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Abstract   
The emerging needs of human beings are pushing manufacturing companies from mass production to mass customization. The 
occurrence of these new challenges leads to a change of scenario where the robot no longer works isolated from human to a scenario 
in which the robot collaborates with the human in the same workspace (collaborative robotics). Wearable sensors using inertial 
measurement unit (IMU) are widely used to capture human upper body gestures in which the set of gesture being recognize is 
very large. However, foot gesture approach is starting to gain some places in applications where human’s hands are occupied when 
interacting with robots. This study presents an insole-based foot gesture recognition method for cobot operation mode selection. The 
insole is composed of an IMU and four force sensors. The classification algorithm uses a support vector machine (SVM) classifier 
based on features extracted by means of dynamic time warping (DTW) applied to only one reference gesture signal. Five human 
participants are used for the dataset. As a case study, the system was interfaced in real time (real-time classification algorithm) 
using a Simulink 2020a scheme with Universal Robots UR5 (5 kg payload). The worst-case recognition accuracy is around 88%. 
The algorithm is able to adequately discriminate between 10-foot gestures by means of a wearable insole sensor incorporated into 
the insole. Moreover, this study shows that, the control gesture can accurately be recognized from other current activities such as 
walking, turning, climbing the stairs, and similar.

Keywords Human–robot collaboration · Instrumented insole · Foot gesture recognition · Support vector machine · 
Dynamic time warping

1 Introduction

The advent of collaborative robotics has led to the 
development of new applications such as third-hand robotics 
where robots work as an extension of the human limb 
as a support and assistant [1, 2]. These new applications 
require the development of new intuitive, user-friendly and 

ergonomic communication interfaces between the robot 
and the human [3]. In doing so, portable and intuitive 
communication devices have emerged and enable various 
robot control modes in the industry. Recent examples deal 
with the recognition of human hand gestures acquired by 
means of inertial measurement units for robot mode change 
and control applications in the manufacturing environment 
[4]. The advantage of using inertial measurement units lies 
in their mobility and small size. It does not restrict human 
movements and appears to be more robust to environmental 
disturbances and constraints such as noise and brightness [4, 
5]. Studies dealing with the recognition of human gestures 
based on inertial measurement sensors are of various types 
and make it possible to detect both gestures of the upper 
parts of the human [3, 6, 7] and very recently those of the 
lower parts [8–11] based on foot gestures. However, aside 
from the nature of the input command gestures, there is a 
concern for the processing of time series data derived from 
the different gestures, particularly, on the topic of real-time 
segmentation and classification. It is commonly assumed in 
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the literature that the best classification result for time series 
data in terms of accuracy is achieved using dynamic time 
warping (DTW) combined with 1-NN (nearest neighbour) 
[12, 13]. In such process, the input signal is compared with 
the different signals from the database or key signals of each 
class considered. This approach explores the concept of 
similarity in the sense that the class with the closest distance 
is the one that best matches the signal under evaluation. 
However, for systems with low processing capacities and 
for real-time implementation objectives, this structure turns 
out to be costly in terms of computation time.

This article aims to address applications such as the 
third-arm robotic where lower body gestures are desired for 
hand-free interaction with the robot. Moreover, a particular 
emphasis is placed on the DTW-based classification mech-
anisms used as a tool for determining the signal features 
based on a single reference gesture rather than considering 
either all of them [13] or each representative gestures for 
different classes of the dataset [12].

The project suggests controlling robotic actions through 
10 simple and compound foot gestures for controlling pos-
sible modalities of high-dimensionality cobot with a low-
dimensionality wearable device such as a smart insole. The 
contributions to this article are as follows:

•Recognition of 10 simples and compounds foot gestures 
foot by means of a sensor placed inside an instrumented 
insole
•The use of DTW as a tool for determining the temporal 
characteristics of gestures based on a single reference 
gesture signal. The aim is to compute rather than the 
similarity between classes, the dispersion base on a single 
reference gesture
•Discrimination between control gestures and those of 
everyday life applications such as walking, turning, going 
up and down stairs without the need of a locking gesture

The major contribution to this article is to show that the 
DTW approach based on a single reference foot gesture can 
been used as features for an SVM classifier and adequately 
discriminate between command and no command gestures 
such as walking, turning, going upstairs and going down-
stairs. The proposed method is simple and extensible and 
can be potentially further improved by combining with other 
features/related method such as mean and standard deviation 
which perform well in time series classification.

The rest of this work is organised a follow: Section 2 of 
this article reviews the related works to contextualize the 
contribution of this research work. Section 3 presents the 
material used and the paper’s primary contributions: which 
is the use of DTW approach based on one reference gesture 
for the selection of cobot operating mode. Section 4 pre-
sents the experimentation and the results obtained. Section 5 

presents an overview of the limit of the study, and Section 6 
presents the conclusion and future works.

2  Related works

Firstly, the related work on foot gesture recognition as 
command centre is covered in Section 2.1 and then a brief 
review of the most different existing methods for foot ges-
ture recognition based wearable sensors is analysed in Sec-
tion 2.2. In these related works, the previous studies on 
foot gestures-based pressure sensor matrices and features 
selection method such as DTW are particularly covered with 
other classification algorithm such as SVM (support vector 
machine) classifier.

2.1  Foot gesture as command centre

Control based on foot gestures is a fairly recent research topic 
which tends to impose itself in applications mainly for people 
suffering from limb deficit in the context of the control of 
prostheses [14]. This control approach is done depending 
on whether you are standing or sitting. According to a study 
carried out in [15], which demonstrates that for healthy 
people interacting with a mobile phone, for example, there 
are configurations according to which the command based 
on foot gestures would be more beneficial than that based on 
hand gestures with a satisfaction rate of nearly 70%. From 
this observation, it follows that, for an application such as the 
third robotic hand where one is often led to operate the robot 
in a standing position, the command based on foot gestures 
appears to be the ideal solution even though the feet also 
fulfil the main function of supporting the limbs of the human 
when the latter is in a standing position [8, 16]. Various 
works going in this field have made it possible to set up these 
strategies both for control of mobile phone [15, 17], creation 
of music from foot gesture recognition [18] or performing of 
navigational tasks in interactive 3D environments [11]. Other 
applications have focused on the field of surgical assistance 
[19]. One of the first applications of this technology in the 
context of robotic control is inherited from Sasaki et al. 
[16], which proposes an interactive system for controlling 
the position of two robotic arms by the movement of the 
user’s foot, and the grip of each arm is controlled by the 
toes. Recently, a UR5 robotic system control approach is 
explored in [8] without referencing any real-time application 
of the proposed control strategy. Independently of the field 
of application, two technologies of portable sensors are the 
most recurrent, namely the systems based on sEMG (surface 
electromyography) and those based on inertial measurement 
unit (IMU). Moreover, independently of the type of sensor 
being used, the need of segmentation and classification for 
gestures recognition arises [20].



