 11 data sets in fast mode, 13 data sets
in slow mode, and 8 data sets in “normal speed” mode.
Subjects in group B had nine sets of valid data in the first
experiment (invalid data were not used for discussion due to
errors in experimental operation and experimental equipment),
and three sets of data for each of the three speed modes.
They are used to join training datasets. After the system was
established, we conducted a second experiment with three
members of group B. First, the model established based on the
NN algorithm is used to identify and classify the IMU signals
in the “normal speed” mode of group B members online. After
real-time recognition, this data are used to perform offline
identification, based on models developed by other algorithms
(RF, UBI, and THR).

A. Repeatability of Signals

In this experiment, VR was used to evaluate the repeatability
of the roll signal; the value of VR is between 0 and 1, with
higher values indicating more dispersed and less reproducible
data. According to formula (4), the VR of S1, S2, and S3
were 0.025, 0.048, and 0.029 (leading leg) and 0.021, 0.30,
and 0.18 (trailing leg), respectively. We plotted Fig. 6 to show
the repeatability of the roll angle signal more intuitively. In this
figure, S1, S2, and S3 represent the three subjects in group B
and are shown in blue, orange, and green, respectively. The
mean of the roll angle is represented by the solid line, and
the standard deviation (SD) of the roll angle is represented by
the shaded area. As can be seen from Fig. 6, the changing
trend of the three participants’ roll angle is almost the same,
and the signal repeatability of S2 is the worst among the three.

B. Training and Recognition Time

The off-line training time is mainly related to the size of
the training data set and the algorithms used in the designed
model. In order to reduce the influence of the experimental

Fig. 7. Time performances based on RF, UBI, NN, and THR. The blue part
represents the training time and the orange part represents the recognition
time.

TABLE II
OCCUPATION OF SPACE RESOURCES

equipment and other factors on the training time, the same
equipment is selected to measure training time. The training
data set consists of feature vectors. As described above (data
filtering), data from six channels of two IMUs (three channels
are selected for each IMU) are composed of a feature vector.
In the off-line training phase, about 200 000 feature vectors of
12 subjects were used to train the model. In this study, there
are four algorithms selected to build the model, three of which
have a training time can be measured. As shown in Fig. 7, the
blue part represents the training time, and the RF, UBI, and
NN are 142, 38, and 54 s, respectively.

The working process of recognition system includes signal
collection, data filtering, feature vector preparation, and
recognition. The frequency of signal collection is 100 Hz,
which is 10 ms, and the time of data filtering and feature vector
preparation is less than 1 ms. For different recognition models,
the time of these steps is the same, so here we only compare
the time of the recognition process of different models. These
results of recognition time are summarized in the orange part
of Fig. 7. The mean recognition time of the models based
on RF (off-line), UBI (off-line), NN (real-time), and THR
(off-line) algorithms are 13.3 ± 1.1, 5.7 ± 0.5, 2.6 ± 0.2,
and 0.8 ± 0.2 ms, respectively.

C. Occupation of Space Resources

In order to more clearly describe the spatial complexity
of the system in tables, some abbreviations are necessary to
declare in advance. The space occupied by the code before
the entire system runs is denoted as P1. The space occupied
by input data while the system is running is denoted as P2.
The additional space temporarily occupied while the system
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Fig. 8. Confusion matrix of gait recognition accuracy based on RF, UBI, NN, and THR.

is running is denoted as P3. As shown in Table II, the
size of space resources occupied by the RF-based system is:
P1 = 1141 kB, P2 = 80 B, and P3 = 816 B; the size of space
resources occupied by the UBI-based system is: P1 = 628 kB,
P2 = 80 B, and P3 = 736 B; the space resources occupied
by the NN-based system is: P1 = 17 kB, P2 = 80 B, and
P3 = 1656 B; and the space resources occupied by the
THR-based system is: P1 = 10 kB, P2 = 120 B, and
P3 = 588 B.

D. Recognition Accuracy

The recognition accuracy of the four recognition systems
is measured based on the same data, in order to objectively
compare their performance, and the accuracy of the system
based on NN algorithm is measured real-time, the accuracy
of the other three systems is measured off-line. In this
experiment, the subjects’ lateral gait signals are divided into
four classes by the recognition system, which are NDS, SLL,
WDS, and STL. The confusion matrix for class results is
shown in Fig. 8, which contains the test results of three
subjects (S1, S2, and S3) under four different recognition
systems. Obviously, the accuracy of the whole gait recognition
is above 95% except for the recognition accuracy (94.09%) of
S3 based on NN algorithm system.

TABLE III
CONFUSION MATRIX BASED ON NN (%)

The recognition results of the system based on NN
algorithm are summarized in Table III. It can be seen that
the system has the highest recognition accuracy to STL and
the lowest recognition accuracy to WDS. In addition, NDS
was mistaken for SLL (6.09% ± 0.47%), WDS was mistaken
for SLL (5.36% ± 1.22%) and STL (5.13% ± 1.51%), and
the rates of these errors were higher, exceeding 5%.

