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O R I G I N A L  A R T I C L E

Resilient Smartphone Positioning Using Native Sensors  
and PPP Augmentation

Sihan Yang  Ding Yi*  Sudha Vana  Sunil Bisnath

1  INTRODUCTION

Navigation solutions from smartphones and other smart devices equipped with 
GNSS and other sensors have become an integral part of our daily lives, and support 
growing industries such as shared economy, advanced driver-assistance systems 
(Dumitru et al., 2018), and the Internet of things (Bilal, 2017). Rapidly evolving 
user technologies that are enabled by, or benefit from, location and timing infor-
mation are advancing the GNSS industry, and more robust positioning, navigation, 
and timing (PNT) solutions are actively being pursued. Of the more than 6 billion 
consumer-grade GNSS receivers (approximately 10 USD) in use, more than 90% 
are installed on cellphones (EUSPA, 2019). This proliferation of consumer-grade 
PNT information for individual users not only allows more technologies to be 
used in daily life but also has worldwide influence by providing a crucial source of 
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Abstract
With the ubiquitous use of global navigation satellite system (GNSS) receiv-
ers, navigation solutions from smartphones have become integrated in various 
applications throughout our lives. These ultra-low-cost GNSS receivers have 
the drawbacks of insufficient observations and poorer signal reception quality 
than higher-cost receivers. Since 2016, smartphones using the Android operat-
ing system have been able to output raw GNSS pseudorange and carrier-phase 
measurements, thereby enabling improved navigation capabilities. The realm 
of sensor fusion is also being explored by using smartphone sensors, including 
inertial measurement units (IMUs), cameras, and other fusion techniques. The 
research presented herein deployed only IMU and GNSS sensors native to exist-
ing smartphones and achieved a standalone solution using PPP/IMU integra-
tion that outperformed standard techniques. In open-sky vehicle experiments, 
the sensor integration algorithm achieved 1.6-m horizontal RMS, thus reducing 
80% of horizontal errors in GNSS-challenging environments through a tightly 
coupled GNSS-PPP solution that is yet to appear in publications.
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information for big-data services. Given the large amount of information available 
from every smartphone, humans’ lives can be improved; for example, smart city 
services and planning are already being undertaken. These advances require the 
research community to increase the performance robustness of smartphone PNT 
solutions, and increase resilience in obstructed environments.

From this viewpoint, traditional GNSS point-positioning solutions from 
smartphones have substantial limitations because of the poor performance of 
ultra-low-cost antennas and chips, performance degradation in urban environ-
ments, and inherent unavailability in areas lacking GNSS (Farrell & Barth, 1999; 
Paziewski, 2020; Shinghal & Bisnath, 2021). However, smartphones are now also 
equipped with more sensors for potential integrated solutions. Among them are 
accelerometers and gyroscopes using micro-electromechanical system technol-
ogy forming an inertial measurement unit (inertial measurement unit (IMU; 
Godha, 2006; Vana et al., 2019; Yang et al., 2014). These sensors native to cur-
rent smartphones are ideal for improving PNT performance, because the mea-
surements from IMUs are acquired passively, and no further costs are required 
for smartphone manufacturers, who are already struggling with cost control. 
This research presents a native sensor fusion for smartphones that combines 
the precise-point-positioning (PPP) technique (Zumberge et al., 1997) for GNSS 
and internal IMUs. PPP was selected because it is a more standalone solution 
than relative techniques such as real-time kinematics (RTKs; Bisnath & Gao, 
2009; Eckl et al., 2001). It requires only the connectivity already prevalent in 
smartphones, and does not require additional local infrastructures to be built or 
maintained.