The International Journal of Advanced Manufacturing Technology 

1 3

2.2  Time series–based classification approaches

Time series classification is usually based on either features-
based method, model-based method or distance-based method.

Independently of the method being used, the necessity 
of accurate signal segmentation arises. The purpose 
is to determine at which time the command gesture 
is set to start and when it is set to finish. Usually, 
the segmentation approaches use a window length 
calibrated on the gesture duration, and the starting point 
might either be a sliding window or a given threshold 
position as defined by [18]. Once the segmentation is 
done, time series classification is required. For time 
series recognition approaches in general, distance-based 
approaches using DTW like 1-NN DTW appear to be a 
state of art in terms of accuracy. However, such algorithm 
has a computational issue, and for simple online 
application, it requires high computational capacities. 
Therefore, features-based time series classification 
has been considered in the latter, and it is commonly 
used in the field of gesture input modalities for cobot or 
mobile phone control. Table 1 presents an overview of 
the different recognition methods used.

Features-based time series classification involves 
automatic time series or hand-crafted times series features 
selection. The state-of-the-art result in feature-based time 
series classification lies in CNN (convolutional neural 
network). Recently, Aswad et al. [8] achieved nearly a 
99% classification accuracy recognition from time series 
classification based on 2D-CNN. However, for the same 
reason stated above concerning the computational burden 
required, 2D-CNN was not considered for the application 
being proposed. Moreover, in this paper, the dimension of 
gestures has to be the same (windows length) to transfer 
the selected features of the data inside each pixel of an 
image, and this segmentation is done manually. Another 
method with state-of-art result is the 1D-CNN used for 
the classification of time series with consideration of 

some temporal dependencies between sensor signal being 
analysed. However, it is required to define a specific 
structure according to the frame of signal being analysed 
[21]. Other approaches uses statistical features in time 
and/or frequency domain to compute for features and 
then classify through simple SVM classifier [18]. Those 
approaches are characterised with low computational 
burden but cannot account for temporal distortion in the 
time series signal. Therefore, DTW which can manage 
signal dilatation tends to be of great interest if it is used as 
feature extraction method. This line of thought was firstly 
introduced by Kate [13]. In his study, the author uses 
DTW as feature extractor and computes DTW distances 
between every set of the training samples and then uses 
the distance acquired in combination with SAX method to 
train an SVM classifier. However, the method proposed is 
computationally dependent of the training size. Another 
approach based on DTW as features extraction method 
uses a centroid data to represent each class for which 
the DTW will then be computed and used for training 
purposes of an SVM or a clustering approach [22]. More 
recently, one approach combines 1D-CNN with local 
DTW features extraction method from each class centroid 
for recognition processing [23].

However, from the author’s point of view, no work has 
considered only one reference signal or gesture using DTW 
features extraction method to discriminate between time 
series signal classes. Thus, in this work, three hypotheses 
are formulated as follows:

1. It is possible to discriminate between a set of 10 command 
gestures and non-command gestures by means of a single 
time series reference gesture with high accuracy

2. The classification algorithm is mainly based on the 
nature of the reference gesture being used

3. It is possible to compute features selection based on 
DTW by means of a static reference gesture (the standing 
position)

Table 1  Overview of the 
different classification method 
uses for upper and lower body 
recognition of input signal

Article Upper body Lower body Method Comment

[3] ☒ ☐ ANN (artificial neural network) Hand gestures (8 statics gestures 
and 4 dynamics gestures)

[6] ☒ ☐ CNN + NN (convolutional neural 
network and neural network)

Hand gesture (10 statics gestures)

[8] ☐ ☒ 2D-CNN 5 foot gestures
[9] ☐ ☒ 2D-CNN 1 foot gesture
[11] ☐ ☒ 2D-CNN 4 foot gestures
[18] ☐ ☒ SVM 5 foot gestures
[29] ☐ ☒ 2D-CNN 8 foot gestures
[30] ☐ ☒ LDA (linear discriminant analysis) 6 foot gestures
[31] ☐ ☒ LR (logistic regression technique) 1 foot gesture
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3  Methodology

First, the insole hardware and software used for the foot 
gesture command is presented in Section 3.1, and then 
the data processing and pipeline approaches used are 
presented in Section 3.2. The gestures dictionary used for 
cobot control is defined in Section 3.3. The data processing 
and preprocessing adopted are presented in Section 3.4. 
Section 3.5 presents the concept of dynamic time warping 
for time series signal, and Section 3.6 presents a proof of 
concept on the advantages of using such approach in the case 
of foot gesture recognition. Finally, Section 3.7 presents a 
comparison of the different classifiers in order to choose the 
most suitable one for the application.

3.1  Insole hardware and software architecture

The insole device presented in Fig. 1 is located at the foot 
arch position. The detailed design was previously presented 
in [25]. It contains a 9-axis motion processing unit MPU9250 
[26], which measures the foot’s acceleration, velocity, and 
orientation through a set of 3-axis accelerometer, 3-axis 
gyroscope, and 3-axis magnetometer combined with a digital 
motion processor (DMP). Moreover, four force-sensitive 
resistors (FSR), two in the forefoot position and two in the 
heel position were also integrated to measure the pressure 
applied on the insole. The analogue signals acquired from 
the pressure sensors were converted by an analogue-to-
digital converter (ADC) with a 12-bit resolution acquired 

with an ESP32 WiFi module which is also used to send data 
to the Linux server using MQTT protocol.

The overview of the proposed foot gesture recognition 
system is illustrated in Fig. 2.