For the sake of comparing intuitively the recognition accu-
racy of these systems for different gait phases, we separately
draw the recognition results of gait phases into a column chart.
As shown in Fig. 9, the recognition accuracy (mean and SEM)
of the four recognition systems (RF, UBI, NN, and THR)
for gait phase NDS was 96.70% ± 0.38%, 95.5% ± 0.6%,
91.90% ± 0.87%, and 96.99% ± 0.30%, respectively. The
recognition accuracy of gait phase SLL was 97.55% ± 0.42%,
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TABLE IV
CONFUSION MATRIX OF S1, S2, AND S3

Fig. 9. Recognition accuracy (mean ± SEM, the subjects included S1, S2,
and S3) based on four algorithms for different gait phases.

97.17% ± 0.57%, 97.05% ± 1.48%, and 97.53% ± 0.15%,
respectively. The recognition accuracy of gait phase WDS was
93.93% ± 0.08%, 92.76% ± 0.12%, 89.51% ± 0.49%, and
95.52% ± 0.21%, respectively. The recognition accuracy of
gait phase STL was 97.79% ± 0.08%, 97.98% ± 0.19%,
97.69% ± 0.16%, and 98.47% ± 0.23%, respectively.

IV. DISCUSSION

A. Time, Space, and Accuracy

Due to the particularity of the THR algorithm, many
parameters need to be set by the designer, and the training time
of the system based on it cannot be measured. However, the
recognition time is much lower than other systems, as shown
in the orange section in Fig. 7. In addition, since the RF

Fig. 10. Accuracy performance based on cross-subject. The orange part
represents the recognition accuracy based on cross-subject and the green part
represents the recognition accuracy of control-group.

algorithm’s strategy is to obtain results by voting on multiple
decision trees, the time performance of its corresponding
system is relatively unsatisfactory. As shown in Fig. 7, RF-
based systems have much longer training times and recognition
times than other systems. In contrast, both UBI-based and
NN-based systems have better temporal performance, and the
difference between the two is that, as shown in Fig. 7, the
training time of the former is shorter than that of the latter,
while the recognition time of the former is longer. It should
be added that for real-time recognition, the recognition time
of the system must be less than the sampling interval. In this
experiment, the sampling interval is 10 ms, and the RF-based
system recognition time exceeds this time, which means that
the RF-based system cannot achieve real-time identification.
Reassuringly, other systems can identify in real time.
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Fig. 11. Lateral walking gait visualization of S1, S2, and S3 based on RF, UBI, and NN. The different colors represent different gait phases. COR refers to
predicting the correct gait phase, ERR1 and ERR2 refers to mistaken for adjacent gait phases and ERR3 refer to mistaken for alternating gait phase.

The space resources of the four recognition systems are
different since the difference of the ideas among the four
algorithms. It is only a few kilobytes of space occupied by NN-
based and THR-based systems, while RF-based and UBI-based
systems take up hundreds or even thousands of kilobytes,
as shown in Table II.

On the contrary, the recognition accuracy of these
systems (except for THR-based system) shows an opposite
trend compared with their time performance and space
complexity. The total recognition accuracy (mean and SEM)
of the RF-based, UBI-based, and NN-based systems was
97.07% ± 0.07%, 96.64% ± 0.16%, and 95.22% ± 0.60%,
respectively, as shown in the green part of Fig. 10. They
are gradually reduced, which is contrary to their temporal
performance and spatial complexity. A combination of other
algorithms and sensor signals can be used for lateral walking
gait detection. Ryu et al. [24] compared KNN, LDA, and
QDA in gait phase detection, and the method of KNN was not
inferior to the other two methods. Shi et al. used the methods
of KNN, support vector machine (SVM), and RF to identify
gait and demonstrated the superior performance of RF [25].
Huang et al. [26] and Hasan et al. [27] both improved CNN
and used it to design gait recognition models with satisfactory
accuracy. In addition, the recognition accuracy of THR-based
system (mean and SEM) is 97.53% ± 0.09% in this work,
as shown in the green part of Fig. 10, which is the highest
of all recognition systems. This is consistent with the findings
of Bejarano et al. [28] and Rueterbories et al. [29], all of
which have high-level of accuracy. Although the study of this

experiment is lateral gait, the method of THR still has certain
reference significance.

B. Ability of Cross-Subject

A cross-subject experiment was additionally performed to
further investigate the performance between these recognition
systems. Except for the training data set, the experimental
process was the same as in the previous experiment. Group B
participants’ data were excluded from the training data set,
which used only group A members’ data (this part of the data
was the same as the original data). In addition, recognition
effect of THR for known data is qualified, but the recognition
effect for cross-subjects is very poor, which leads to its low
universality. Due to these shortcomings of THR, we only do
cross-subject experiments on the recognition system based on
the other three algorithms and they are all off-line. Of course,
the test data used in the cross-subject experiment is the same
as the test data above, which is still the data of the IMUs
signals of the three members of group B (S1, S2, and S3)
traveling laterally in “Normal speed” mode.