Generally, PPP algorithms can be classified into two broad categories depending 
on how ionospheric delays, one of the major error sources in PPP, are addressed. 
First, by forming a linear combination of observations at different frequencies, this 
combined strategy is able to eliminate the ionospheric delays in the estimation 
and has become commonly adopted in recent decades (Cai & Gao, 2007; Ge et al., 
2012; Kouba & Héroux, 2001). However, combined PPP increases the measure-
ment noise, and external ionospheric information cannot be applied (Liu et al., 
2017; Xiang et al., 2017). As an alternative, the uncombined mode directly using 
raw measurements has recently received considerable attention in the PPP com-
munity. Owing to the increasing number of International GNSS Service (IGS) sta-
tions, accurate products for spatial and temporal ionospheric delays are available 
through either postprocessing or real-time services. In 2002, Øvstedal (2002) sug-
gested using global ionospheric maps (GIMs; Schaer et al., 1998) with inherent 
errors of approximately 2–8 total electron content units (Hernández-Pajares et al., 
2009) as prior information to correct ionospheric errors when single-frequency 
GNSS observations are used. Shi et al. (2012) have proposed a refined iono-
spheric model to further improve single-frequency PPP. In this context, PPP with 
ionospheric constraints (ICs) has successfully shortened convergence time and 
improved positioning accuracy for both single- and dual-frequency PPP processing 
(Gao et al., 2017; Lou et al., 2016; Tu et al., 2013; Zhang et al., 2013). More recently, 
PPP-IC has been used not only for geodetic surveying but also for low-cost (Nie 
et al., 2020) and smartphone receivers (Banville et al., 2019; Wang et al., 2021). 
Furthermore, Yi et al. (2021) have verified that PPP-IC provides more help for 
smartphones than low-cost and geodetic-grade receivers, and a 72% improvement 
has been reported in reducing smartphone horizontal root-mean-square error in 
suburban environments.
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Smartphone GNSS receivers are considered ultra-low-cost and have drawbacks of 
poor measurement quality and other issues (Li & Geng, 2019; Shinghal & Bisnath, 
2020). The research community’s progress in exploring smartphone-integrated 
navigation has occurred in step with hardware and software platform develop
ment. In the past few years, smartphones have increasingly been equipped with 
multi-constellation, multi-frequency GNSS hardware. On the software platform 
side, Google has made raw GNSS readings possible through its application pro-
gramming interface from 2016, thus allowing researchers to produce their own 
navigation solutions from raw measurements (Sunkevic, 2017). Since then, phone 
navigation improvements have become much easier for researchers (Fortunato 
et al., 2019; Humphreys et al., 2016; Robustelli et al., 2019), thereby enabling the PPP 
technique to be used as both pseudorange and carrier-phase observables become 
available (Aggrey et al., 2020; Paziewski, 2020; Wang et al., 2021). Studies in the lit-
erature have examined the IMU performance of smartphones. For example, Gikas 
and Perakis (2016) have investigated a loosely coupled GNSS/IMU solution using 
older phones from 2012–2013 for intelligent transport system purposes, using a 
similar phone-on-top setup to that in our experiment. The standard deviation of 
horizontal errors has been shown to be several meters for both tested phones but 
degrade by a few more meters in obstructed environments. Yan et al. (2019, 2020) 
have studied a recent Xiaomi Mi 8 compared with commercial IMUs by using a 
slower-moving tricycle and tested outage performance by using a modified Kalman 
filter. The solution showed improvement in GNSS outages, but the solution drifted 
away meters from the track before any turning movement from the vehicle.

Despite this progress, the specific software/hardware combination of smart-
phone GNSS-PPP and IMU has received little attention. With a robust GNSS solu-
tion from PPP, an enhanced native GNSS-only solution is expected. The novelty of 
this work is the presentation of new results and analysis using native GNSS and 
IMUs from a smartphone together with PPP augmentation in realistic driving sce-
narios with real-world outages. Therefore, the major contributions of this research 
are to answer the following questions: (a) How does the performance of a smart-
phone PPP/IMU integrated solutions compare to that of a smartphone using an 
identical GNSS source but better IMUs? (b) In what scenarios does a smartphone 
IMU improve navigation solutions, and by how much?

The article is organized as follows: Section  2 explains the PPP-IC model, fol-
lowed by smartphone IMU preprocessing strategies, the tightly coupled integration 
Kalman filter, and York PPP engine settings. Section 3 describes the field data col-
lection in suburban driving scenarios. Three solutions involving different GNSS/
IMU combinations are analyzed in Section 4. Section 4 also analyzes the outage 
performance from the integrated solutions. Section  5 and Section  6 discuss the 
answers to the research questions and envision future work that may extend this 
research.