The signal processing steps used in this article are 
the same as the ones depicted in Aswad et al. [8]. As the 
system computes foot gesture command detection, it 
requires data information from the human’s foot. The aim 
of the recognition is to control UR5 (Universal Robots, 
5 kg payload) robot through foot gesture. The instrumented 
insole acquires, processes, and uses MQTT protocol to 
transmit wirelessly the data to the computer running a ROS 
server. Then, a communication channel is set between the 
ROS server and MATLAB-Simulink 2020a for online data 
acquisition and recognition. The sampling frequency used in 
the data processing and transmission is 500 Hz [24].

3.2  Experimental protocol with human participants

The experimental protocol is conducted with five (5) 
participants which consists of four (4) distinct phases as 
shown in Fig. 3.

For each participant taken individually, the first phases 
consist of protocol agreement and exclusion criteria evalu-
ation. The exclusion criteria are as follows: the participant 
should be able to stand without a supportive device, they 
must have both physical motor and intellectual impairment, 
and the female participant must not be pregnant. Five male 
participants with an average age of 27.5 were recruited 
among our lab’s colleagues. This study is approved by the 

Fig. 1  Insole’s device sensors

Fig. 2  Suggested pipeline for 
the training, validation, and 
real-time execution
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University of Quebec at Chicoutimi (UQAC) Ethics Com-
mittee (Research Ethics Board) under number 2022–837. All 
participants signed an informed consent form.

The second phase involves as training and data 
acquisition. Here, each participant is asked to do three 
main sets of actions. The first one is the recording of the 
command gestures. This recording is based on the use of 
a fixed window size of 2  s. This window is considered 
sufficient to be able to perceive all the dynamics of one 
command gesture. Moreover, in opposition to the moving 
window techniques widely used in the case of human 
activity recognition [14], a windowing system based on an 
input conditions is used. Indeed, it is assumed that all control 
gestures begin with a stable equilibrium position without 
which there would be no possibility of sending command 
to the robot by means of foot gesture without enhancing 
the risk of falling or poor posture. This entry condition 
is subordinated to a standing position of the user. It is 
materialized by two joint conditions, the activation of all the 
FSR’s sensors and the reset of y-axis acceleration to offset 
values, i.e. 0 for some participants and 1 for others. When 
the triggering condition is activated, the participant is asked 
to perform the 10 predefined gestures which are presented to 
him by means of a video. In order to control the sequences of 

recording or not of the data, the operators have the latitude 
to leave or not the standing position by slightly bending the 
foot so as to break the condition on the activation of the 
FSR sensors. For each recording gesture, the participant is 
required to perform each gesture 10 times according to its 
different rhythms (fast, slow, medium).

The last activity in this phase is the recording of normal 
human behaviour in everyday life. In doing so, the partici-
pant is asked to execute the extended instrumented time up 
and go test (e-iTUG) about 3 or 5 times. This test is imple-
mented by repeating a set of movements in a cyclic way 
without the need to concern about the activated or not acti-
vated state of the system. The participant is invited to do the 
following set of movement as described in Fig. 4.

Each participant is asked to do the following in one-cycle 
activity: get up from a seated position, walk in a straight line, 
turn 180 degrees, walk in a straight line, go towards the stairs, go 
upstairs, go downstairs and sit. The recording process follows the 
same segmentation approaches base on the triggering condition 
used in the recording phase of the command gesture. Moreover, 
the participant is asked to stay in standing position for almost 
5 s in order to get the reference signal gesture as it is assumed to 
be the best choice in this case. All the data recorded during this 
e-iTUG are categorized as non-gesture commands (class 11) and 

Fig. 3  Experimental protocol
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presented in [28]. The last phase is real-time implementation of 
the proposed foot gesture recognition process. In this phase, the 
data from foot gesture are acquired through the same segmenta-
tion process as the one used for the training (triggering condition 
and moving window of fixed size).

The proposed real-time implementation can be summarized 
in Fig. 5. The data recording is conducted by a fixed window 
of 2 s when the triggering condition is satisfied. This triggering 
condition is related to the FSR’s sensors and y-axis values of 
acceleration as it is assumed that when standing, all the FSR’s 
sensors might be activate and the y-axis acceleration might be 
constant or equal to the offset values depending on the human’s 
way of standing. The algorithm then proceeds to compute DTW 
features based on the reference gesture which is then used in a 
classic SVM classifier for performing the SVM-based DTW 
classification for gesture recognition and submit an operat-
ing mode to the cobot. In this experimentation, the human is 
required to assemble in accordance with the cobot partner, part 
of a motor. Therefore, a set of cobot operating mode can be 
chosen solely by the recognition of human’s foot gesture input. 

The cobot is then required to select an appropriate algorithm 
from the available operating modes such as trajectory tracking 
and collision avoidance.

3.3  Foot‑based command: gesture dictionaries

When referring to Table 1, one can observe that foot gesture 
input modalities often have a limited number of possibilities 
(8). In this research work, one aim is to extend the gesture 
input modalities to 10 for the control of complex system 
operation. Thus, a dictionary of 10 command gestures has 
been formulated. It is composed of an extension of the five 
simple foot gestures derived from Aswad et al. [8] and com-
pound gestures as defined in Tables 2 and 3. The suggested 
algorithm should be able to differentiate these 10 gestures 
from those executed in the e-iTUG, which represents daily 
activities (not associated to a command for the cobot).

Once identified, the foot gestures are then mapped with a 
set of cobot operating mode. In this study, a set of different 

Fig. 5  Real-time execution 
algorithm from data acquisi-
tion to the execution of a cobot 
command for operating mode 
selection

Table 2  Representation of the 
five proposed gestures denoted 
from G1 to G5 as defined in 
Aswad et al. [8]
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cobot states which can help the assembly process has been 
defined. The different cobot’s modes used in this article can 
be activated at any time when the mapping gesture is per-
formed. Those modes are defined as follows:

• Free drive mode: with this mode, the robot can be held 
by hand and taken to a given target location for learning

• Autonomous mode: the robot performs a given motion 
by taking a piece from a position A to the assembly path

• Learning new assembly process and part locations: The parts 
location can be modified and indicated through the robot 
using the free drive mode, then learning new task is defined 
as the ability of the robot to learn the given parts locations

• Force control mode: It is defined as humans having phys-
ical interaction with the robot (force control)

• Other general movements are also defined like precise 
trajectory control, fast trajectory control, moving robot 
to home position, stopping robot, turning left or right the 
robot configuration

The following commands with mapping gestures are pre-
sented in Table 4.