The experimental results are shown in Table IV. The total
recognition accuracy (mean and SEM, cross-subjects) of RF-
based, UBI-based, and NN-based systems is 91.72% ± 0.42%,
89.63% ± 0.48%, and 89.60% ± 0.43%, respectively. For RF-
based system, the recognition accuracy of WDS in lateral gait
phase is the worst (88.91% ± 1.12%), the most conspicuous
errors were: NDS was misidentified as SLL (7.61% ± 1.43%),
SLL was mistaken for WDS (4.53% ± 0.45%), WDS was
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Fig. 12. GMed muscle activities under different lateral walking conditions.

mistaken for SLL (4.97% ± 0.38%), and STL (6.12% ±

1.02%), STL was mistaken for WDS (5.16% ± 1.67%); For
UBI-based systems, the recognition accuracy of SLL is the
worst (88.36% ± 1.06%), the most conspicuous errors were:
NDS was mistaken for SLL (10.35% ± 2.93%), SLL was
mistaken for WDS (7.81% ± 1.76%), and STL was mistaken
for WDS (6.16% ± 0.84%); For the NN-based system, the
recognition accuracy of NDS is the worst (84.93% ± 2.14%),
the most conspicuous errors were: NDS was mistaken for SLL
(9.24% ± 1.42%), WDS was mistaken for SLL (5.84% ±

1.13%), and STL (6.33% ± 1.40%).
Visualizing the feature vectors in 2-D spaces, as shown in

Fig. 11, with the blue, green, orange, and fuchsia sections
representing the feature vectors of the NDS, SLL, WDS,
and STL, respectively, and the “⃝” representing the correct
classification points, “×”, “+,” and “∗” represent classification
points of error (“×” and “+” denote mistaken for adjacent
classes, “∗” denote mistaken for alternating classes). The
ERR1 and ERR2 were unavoidable since the borderline may
not be clear. However, for ERR3, the algorithm can be
improved according to the characteristics of the lateral gait
is quasi-periodic, so as to reduce the occurrence of ERR3.

Although the dimensionality reduction of multidimension
feature vector results in the loss of information, the 2-D graph
can intuitively show the relative positions of different phases
in space. It is easy to find that in the 2-D graph of S1, S2, and
S3, the distribution of feature vector corresponding to different
phases of gait is approximately the same, as shown in Fig. 11.

We used the results of no cross-subject experiment as a
control group. And put it together with the results of cross-
subject experiments to draw a histogram. This can intuitively
compare the differences between the no cross-subject
experiment and the cross-subject experiment. As shown in
Fig. 10, compared to no cross-subject experiments, the
recognition accuracy of the UBI system decreased the most
(7.01%) in cross-subject experiment. The recognition accuracy
of RF and NN systems decreased by about the same amount
(about 5.5%). This trend is consistent with the findings of
Zhang et al. [30] and Rosa et al. [31].

C. Muscle Activity

We also conducted an experiment to assess the effect of the
hip exoskeletons on wearers in muscle activity. The muscle

Fig. 13. TFL muscle activities under different lateral walking conditions.

activity of GMed and TFL of five subjects were recorded.
The trials include lateral walking No-exo and lateral walking
Exo-on. The resistance force is set to be 7 nm. Each subject
has a 30-min rest after each trial. The muscle activity was
presented as a percentage of the MVIC (% MVIC) [32].
EMG data collected during the target resistance torque phase
were normalized to their muscles’ respective MVIC trials and
therefore expressed as % MVIC. The result of muscle activity
is reported in the form of the mean ± SEM. The effects of
different conditions on the muscle activity were analyzed using
ANOVA. Differences among walking conditions were assessed
using the two-sided paired t-tests.

The GMed muscle activities in No-exo and Exo-on
conditions were 3.9% ± 0.2%MVIC and 8.7% ± 0.1%MVIC
(mean ± SEM), respectively. The corresponding increment in
the Exo-on condition was 123.1% (refer to Fig. 12).

The TFL muscle activities in No-exo and Exo-on
conditions were 2.3% ± 0.1%MVIC and 20.6% ± 0.2%MVIC
(mean ± SEM), respectively. The corresponding increment in
the Exo-on condition was (refer to Fig. 13).

D. Limitation

Although the proposed gait phase recognition method can
be used in lateral walking, a number of limitations of this work
exist. First, the effect of the number of subjects or the number
of feature vector on the accuracy of the identification system
was not explored. The methods of Gu et al. [33] may be used in
the future work. Second, the recognition results under different
locomotion modes also deserve to be studied. Finally, since the
need to use the same test data to compare the performance of
different recognition systems, only one system is real-time.
Finally, more advanced control strategies [34], [35] will be
researched for the exoskeleton.

V. CONCLUSION

In this work, we presented a method for lateral walking gait
phase detection only by two IMUs mounted on the shank.
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A hip exoskeleton applied to lateral resistance walking was
developed. Experiments were conducted to detect four lateral
walking gait phases at various speeds. The performance of four
different algorithms was evaluated. The results demonstrated
that the time, space, and accuracy performance of the method
met the requirements of lateral walking. It can be used to
develop wearable exercise devices for lateral walking gait. This
article is a report of the initial exploration of the application
of the lateral exoskeleton. Later in the project, IMUs will be
designed to be mounted on the lateral exoskeleton.
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