2  METHODS AND DATA PROCESSING STRATEGIES

This section begins with the technique of PPP-IC constrained by GIM informa-
tion, including the carrier-to-noise ratio ( 0/C N ) weighting scheme adopted in this 
study. Details regarding smartphone IMU raw data preprocessing and tightly cou-
pled PPP/IMU integration, as well as the York PPP engine settings are introduced 
subsequently.
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2.1  Dual-Frequency PPP-IC Model

PPP uses GNSS pseudorange and carrier-phase observations, along with precise 
satellite products, to achieve high-accuracy location-based services for users with 
standalone receivers. The uncombined PPP observation equations are expressed as 
follows:
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Lb  are the code and phase biases 
at the satellite end, respectively; iλ  denotes the carrier wavelength in length at i  
frequency, and sN  is the unknown float ambiguity; and Pε  and Lε  are the mea-
surement noise of pseudorange and the carrier phase, respectively. To prevent the 
receiver differential code bias (DCB) from being incorporated into estimated slant 
ionospheric delay, Xiang and Gao (2017) and Xiang et al. (2017) have proposed to 
preserve the slant ionospheric refraction and receiver DCB terms in PPP-IC pro-
cessing. The previously stated Equation (1) can be rewritten as:
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where 
3,u Pb  is the receiver code bias calculated by ionospheric-free combina-

tions, and ,u iN  is the estimated carrier-phase ambiguity, coupling with code and 
phase biases. uDCB  denotes the estimated receiver DCB, and ,

,
s constrained
u iI is the 

estimated ionospheric error constrained by the GIM information. For simplicity, 
we use the term PPP instead of PPP-IC to describe the processing strategies in the 
following sections.

The measurement weighting scheme also plays a crucial role in determining 
the user’s position. Traditionally, the satellite-elevation-based weighting scheme 
is widely used in PPP processing (Eueler & Goad, 1991). However, the very inex-
pensive smartphone linearly polarized antenna collects GNSS signals from all 
directions and is consequently susceptible to multipath effects. Recently, multi-
ple studies (Banville et al., 2019; Shinghal & Bisnath, 2021; X. Zhang et al., 2018) 
have demonstrated that the carrier-to-noise ratios are more appropriate than sat-
ellite elevation angles to serve as the weighting indicator, because the multipath 
affected signals usually have lower values of C/N0. Therefore, this study used the 
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C/N0-based weighting strategy, and the standard deviation of the pseudorange 
measurement σ  was estimated as (Banville et al., 2019; Shinghal & Bisnath, 2021): 
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where a and b are constant coefficients that are determined empirically.

2.2  Smartphone IMU Raw-Data Preprocessing

Smartphone IMU measurements were collected by using the GnssLogger applica-
tion v3.0.0.10 developed by Google. This application is able to record raw IMU and 
GNSS measurements in a text file for postprocessing. To synchronize with GNSS 
timestamps, we used the UTCTimeMillis file logged by the application with GNSS 
timestamps of the same label. The uncalibrated raw IMU measurements were used 
because the bias from the accelerometer and gyroscope is dynamically estimated from 
the extended Kalman filter. Android smartphones do not share the same default body 
axes as our Xsens MTi-7 IMU in its motion frame. To adapt the smartphone IMU out-
put to the navigation engine programmed in the north-east-up (NEU) frame, we first 
performed a frame transformation. As shown in Figure 1(a), the IMU coordinate sys-
tem is converted to a vehicle body coordinate system. Table 1 describes the intuition 
behind the readings along the x-, y-, and z-axes for the accelerometer and gyroscope.

All raw IMU measurements were preprocessed further by re-sampling to  
100 Hz with MATLAB’s built-in functions in interpolation mode. Three reasons led 
to the re-sampling decision: (a) as demonstrated in Figure 1(b), the accelerometer 
and gyroscope readings were not synchronized over the sampled 0.25 s, showing 
separate timestamps, in contrast to conventional IMUs; (b) the IMU raw measure-
ments were not spaced equally, because the time gaps between measurements were 
not constant (Figure 2); and (c) by setting up a uniform data rate, the same inte-
grated filter solution can be compared between the commercial low-cost Xsens and 
the smartphone without additional processing.

The preprocessing was performed to ensure that the two IMUs were processed 
in the same frame and re-sampled to 100 Hz. Figure 3 presents the comparison of 
IMU raw measurements between the Xsens IMU (green) and Xiaomi Mi 8 IMU 
(blue). The Xsens MTi-7 low-cost IMU is used as a comparison. The low-cost IMU 
does not provide an ideal truth as reference. However, the matching pattern over 
all measurements and axes for Mi 8 against Xsens MTi-7 showed promising perfor-
mance of the integrated solution.

Figure 3 presents some context for the subsequent data processing and position-
ing performance during GNSS outages in particular. Acceleration along the y-axis 
is at the same order of magnitude as that along the x- and z-axes. The observation is 
not intuitive, because the y-axis is orthogonal to the vehicle’s direction of travel. One 
possible explanation is the vibration from vehicle movements during the road tests.