The proposed foot-based dictionary mapped with cobot 
operating mode must be decoded in order to accurately 
scope the user’s intention when interacting with the cobot. 
The next section proposed the overall process for data acqui-
sition and features selection.

3.4  Data acquisition, segmentation and filtering

The gestures presented in Tables 2 and 3 are acquired 
by an instrumented insole worn in the left foot. In this 
study, the gestures of 5 participants (healthy adults) were 
recorded. The measurement time of each gesture was set 
at two (2) seconds. For numerical simulation, signals from 
the 3-axis accelerometer, 3-axis gyroscope and the 4 FSRs 
are exploited. The details from the insole’s signals are pro-
vided in Table 5. They are then used as entry for the DTW 
features–based SVM classification.

The gestures are assumed to start from a standing posi-
tion and end in the same position. In fact, this is what hap-
pens in reality, so the data are recorded using this princi-
ple. As for real-time implementation, the same approach 
is used as depicted in Fig. 5. Thus, the authors formulate 
the hypothesis that it is possible to compute features selec-
tion–based DTW by means of a static reference gesture (the 
standing position). When the foot gesture signal data are 
given as input, the set of signals according to the defined 
window of two (2) s is proceeded to signal filtering block 
which is based on a low-pass fourth-order FIR (finite impul-
sion response) Butterworth filter with a cut off frequency of 
75 Hz. The cut off frequency is designed based on the obw() 
MATLAB function which helps identify the portion of sig-
nal in the frequency domain belonging to the human being. 
Then, the filter design MATLAB function (FilterDesigner) 
is used to design the filter.

3.5  Dynamic time warping: distance feature

DTW is a distance tool used to measure the dissimilar-
ity between two times series sequences after aligning 

Table 3  Representation of the 
five new proposed gestures 
denoted from G6 to G10

Table 4  Foot mapping gesture

Foot gesture Cobot operating mode

G1 Free drive mode
G2 Fast trajectory control
G3 Precise trajectory control (Slow)
G4 Autonomous action in shared activity
G5 Stopping the robot
G6 Learning new tasks for assembling process
G7 Physical collaboration / force control mode
G8 Moving robot to home position
G9 Turning left (robot)
G10 Turning right (robot)
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them. It allows similar shapes to match even if they are 
out of phase allowing elastic (warping) shifting of the 
time series [13]. Given two-time series Q and R, DTW 
distance is computed by first finding the best alignment 
between them. To align the two time series, an n-by-m 
D matrix is constructed whose (i, j) element is given 
by Di,j =

(

qi − rj
)2 , which represents the cost to align 

the point qi of time series Q with the point rj of time 
series R. An alignment between the two time series 
is represented by a warping path, W = w1,w2,… ,wk , 
in the matrix which has to be contiguous, monotonic, 
start from the bottom-left corner and end at the top-
right corner of the matrix. The best alignment is then 
given by a warping path through the matrix that mini-
mizes the total cost of aligning its points, and the cor-
responding minimum total cost is named the DTW dis-
tance. Hence, as defined in [12], DTW(Q,R) = WNN with 
Wij = Dij + min(wi−1,j,wi−1,j−1,wi,j−1) . The minimum cost 
alignment is computed using a dynamic programming 
algorithm. DTW also has a multivariate version com-
monly used for multi class series classification, but it is 
well overtaken by 1-NN DTW univariate time series clas-
sifier [20]. As one might consider, 1-NN DTW appears to 
be time consuming due to the need of computing DTW 
between a time series T and each time series present 
in each class [13] or more recently in each centroid (a 

centroid represents a central time series which can well 
represent its class) [22]. Moreover, for a set of n classes, 
n2 DTW distance computation is required, which is time 
consuming. The proposed approach uses the human 
standing posture as reference gesture signals, and then, 
the dataset is composed of basic DTW distances com-
puted for every one of our 13 signal channels with the 
reference gesture signals. An analysis of the impact 
of the reference signal choice is shown in Section 4.3. 
Therefore, the accuracy achieved is purely dependent on 
the accurate choice of the reference signal. In the case of 
foot gesture recognition as implemented in this study, it 
appears that the standing posture is an excellent choice 
for classification purpose.

3.6  Dynamic time warping as features selection 
method–based one reference gesture signals: 
proof of concept

In order to evaluate the capacity of the proposed gestures to 
be able to determine whether or not a characteristic allows 
good features identification of gestures as suggested in [27], 
the ANOVA statistical analysis is used. It is calculated from 
the null hypothesis which implies that the distribution of 
all the calculated characteristics distribution is similar. The 
null hypothesis considers that if the probability (p-value) 

Table 5  Insole’s device signals Signal’s name Description Signal’s origin

AcX, AcY, AcZ Acceleration in the 03 axis (X, Y, Z) 3-axis accelerometer
VaX, VaY, VaZ Angular velocity in the 03 axis (X, Y, Z) 3 axis gyroscopes
P Euler’s angle: P (pitch) DMP (digital motion processor)
R Euler’s angle: R (roll)
Y Euler’s angle: Y (yaw)
F1, F2, F3, F4 FSR sensors displayed at the forefoot (right and 

left) and the heel (right and left)
FSR sensors

Table 6  Probability (p-values) 
derived from one-way ANOVA 

Sensor 
channel

Probability (p-values)
Participant 1 Participant 2 Participant 3 Participant 4 Participant 5

AcX 7.86e-97 7.86e-27 2e-33 1.87e-17 7.95e-14
AcY 9.53e-87 1.37e-23 7.09e-16 2.49e-18 2.39e-10
AcZ 9.88e-61 2.54e-13 6.94e-12 9.78e-9 9e-4
R 2.49e-38 1.15e-6 1e-4 1.22e-24 4.67e-30
P 1.81e-102 1.92e-27 1.12e-28 1.37e-15 2.19e-6
Y 3.41e-29 3.3e-3 6.11e-13 1.46e-11 2.14e-11
F1 7.89e-82 3.27e-12 1.01e-16 6.52e-15 1.27e-26
F2 2.11e-94 3.62e-19 6.37e-27 6.38e-7 2.85e-25
F3 2.15e-99 1.2e-12 2.67e-32 5.24e-15 4.66e-54
F4 1.24e-103 3.41e-14 1.26e-31 1.56e-8 5.76e-51
VaX 3.55e-49 1e-4 1,79e-7 0.5749 1.5e-2
VaY 1.13e-49 9.48e-6 2.22e-11 4e-4 1e-3
VaZ 8.16e-27 4.597e-6 8.03e-12 0.7382 3e-4
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is less than 0.05, the characteristic is set to be significantly 
different. The ANOVA’s results are computed with MAT-
LAB 2020a for the dataset presented in [28]. It is composed 
of the 5 participants’ foot gestures. Each participant has a 
set of 11 gesture group (10 for command gesture and 1 for 
non-command gesture). For analysis purpose, a part of the 

dataset, comprising a set of 10 samples per gestures (110 
samples for each participant), is used. The features that are 
discriminated are the channels univariate DTW distance for 
each element of the dataset with the reference gesture. The 
results of the statistical one-way ANOVA evaluation for each 
of the five participants are given in Table 6.

Table 7  ANOVA’s results 
distribution

AcX AcY

AcZ R

P Y

F1 F2
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Table 7  (continued)

VaX VaY

VaZ X-Axis signification
1 refer to command gesture (G1)
2 refer to command gesture (G2)
3 refer to command gesture (G3)
4 refer to command gesture (G4)
5 refer to command gesture (G5)
6 refer to command gesture (G6)
7 refer to command gesture (G7)
8 refer to command gesture (G8)
9 refer to command gesture (G9)
10 refer to command gesture (G10)
11 refer to non command gesture 
(G11)

F3 F4

Table 8  Classifier comparison 
results for participant no. 1  Classifier Accuracy % FP % FN % MC %

Prediction speed 
(observation/sec)

Fine Tree 92.8 3.61 0 3.61 33000
Linear discriminant 96.4 3.61 0 0 12000

Naive Bayes (Gaussian) 98.8 0 1.2 0 9600
SVM linear one vs one 96.4 2.41 0 1.2 2300

SVM quadratic one vs one 98.8 0 0 1.2 1500
SVM RBF (Gaussian) One 

vs all
98.8 0 0 1.2 5900

KNN fine 97.6 1.2 0 1.2 15000
Cosine KNN 96.4 1.2 0 2.4 9600

Weighted KNN 98.8 1.2 0 0 10000
Ensemble subspace 

discriminant
97.6 2.4 0 0 1200

Ensemble subspace KNN 98.8 0 0 1.2 1400
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The probabilities (p-values) are significantly less than 
0.05 apart from VaX and VaZ for participant 4. This means 
that except for this participant, the proposed features 
might be of great interest for classification purposes. In 
order to deal with the disparities observed between each 
participant, it is decided not to remove the above features 
for participant 4 because they are considered as part of his 
singularity. Table 7 presents participant 1 ANOVA’s data. 
This participant is one author of this paper. The ANOVA 
representation allows to visually evaluate the ability of 
the DTW features to discriminate between the 11 sets of 
classes ranging from 1 to 11.

A Tukey–Kramer post hoc test was conducted in order to 
confirm the ability of the proposed DTW feature to adequately 
discriminate between the 11 different classes. Also, based on the 
information presented in Table 6, one can end up concluding that 
it is visually possible to adequately discriminate between all dif-
ferent classes. The proposed DTW features are then proceeded 
through a classifier for recognition purposes.

3.7  Classifier comparison and performance 
validation

Once the features are extracted, the selection of the best 
classifier is attempted. For the selection method of the 
best suitable classifier, MATLAB 2020a classifier appli-
cation without any optimisation is used. The aim was to 
find the best classifier in terms of prediction and speed 
for real-time implementation purposes. In the classifier 
learner apps of MATLAB 2020a, all the classifiers pro-
posed are trained for each participant. However, only the 
ones with the best results according to a given set of 
metrics for every participant are retrieved for comparison 
purposes. They are as follows: Fine Tree, linear discrimi-
nant, Naive Bayes (Gaussian), linear and quadratic SVM 
(one vs one), Fine KNN, Cosine KNN, weighted KNN, 
Ensemble subspace discriminant and Ensemble sub-
space KNN. The dataset used is based on that presented 
in [28], and it is divided for each participant as a ratio 

Table 9  Classifier comparison 
results for participant no. 2  Classifier Accuracy % FP % FN % MC %

Prediction speed 
(observation/sec)

Fine Tree 84.8 0 3.03 12.12 6400
Linear discriminant 90.9 3.03 0 6.06 5300

Naive Bayes (Gaussian) N/A N/A N/A N/A N/A
SVM linear one vs one 78.8 6.06 0 15.15 290

SVM quadratic one vs one 90.9 0 3.03 6.06 270
SVM RBF (Gaussian) One 

vs all
90.9 0 3.03 6.06 3700

KNN fine 90.9 0 3.03 6.06 1700
Cosine KNN 78.8 3.03 3.03 0 310

Weighted KNN 90.9 0 3.03 6.06 3100
Ensemble subspace 

discriminant
90.9 3.03 0 6.06 470

Ensemble subspace KNN 90.9 0 3.03 6.06 400

Table 10  Classifier comparison 
results for participant no. 3  Classifier Accuracy % FP % FN % MC %

Prediction speed
(observation/sec)

Fine Tree 76.5 2.94 8.82 11.76 300
Linear discriminant 94.1 2.94 0 2.94 530

Naive Bayes (Gaussian) 94.1 0 2.94 2.94 950
SVM linear one vs one 88.2 0 0 11.8 150

SVM quadratic one vs one 85.3 2.94 0 11.8 290
SVM RBF (Gaussian) One 

vs all
97.1 0 0 2.94 2000

KNN fine 94.1 0 0 5.9 1100
Cosine KNN 97.1 2.94 0 0 3100

Weighted KNN 94.1 2.94 0 2.94 5500
Ensemble subspace 

discriminant
94.1 2.94 0 2.94 520

Ensemble subspace KNN 94.1 0 0 5.88 520
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of 70% for training and 30% for the testing phase. This 
dataset consists of 5 participant’s gestures recorded. For 
each participant, a dataset of 10 samples per gesture is 
obtained for the command gesture and 12 samples for the 
non-command gesture acquired by implementing three 
(3) e-iTUG (walking, sitting, standing, turning, going 
upstairs, going down stair). However, for participant no. 
1, which is one of the authors of this research work, more 
information of 20 samples per command gesture and five 
(5) e-iTUG test was recorded. The comparison metrics 
used for this classification are as follows:

• The accuracy: it is referred to as the level of good clas-
sification. It is a number between 0 and 100, and it is 
defined by the number of good predictions on the overall 
number of input samples.