FIGURE 1 Characteristics of smartphone IMU measurements: (a) depicts the transformation 
to a conventional frame, while (b) depicts a snapshot of IMY timestamps over 0.25 s.



YANG et al.    

2.3  Tightly Coupled PPP/IMU Integration

This study used a tightly coupled approach for combining smartphone IMU and 
GNSS measurements. Compared with a loosely coupled approach, a tightly cou-
pled integration incorporates GNSS raw measurements of pseudoranges and the 
carrier phase into the extended Kalman filter rather than processing velocity and 
position states from a separate GNSS filter and IMU mechanization. The access to 
raw GNSS measurements and IMU measurements using the Android application 

FIGURE 2 Histograms of time gaps between IMU measurements; the red line indicates a 
mean time gap of 5.8 ms.

FIGURE 3 Raw IMU measurements: Mi 8 vs. Xsens MTi-7

TABLE 1
Explanation of IMU Axes

Axis/
measurements

Accelerometer Gyroscope

X Direction of travel Roll

Y Lateral Pitch

Z Vertical Yaw
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programming interface allows for a tightly coupled solution to be computed. 
Furthermore, we aimed to investigate the outage performance of the GNSS-PPP/
IMU integration; a tightly coupled approach enabled generation of a navigation 
solution when only two or three satellites were available. The architecture of the 
tightly coupled integration is shown in Figure 4.

Raw GNSS measurements were collected by using the Geo++ 2.1.6 applica-
tion in Receiver Independent Exchange (RINEX) format, because some soft-
ware issues were experienced with Google’s GnssLogger application with RINEX 
recording. Two types of measurements were used: the pseudoranges, , ,s

u iP  and 
carrier-phase, , ,s

u iL  observations. IMU measurements were recorded with the 
GnssLogger application, as explained in earlier sections. Uncalibrated raw IMU 
measurements were used, with feedback received from bias estimation com-
puted from the last Kalman filter epoch at the beginning of each mechanization 
epoch. The measurements used were specific forces b

ibf  and angular rate b
ibω , 

where the superscripts and subscripts indicate that the terms were measured in 
the IMU body frame with respect to the inertial frame and resolved around the 
IMU body frame. The timestamp synchronizer function matched the IMU epochs 
with GNSS epochs. As the GNSS measurement was collected at 1 Hz, the 100-Hz 
IMU measurements ran the mechanization process 100 times between each avail-
able GNSS epoch. The mechanization equations produce attitude, imuε , veloc-
ity, imuv , and a position, ,imup  estimation for each tightly coupled filter epoch k.  
The navigation states vector is defined as: 

	
,          

T
nav k k k kX p vδ δ δ δε =  

� (4)

where each term is a 3 × 1 vector for each of the x-, y-, and z-axes. For the IMU, two 
additional bias states were estimated: bias in accelerometer ab  and in gyroscope gb .  
For each IMU epoch j, the two estimated bias terms were fed back to the begin-
ning of the next mechanization stage additively to generate input bf  and bω to the 
mechanization equations. Both bias estimates were initialized to zero. 

	 , , , 1 , , , 1        b b
b j ib j a j b j ib j g jf f b bδ δω ω− −= + = + � (5)

FIGURE 4 Tightly coupled GNSS-PPP integration architecture
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The design matrix H maps the measurement innovation vector, ,dz  to each esti-
mated state through their partial derivatives. In the tightly coupled approach, our 
measurement innovation ,dz  is defined as the differences between the observed 
GNSS pseudorange/carrier-phase measurements and the modeled values. 
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From left to right, the terms each relate to one of the estimated state: position in 
x, y, and z, velocity, attitude, wet tropospheric errors, receiver clock bias and drift, 
bias in accelerometer/gyroscope, and float ambiguities. Details of the GNSS-PPP 
states and sensor fusion combinations are given in the next section.

2.4  York PPP Engine Settings

In the user software domain, York University’s York-PPP engine is used to generate 
smartphone tightly coupled PPP/IMU solutions (Aggrey et al., 2020). Table 2 high-
lights the products and tuned parameters used for obtaining the corresponding results.