• False positive (FP): in this specific application, because 
of the issue of discriminating with high priority, com-
mand from non-command gesture, FP refers to cases in 
which the model knows that it is a non-command gesture, 

but the classifier predicts it as a command gesture. This is 
very important in the recognition process because of the 
need to keep the level of inappropriate activation of cobot 
operating mode very low when a non-gesture command 
is in process.

• False Negative (FN): which infers the reverse scenario. For 
example, it is a command gesture but the classifier defines it 
as non-command gesture (this refers to the sensibility of the 
system to react to user’s input command gesture)

• Misclassification level (MC): it refers to level of confu-
sion between different command gesture. It is important 
for such application as cobot behaviour must be predic-
tive; when given an input gesture, the cobot behaviour 
output needs to be known in advance

• Prediction speed: it refers to how much observation is 
made in a given time. It gives information about the clas-
sifier speed, and for the application purpose, it indicates 
whether or not the classifier is suitable for real time. 
This information is a result obtained from the MATLAB 
2020a classifier application

Table 11  Classifier comparison 
results for participant no. 4  Classifier Accuracy % FP % FN % MC %

Prediction speed 
(observation/sec)

Fine Tree 77.8 2.78 0 19.44 590
Linear discriminant 88.9 2.78 0 8.33 470

Naive Bayes (Gaussian) 72.2 5.56 2.78 19.44 720
SVM linear one vs one 86.1 2.78 2.78 8.33 210

SVM quadratic one vs one 88.9 0 0 11.1 210
SVM RBF (Gaussian) One 

vs all
88.9 0 0 11.1 850

KNN fine 86.1 2.78 0 11.1 630
Cosine KNN 61.1 5.56 0 33.33 2900

Weighted KNN 83.3 0 0 16.7 5500
Ensemble subspace 

discriminant
88.9 5.56 0 5.56 380

Ensemble subspace KNN 88.9 0 0 11.1 310

Table 12  Classifier comparison 
results for participant no. 5

Classifier Accuracy % FP % FN % MC % Predic-
tion speed 
(observation/s)

Fine Tree 77.8 2.78 0 19.44 14,000
Linear discriminant 72.2 2.78 2.78 22.22 7100
Naive Bayes (Gaussian) 80.6 0 5.56 13.89 640
SVM linear one vs one 77.8 2.78 2.78 16.67 800
SVM quadratic one vs one 80.6 0 0 19.44 710
SVM RBF (Gaussian) One vs all 86.1 0 11.1 13.89 3100
KNN fine 88.9 0 0 11.1 4600
Cosine KNN 77.8 0 5.56 16.67 4600
Weighted KNN 86.1 0 2.78 11.11 2600
Ensemble subspace discriminant 80.6 2.78 0 16.67 550
Ensemble subspace KNN 94.4 0 0 5.56 470
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Moreover, as inspired by [18], the above list of classifier 
has been augmented with a SVM (support machine)-based 
Gaussian-RBF (radial based function) kernel classifier with 
the principles of one versus all; this means that, for each 
class i considered, it is always a binary operation that is 
implemented. The problem is reframed as belonging to the 
class i or not. So, the other classes are then labelled as non-
class i. Tables 8, 9, 10, 11, and 12 present the results for 
each participant.

For participant no. 1, the best overall accuracy is 
achieved by Naïve Bayes, SVM (quadratic and Gaussian), 
weighted KNN and Ensemble subspace KNN. However, 
weighted KNN was excluded to recognize non-command 
gesture as command gesture. For this participant, the best 
result is achieved using Naïve Bayes because of a low-
rate misclassification of command gesture. Indeed, cobot 
operating mode requires the system to be predictable; 
thus, a low misclassification rate between command ges-
ture is highly important. Although the presence of pos-
sible confusion between a command gesture recognised 

as a non-command one, the rate is low and just refers to 
the capacity of the system to be sensitive to command 
input gesture. Moreover, the second-best classifier with 
the highest computation time is the SVM-based Gaussian-
RBF kernel function.

For participant no. 2, the best accuracy is achieved with 
linear discriminant, quadratic and Gaussian SVM, fine 
KNN, weighted KNN, ensemble subspace discriminant and 
ensemble subspace KNN. Ensemble subspace discriminant 
and linear discriminant are rejected due to their ability to 
confuse non-command gesture with command 1 which in 
fact is very bad compared to what is proposed by others. 
Moreover, considering the computation speed required, the 
Gaussian-RBF kernel SVM appears to be the best classifier. 
Naïve Bayes which was the best for participant 1 could not 
even compute, so it was rejected. In doing so, it appears that 
even for participant 1, SVM-based Gaussian-RBF kernel is 
the best classifier.

For participant no. 3, the best accuracy result is achieved 
by SVM based Gaussian-RBF kernel and cosine KNN. 

Table 13  Classification results Mean Proposed DTW approach

Participant 
1

Standard deviation Skewness

Kurtosis
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However, due to the ability of Cosine KNN to confuse non-
gesture command with command 1, the best classifier is 
achieved using SVM-based Gaussian-RBF kernel.

For participant no. 4 the best accuracy result with the 
highest prediction speed is achieved with SVM-based 
Gaussian-RBF kernel classifier.

For participant no. 5, the best classifier in terms of accuracy 
is achieved using ensemble subspace KNN. For all the partici-
pants, it appears that SVM-based Gaussian-RBF kernel is the 
best in terms of accuracy, computation time (real time applica-
tion) and false positive rate of non-command gesture.