The dual-frequency observations collected by a Xiaomi Mi 8 smartphone were 
processed in PPP-IC mode. PPP uses a series of estimations of precise corrections to 
improve solution sub-meter-level accuracy. We used the GeoForschungsZentrum 
(GFZ) rapid products as a precise correction to mitigate satellite orbit and clock 
errors, and satellite DCBs were corrected by using the products from the Chinese 
Academy of Sciences. Meanwhile, the tropospheric delays consisting of hydrostatic 
(dry) and wet components were estimated through global mapping function (GMF) 
modeling and a random walk with white noise, respectively. Of note, the accuracy 
of the geospatial information modeling (GIM) products vary among IGS Analysis 

TABLE 2
York PPP Engine Settings for Smartphone Tightly Coupled PPP/IMU

PPP/IMU TC settings Products and parameters

Orbit and clock corrections GFZ rapid products

DCB CAS products 

Tropospheric delays Hydrostatic: GMF modeling
Wet: estimated

GIM Combined final IGSG products

Standard deviation of pseudorange (m) 4

Standard deviation of carrier phase (m) 0.06
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Center Coordinators (IACCs), and sometimes the GIM root-mean-square-error 
maps cannot serve as a good indicator for the stochastic model (Zhao et al., 2021). 
Therefore we selected the combined final IGSG GIM products and amplified the 
GIM standard deviations in case of unknown GIM inherent errors. The following 
parameters, such as standard deviations of pseudorange and carrier-phase smart-
phone measurements, were derived from postprocessing calculations, and observa-
tions with post-fit residuals tenfold larger than those empirical standard deviations 
considered as outliers and rejected automatically by the York-PPP engine.

3  DATA COLLECTION

A field experiment was designed to produce and analyze the smartphone GNSS-PPP/
IMU integrated solution. Figure 5 shows the experimental setup. The experimental 
vehicle (Figure 5[a]) was taken to suburban Toronto on DOY 211 of 2021 for a road test 
lasting approximately 25 min. Meanwhile, in a customized wooden box, various GNSS 
antennas and receivers were fixed onto the surface, as well as a low-cost industrial-grade 
Xsens MTi-7 IMU. The setup is shown in Figure 5(b). Both the smartphone and the 
NovAtel NOV850 antenna were placed on the top of the box. The phone was placed in 
a silicon shell attached to the surface of the wooden box, facing up. Its direction was 
oriented so that the phone’s y-axis pointed toward the direction of travel, and the z-axis 
faced upward. This placement was designed to maintain a consistent and orthogonal 
direction of travel, so that the IMU body frame remained stationary with respect to the 
vehicle frame. Furthermore, real-time kinematic tightly coupled positioning (RTK/TC) 
integrated results were generated from a pair of NovAtel PwrPak 7 SPAN geodetic 
receivers with the base station on a rooftop within 5 km of the vehicle trajectory. Its 
coordinates were computed beforehand by using 24-hour PPP processing. All reference 
solutions were computed with Inertial Explorer (v8.90.4806) software from NovAtel.

One possible concern is that, although the car was driven in a real-world sce-
nario, the phone was not placed in a location that users would actually choose. 
The reasons for the experimental design were that (a) in the vehicle, the phone 
experiences GNSS signal blockage and degradation, and (b) if the phone is not 
fixed onto a surface, the phone’s stance can change during the data collection, 
and the IMU behavior to acceleration or vibration would not be comparable to 
that of the fixed conventional IMU. The research goals were to perform a study 
to understand the smartphone-integrated PPP solution under optimal conditions 
closest to ideal driving scenarios for smartphones. The approach also allowed for 
fair raw-measurement comparison between the IMUs. Therefore, the experiment 
was designed to enable control over variables.

FIGURE 5 (a) depicts the experimental vehicle while (b) depicts the experimental setup. 
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An experimental flowchart of the experiment is shown in Figure 6. The com-
mercial Xsens IMU was placed alongside the Xiaomi Mi 8 smartphone as a refer-
ence to compare raw inertial measurements. Three solutions were generated from 
the setup: the phone GNSS-only PPP solution, its integrated solution using native 
IMUs, and its integrated solution using the Xsens MTi-7 IMU. These solutions 
allowed us to analyze the performance of the GNSS-only PPP solution versus any 
integrated solution, as well as to compare the two integrated solutions using iden-
tical GNSS measurements but different grades of IMU. 

4  RESULTS AND ANALYSIS

To answer the proposed research questions, we compared the raw IMU mea-
surements between smartphone-grade IMU and Xsens. Two specific scenarios, the 
open-sky environments and underpass environments, were chosen to be analyzed 
in detail. In an underpass environment, the GNSS receiver experiences partial or 
complete outage for several epochs, depending on the size of the underpass.

4.1  Assessing Kinematic Positioning and Outage 
Performance

Figure 7(a) displays the overall aerial view of trajectory in Google Earth. The 
travel directions and the start/end point are marked by yellow arrows and a red 
dot, respectively. The corresponding overall horizontal errors are illustrated in 
Figure 7(b), wherein the horizontal errors processed by dual-frequency PPP-only, 
and dual-frequency tightly coupled PPP with the Mi 8 IMU and with Xsens IMU, are 
represented as the red, blue, and green lines, respectively. The errors are computed 
on an epoch-by-epoch basis by using the Synchronized Position Attitude Navigation 
(SPAN) reference trajectory. Owing to the signal blockage in the GNSS-challenging 
underpass environments, two error peaks were observed at elapsed times of approx-
imately 6 and 19.5 min without the external information from the IMU (red line), 
and these two underpasses are marked by red ovals in Figure 7(a).

To better study the positioning benefits from using an IMU, Table 3 highlights the 
horizontal root mean square (RMS) with different percentiles, and several notable 
improvements are achieved. First, a significant level of improvement was observed 

FIGURE 6 Experimental flowchart
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by integrating IMU sensors: the overall horizontal RMS decreased from 5.2 m to  
2.1 m with the help of the Mi 8 IMU, and further decreased to 1.9 m after replace-
ment with the Xsens IMU. In contrast, the improvements from using IMU measure-
ments decreased to 0.2 m (95th percentile RMS) and 0.1 m (68th percentile RMS) 
after filtering of the outliers from the underpass environments, thus indicating that 
the improvement from tightly coupled PPP/IMU integration is highly relevant to 
scenarios with obstructions. To study the effects of IMUs on GNSS-denied scenar-
ios, we selected two specific portions of the trajectory, Underpass A and Underpass 
B, for the following analysis. 

4.1.1  Underpass A

The first underpass scenario was a short turn under a railway bridge, as shown 
in Figure 8(a). Figure 8(b) illustrates four trajectories in underpass A, where the 
referenced NovAtel SPAN RTK/TC solutions and standalone dual-frequency PPP 
solutions are represented by purple and red dots, respectively, and the tightly cou-
pled, dual-frequency PPP with the Mi 8 IMU and Xsens IMU are presented in blue 
and green dots, respectively.

Figure 9(a) presents the time series of horizontal errors processed by the three 
aforementioned sensor combinations around Underpass A (5–7 min). Owing to 
the GNSS signal outages, the horizontal errors were expected to increase rap-
idly and reach a maximum when passing through Underpass A (elapsed time at  
6.1 min). Correspondingly, a positive correlation was observed between the hor-
izontal errors and the position dilution of precision (PDOP) values through the 
comparison of Figure 9(a) and Figure 9(b). The PDOP values above 20 are not 

FIGURE 7 Aerial view of vehicle trajectories and corresponding overall horizontal error 
comparison for all sensor fusion combinations: (a) depicts an aerial view of the vehicle trajectories 
from Google Earth while (b) depicts the overall horizontal error comparison for different sensor 
fusion combinations.

TABLE 3
Overall Horizontal RMS with Different Sensor Fusion Combinations

Sensor 
combinations 

DF-PPP DF-PPP/IMU (MI 8) DF-PPP/IMU (XSens) 

68th  
percentile rms (m) 

1.3 1.2 1.2

95th  
percentile rms (m) 

1.9 1.7 1.7

100th  
percentile rms (m) 

5.2 2.1 1.9
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shown, because they indicated no or extremely poor GNSS geometry. A high PDOP 
value was also observed when the elapsed time reached 6.4 min, mainly because 
of GNSS signal blockage from the passing trucks and vans. Of note, by integrating 
IMU sensors, an obvious trend was observed of decreasing horizontal errors under 
the underpass environments, e.g., the horizontal error peak of dual-frequency 
GNSS PPP-only solutions significantly decreased from 26.1 m to 8.5 m (Mi 8 IMU) 
and 6.3 m (Xsens IMU).