4  Experimentation and results

The experimentation is set in two main phases: (1) train-
ing and testing for the first phases (Section 4.1) and (2) 
real-time application for the second phase (Section 4.2). 
Furthermore, the evaluation of the impact of changing the 

reference gesture on the recognition performances is pre-
sented in Section 4.3.

4.1  Training and testing

Based on the best classifier identified, the Gaussian-RBF 
kernel SVM, the aim of this first phase is to demonstrate 
how well the proposed features approaches outperform tem-
poral conventional ones such as mean, standard deviation, 
kurtosis and skewness. In doing so, a comparison protocol is 
attempted by using the same training set in terms of number 
and index for each temporal characteristic and each partici-
pant. The same thing was done for the testing phase. The 
dataset used in this step is the same one used in Section 3.5 
above. Table 13 presents the results of the different temporal 
features considered for foot gesture recognition; 70% of the 
data are used as training set with a fivefold validation and 
30% for testing set. The classes are labelled from 1 to 11 
namely G1 to G10 for command gesture as defined in the 

Table 13  (continued)

Participant 
2

Mean Proposed DTW approach

Standard deviation Skewness

Kurtosis
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dictionary in Section 3.3 and G11 for non-command gesture 
as defined in the e-iTUG. 

Form the results above, different metrics were estimated 
like the ones presented in Section 3.7. Table 14 presents the 
different metrics for each participant.

For participants no. 1 and no. 5, the best classification is 
achieved by means of standard deviation approach. Moreo-
ver, for the same participant, the proposed DTW approach 
appears to end up with a high level of accuracy even though 
it is not considered the best in terms of accuracy, false nega-
tive and misclassification rate. However, for participants no. 
2, no. 3 and no. 4, the best classification rate is achieved 
using the proposed DTW approach. Furthermore, for par-
ticipant no. 2, the standard deviation–based approach, aside 
of presenting a lower accuracy level, presents a rate of false 
positive which is different from zero. This means that for 
such participant, the use of standard deviation approach can 
end up in a case when the user is implementing non-com-
mand gestures such as walking and turning, and the system 

recognizes it as an input command for the cobot. This in fact 
is very bad compared to the result achieved using the pro-
posed DTW approach. Another point of interest is observed 
in participant no. 3; it appears that the classification rate is 
very low with the use of standard deviation and has a high 
rate of false positive detection of non-command gesture.

In conclusion, from one participant to another, it appears 
that even if there are some cases where the use of standard 
deviation approach alone slightly outperforms the proposed 
DTW, there are cases where the classification result is very 
bad compared to the proposed DTW approach. Thus, they 
require for each input participant to implement feature selec-
tion phase to rightly choose of the best temporal feature to use 
for implementation purposes. However, the proposed DTW 
is more robust to individual specificity. It can accurately clas-
sify foot gesture for different participant better than classical 
approaches as mean, kurtosis, skewness and standard devia-
tion by only comparing results of the signal corresponding to 
the standing position of each participant at any time.

Table 13  (continued) Mean Proposed DTW approach

Participant 
3

Standard deviation Skewness

Kurtosis
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4.2  Real‑time evaluation as the application

Online cobot operating mode control is evaluated using the 
proposed DTW-SVM approach based on the model trained in 
Section 4.1 for each participant. The recognition rate for all five 
participants, in real time, was at a range of 66% of accuracy with 
a set of FP (false positive) at 8% (mainly non-command gesture 
(G11) confused as G4), false negative (FN) at 10% and misclas-
sification between command gesture (MC) of 16%. The biggest 
confusion was observed between G9 and G10 and G5 and G6.

Moreover, because real-time application mainly relies on 
the capacity of the system to detect the command gestures in 
time, an evaluation was conducted with the different partici-
pant to estimate the computation time. It appears that the com-
putation time of the proposed DTW approach–based Gaussian 

SVM classifier is greatly adapted for such a non-real-time 
platform as our MS window computer. The computation 
time achieved for one classification was about 3.7418e − 4 s 
obtained using tic and toc MatLAB function used in a Mat-
LAB Script box included in Simulink. It is a very conservative 
measure based on MatLAB implementation and execution. 
The Simulink is executed with the real-time workshop and 
the frequency transmission rate from the insole to Simulink 
is 500 Hz.

4.3  Impact of reference gesture changing 
on the classification rate

The aim of this research work is to present the useful-
ness if using standard DTW computation based on one 

Table 13  (continued)

Participant 
4

Mean Proposed DTW approach

Standard deviation Skewness

Kurtosis
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reference gesture for cobot operating mode. Till now, the 
focus was put on the use of the standing gesture as the 
reference gesture because of the assumption that every 
command or non-command gesture at some point passes 
through the standing position before been executed. This 
section presents foot gesture recognition result when 
changing randomly the reference gesture being used. To 
presents this approach, it has been decided to conduct 
for two (2) participants (no. 3 and no. 5) a set of five 
(5) changing of reference gesture. In doing so, the same 
dataset and comparison approach together with the same 
metrics explored in Section 4.1 were used. Table 15 dis-
plays the results of each participant and a reference taken 
randomly from five different classes.

The results comparison metric is presented in Table 16.

By taking a random reference for participant no. 5, it 
appeared that the change in reference signal led to a change 
in the classification result. Moreover, for this participant, it 
seemed that the use of the standing posture as the reference 
signal gives the best result. However, for participant no. 
3, the best results are achieved using a random reference 
signal taken in class G1. Taking the standing position as 
reference gesture is not the best but is all the least able to 
accurately classify between different gestures. The change 
in reference gesture can lead to a decrease of performance 
as seen with participant 3 or in an increase of performance 
as seen with participant no. 5.

Based on these results, it appears that it is possible to 
find better reference gesture for a given participant. But one 
can imply that when the standing position is used as the 

Table 13  (continued)

Participant 
5

Mean Proposed DTW approach

Standard deviation Skewness

Kurtosis
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reference one, the recognition rate is very good without the 
need to actively search for the best one.