Table 4 highlights the horizontal RMS with different levels of percentiles when 
the elapsed times were between 5 and 7 min. In contrast to that of dual-frequency 
PPP solutions, the overall RMS of integrating IMUs decreased from 4.3 m to 
2.7  m (Mi 8 IMU) and 2.5 m (Xsens IMU), thus leading to 37% and 42% accu-
racy improvements for smartphone positioning under such a GNSS-challenging 
environment. Meanwhile, further 95th and 68th percentile RMS analysis indicated 
that, by screening those epochs, which might have been affected by GNSS signal 
blockage, poor GNSS geometry, as well as multipath effects, the IMUs would be 
less beneficial in improving solution accuracy but showed no negative impacts. 

4.1.2  Underpass B

For Underpass B, compared with Underpass A, the second outage was more 
challenging for the smartphone positioning, because it was approximately 100-m 
long under three consecutive highway ramps (Figure 10[a]), thus causing intermit-
tent GNSS signal availability. As shown in Figure 10(b), the dual-frequency PPP 
solution (red dots) showed decreased accuracy when the vehicle was passing under 

FIGURE 8 Photograph and aerial view of trajectory for Underpass A: (a) depicts a Google Earth 
view of Underpass A while (b) depicts Google Earth trajectories for three sensor fusion combinations. 

FIGURE 9 Time series of horizontal errors and PDOP values for elapsed times between 5 
and 7 min for Underpass A: (a) depicts the time series of horizontal errors and (b) depicts the 
time series of PDOP values.
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Underpass B, thus leading to only one positioning solution that overlapped with 
another highway ramp during the GNSS outage. In contrast, the PPP integrated 
Xsens IMU solutions were able to provide continuous dead reckoning, because the 
blue dots were almost in line with the center line of the road and referenced trajec-
tories. Interestingly, in terms of the tightly coupled PPP integrated with Mi 8 IMU 
solutions (blue dots), the IMU mechanization results were reliable at the begin-
ning of the outage but drifted rapidly after a few seconds, and reached a maximum 
horizontal error of 15 m for Mi 8 native IMU, and approximately 6 m for Xsens 
MTi-7. This finding was expected, given the limitations of the smartphone-grade 
hardware.

Figure 11(a) and Table 5 highlight the time series of horizontal errors and RMS 
with different percentiles across Underpass B. Through comparison of Figure 11(a) 
and 11(b), a correlation between horizontal errors and satellite geometry was 
observed. The statistics notably indicated that the overall RMS decreased from 
15.9 m to 2.5 m with incorporation of the smartphone IMU, and was as low as 1.2 m 
after replacement with the commercial Xsens IMU. Meanwhile, both the 95th and 
68th percentile RMS values indicated that the IMU offered only slight gains for 
smartphone positioning in more open-sky environments: More than 96.2% of the 
epochs had more than four satellites. Together, these results suggested that, with 
the aid of IMU measurements, smartphone positioning becomes more resilient to 
signal-blockage-prone environments, in that the positioning accuracy was signifi-
cantly improved in areas with poor GNSS geometry, and the fusion also was not 
detrimental to PPP solutions with sufficient satellite visibility. In contrast, positive 
impacts were observed from the ultra-low-cost smartphone IMU, with comparable 
tightly coupled positioning performance with respect to that of the commercial 
IMU, despite their hardware discrepancy, thus showing great potential in future 
smartphone location-based services.

TABLE 4
Horizontal RMS with Different Sensor Fusion Combinations for Elapsed Times Between 5 and  
7 min (Underpass A)

Sensor 
combinations 

DF-PPP DF-PPP/IMU (Mi 8) DF-PPP/IMU (Xsens)

68th  
percentile RMS (m) 

1.7 1.6 1.6

95th  
percentile RMS (m) 

2.5 2.3 2.2

100th  
percentile RMS (m) 

4.3 2.7 2.5

FIGURE 10 Photograph and aerial view of trajectory for Underpass B: (a) is a Google Earth view 
of the underpass and (b) is a Google Earth view of the trajectories for the three sensor fusion strategies.
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4.2  Identifying Scenarios in Which Sensor Fusion  
Benefits Most

Figure 12(a) presents the horizontal RMS bars with visible satellites. Owing to 
the satellite geometry, smartphone positioning accuracy increases with the grow-
ing number of satellites for these three sensor fusion combinations. In addition, 
as summarized in Figure 12(b), although more than half the epochs involved 
observations from more than seven satellites, it was the 3.8% epochs with only 
zero to four satellites that decreased the overall positioning performance. In 
these GNSS-challenging scenarios, an accuracy improvement exceeding 80% was 
observed in Figure 12(a). Although the solution can be further improved by using 

TABLE 5
Horizontal RMS Using Different Sensor Fusion Combinations for Elapsed Time Between 18.5 and 
20.5 min (Underpass B)

Sensor 
combinations 

DF-PPP DF-PPP/IMU (Mi 8) DF-PPP/IMU (Xsens)

68th  
percentile RMS (m) 

0.3 0.3 0.3

95th  
percentile RMS (m) 

0.8 0.8 0.7

100th  
percentile RMS (m) 

15.9 2.5 1.2

FIGURE 11 Time series of horizontal errors and PDOP values for times between 5 and 7 min 
for Underpass B: (a) depicts the time series of horizontal errors and (b) depicts the time series of 
PDOP values.