5  Discussion

The aim of this study was to analyse whether or not the 
proposed DTW feature approach based on a single reference 
gesture (standing pose) can be useful for online foot gesture 
cobot control. There are four (4) main conclusions regarding 
the performance of the proposed approach as feature input 
for a classical SVM classifier:

1. The proposed DTW approach can well discriminate the 
ten (10) command gestures between them as well as 
non-command gesture with the lowest accuracy rate of 
88% obtained in the training/ testing phase. Moreover, 
even if in real-time implementation the overall accuracy 
dropped to 66% due to either confusion between com-
mand gesture G9 and G10 or G5 and G6 and confusion 
between the non-command gesture.

2. The proposed DTW approach used alone can outperform 
common temporal feature based approach and can be 
easily implemented through different participants with 
high accuracy.

3. When looking at the classification results of the pro-
posed DTW approach, aside for participants no. 3 and 
no. 5, the level of false positive is very low. Thus, one 
can imply that it is possible to discriminate between 
command and non-command gesture without the need 
of a locking gesture even if in real-time evaluation, con-
fusion between command gesture G4 and non-command 
gesture G11 exist. The only requirement is a secure pro-
cess in order to avoid unwanted activation of G4.

4. The classification rate of the proposed approach is highly 
dependent on the nature of the reference gesture being 
used as shown in Section 4.3. One assurance given at 
the end of this work is to say that by using the standing 
posture as a reference gesture for online cobot control–
based foot recognition system, the accuracy is highly 
to be very high and at some point be the highest. Even 
though all the other possibility of using another refer-

Table 14  Comparison metric 
of different set of features used 
for SVM classifier for each 
participant

Participant 1 Participant 2

% Accuracy FP FN MC

Proposed
DTW feature

96.39 0 0 3.61

Mean 96.39 0 0 3.61
Standard 
deviation

97.59 0 0 2.41

Kurtosis 92.77 0 0 7.33
Skewness 83.13 0 6.02 10.84

% Accuracy FP FN MC

Proposed
DTW feature

94.12 0 5.88 0

Mean 88.24 0 2.94 8.82
Standard 
deviation

91.18 2.94 0 5.88

Kurtosis 85.29 2.94 29.4 8.82
Skewness 82.35 2.94 0 14.71

Participant 3 Participant 4

% Accuracy FP FN MC

Proposed
DTW feature

91.67 2.78 2.78 2.78

Mean 83.33 2.78 0 11.11
Standard 
deviation

75 8.33 2.78 11.11

Kurtosis 77.78 8.33 0 11.11
Skewness 61.11 8.33 8.33 16.67

% Accuracy FP FN MC

Proposed
DTW feature

94.12 0 0 5.88

Mean 73.53 0 2.94 23.53
Standard 
deviation

91.18 0 2.94 5.88

Kurtosis 67.65 2.94 0 29.41
Skewness 50 8.82 0 41.18

Participant 5

% Accuracy FP FN MC

Proposed
DTW feature

89.19 2.7 5.41 2.7

Mean 75.68 5.41 5.41 13.51
Standard 
deviation

91.89 2.7 2.7 2.7

Kurtosis 72.97 5.41 2.7 18.92
Skewness 45.95 8.11 5.41 40.54
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ence gesture for the approach has not been tried, as far 
as this article author’s knowledge is concerned, the best 
result considering all the five participants is achieved by 
using the standing pose of each other as the reference 
gesture.

6  Limit of the study

Limitations in this study can be seen on three main aspects. 
Firstly, the proposed classification scheme uses only five 
participants since the approach is dependent on participants. 
Therefore, the necessity to compute training for any new users 
appears, and the number of participants is likely enough to 
demonstrate this situation. Secondly, the study has been con-
ducted in a supervised environment where noise arising from 
environmental consideration like vibrations has been taken 
out, and thus requires enhancing disturbance robustness for 

all industrial applications. Thirdly, the proposed approach is 
not tested in a real industrial case study, where high accuracy 
and responsiveness are needed to achieve a safe human robot 
interaction.

7  Conclusions and future works

This paper presents a foot gesture recognition scheme for 
cobot control based on DTW feature input for an SVM clas-
sifier. Foot gestures are collected from an insole device and 
then DTW computation with the reference signal is done 
and later transmitted to SVM classifier for activity (com-
mand) recognition. Then, an interface with a UR5 robot is 
implemented in order to operate robot change control–based 
foot gesture recognition.

There are three hypotheses suggested in Section 2. The 
goal is to demonstrate the possibility of using only one 

Table 15  Confusion matrices 
results of reference gesture 
change

Participant 
3

Reference at standing position Reference at class G1

Reference at class G2 Reference at class G6

Reference at class G8 Reference at class G9
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reference signal (standing position in our case) as DTW-
based feature extraction methods. The study shows the 
ability of the proposed scheme to recognize command foot 
gestures (10) and to actively discriminate between non-
command gestures and others (hypothesis 1 is confirmed). 
Based on the results, the classification algorithm is mainly 
dependant of the nature of the reference gesture being used 
(hypothesis 2 is confirmed), and a static reference gesture 
can be used (hypothesis 3 is confirmed).

Future research aims at the real-time deployment of the 
proposed solution in a real industrial case scenario and for 
the perspective of generalisation purposes so that a more 
refined method can be used for two or three users without 
the need to conduct training phase. Moreover, the automatic 
detection of the best reference gesture (signal) to be used 
for a given dataset without prior knowledge of the purpose 
application is still in exploration.

Table 15  (continued)

Participant 
5

Reference at standing position Reference at class G1

Reference at class G2 Reference at class G6

Reference at class G8 Reference at class G9

Table 16  Classification metrics for reference changing signal

Participant 3 Participant 5

% Accuracy FP FN MC % Accuracy FP FN MC

Reference at standing position 91.67 2.78 2.78 2.78 Reference at standing position 89.19 2.7 5.41 2.7
Reference at class G1 97.22 2.78 0 0 Reference at class G1 64.86 5.41 0 29.73
Reference at class G2 88.89 2.78 0 8.33 Reference at class G2 86.49 2.7 8.11 2.7
Reference at class G6 80.56 8.33 0 11.11 Reference at class G6 78.38 5.41 2.7 13.51
Reference at class G8 91.67 5.56 0 2.78 Reference at class G8 81.08 2.7 8.11 8.11
Reference at class G9 91.67 2.78 0 5.56 Reference at class G9 81.08 8.11 5.41 5.41
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