FIGURE 12 Overview of satellite availability and corresponding accuracy improvement: (a) 
depicts solution improvement via number of visible satellites while (b) depicts the percentage of 
satellites processed.



    YANG et al.

the commercial Xsens IMU, the tightly coupled PPP/IMU fusion is shown to be 
beneficial by providing more accurate and resilient solutions in an obstructed 
environment. The use of the smartphone IMU is able to essentially mitigate the 
standalone PPP 2D RMS errors from 35.1 m to 6.6 m, with fewer than four visible 
satellites. The improvement decreased to approximately 10% in the scenarios in 
which the number of satellites was between five and seven, thus indicating lesser 
effects from using the IMU measurements when more satellites are available, in 
agreement with the conclusions in previous sections. 

5  CONCLUSION

The study provides insight into native smartphone PPP/IMU navigation perfor-
mance by using current hardware and software platforms, with a focus on urban 
performance in the presence of obstructions. Compared with the GNSS/IMU inte-
grated solution used in the past without PPP augmentation, the study represents a 
major step forward by investigating daily driving scenarios with an overall horizon-
tal RMS of 2.1 m. In addition, in GNSS-denied underpasses, the integrated solution 
was able to provide a continuous smartphone navigation solution. The enhanced 
continuity is provided at no additional hardware cost, and should be beneficial in 
helping application developers improve their location-based services.

The answers to the key research questions that motivated this research are as 
follows, according to the experiments conducted:

1.	 How does the performance of a smartphone PPP/IMU integrated solution 
compare to that of a smartphone using an identical GNSS source but better 
IMUs? 

	 The tightly coupled solution improved after switching to a commercial 
low-cost IMU, wherein the overall RMS was improved from 2.1 m with the 
use of native sensors to 1.9 m. The commercial IMU showed much better 
performance in GNSS outages. Particularly in the second underpass, the Mi8/
Xsens combination yielded a 1.2-m 2D RMS, as compared with 2.5 m with 
native sensors.

2.	 In what scenarios does a smartphone IMU improve navigation solutions, and 
by how much?

	 The integrated solution using native sensors showed meters of improvement in 
overall accuracy. Notably, in GNSS outages, a 37% improvement was observed 
in the first outage, and an improvement from 15.7 m to 2.5 m was observed 
in the second outage. In scenarios with four or fewer satellites, the integrated 
solution provided a >80% improvement, covering 3.8% of the data set. A >10% 
improvement was observed with five to seven satellites; a 6% improvement 
was observed in more open-sky scenarios with more than seven satellites. 

This study provides a more accurate and resilient positioning solution using 
current-generation smartphone sensors and a GNSS-PPP/IMU fusion technique. 
In the evolving industry of smartphone applications and portable devices, the 
improved solution should allow for better quality of services, such as more accu-
rate delivery tracking in urban centers or improved navigation in obstructed areas. 
With the future development of a more resilient smartphone positioning solu-
tion, lane-level, all-around navigation, and more innovations are expected to be 
achieved.
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6  FUTURE WORK

The results demonstrated that the smartphone GNSS-PPP/IMU is capable of 
producing a consistent sub-meter-level navigation solution. However, the work 
must be extended to the realm of realistic scenarios in which phones are placed 
next to the driver, and the vehicle is traveling in a more complex and obstructed 
environment. Smartphone GNSS measurements show poor quality in both the 
RMS of larger errors and are also missing dual-frequency and carrier-phase mea-
surements in some epochs. Therefore, further investigation and optimization are 
required. Additional algorithms to decouple the user’s phone movement at hands 
and vehicular movement are needed to support practical use. The ultimate goal of 
this research is to produce a nearly ubiquitous, real-time sub-meter PNT solution 
available for smartphones that will lead to evolution of consumer technologies.
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