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Abstract: In the medical field, 3D ultrasound reconstruction can visualize the internal structure of
patients, which is very important for doctors to carry out correct analyses and diagnoses. Furthermore,
medical 3D ultrasound images have been widely used in clinical disease diagnosis because they
can more intuitively display the characteristics and spatial location information of the target. The
traditional way to obtain 3D ultrasonic images is to use a 3D ultrasonic probe directly. Although
freehand 3D ultrasound reconstruction is still in the research stage, a lot of research has recently been
conducted on the freehand ultrasound reconstruction method based on wireless ultrasonic probe.
In this paper, a wireless linear array probe is used to build a freehand acousto-optic positioning
3D ultrasonic imaging system. B-scan is considered the brightness scan. It is used for producing a
2D cross-section of the eye and its orbit. This system is used to collect and construct multiple 2D
B-scans datasets for experiments. According to the experimental results, a freehand 3D ultrasonic
reconstruction method based on depth learning is proposed, which is called sequence prediction
reconstruction based on acoustic optical localization (SPRAO). SPRAO is an ultrasound reconstruction
system which cannot be put into medical clinical use now. Compared with 3D reconstruction using
a 3D ultrasound probe, SPRAO not only has a controllable scanning area, but also has a low cost.
SPRAO solves some of the problems in the existing algorithms. Firstly, a 60 frames per second (FPS)
B-scan sequence can be synthesized using a 12 FPS wireless ultrasonic probe through 2–3 acquisitions.
It not only effectively reduces the requirement for the output frame rate of the ultrasonic probe,
but also increases the moving speed of the wireless probe. Secondly, SPRAO analyzes the B-scans
through speckle decorrelation to calibrate the acousto-optic auxiliary positioning information, while
other algorithms have no solution to the cumulative error of the external auxiliary positioning device.
Finally, long short-term memory (LSTM) is used to predict the spatial position and attitude of B-scans,
and the calculation of pose deviation and speckle decorrelation is integrated into a 3D convolutional
neural network (3DCNN). Prepare for real-time 3D reconstruction under the premise of accurate
spatial pose of B-scans. At the end of this paper, SPRAO is compared with linear motion, IMU,
speckle decorrelation, CNN and other methods. From the experimental results, it can be observed
that the spatial pose deviation of B-scans output using SPRAO is the best of these methods.

Keywords: freehand ultrasound scanning; position tracking technology; ultrasound; 3D reconstruc-
tion; deep learning

1. Introduction

Medical imaging is important for physicians to visualize the inner anatomy of patients
for diagnosis and analysis. Compared with computer tomography (CT) and the magnetic
resonance imaging (MRI), ultrasonic imaging has the advantages of being used in real time,
portability, low cost and causing no harm to the patient. Physicians use the ultrasonic
probe to conveniently move the subject’s skin to examine the region of interest (ROI). The
ultrasound probe outputs 2D ultrasound images for the physician to view. However, there
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are many limitations in relying on 2D ultrasound images during ultrasound scanning.
Using 3D ultrasound imaging can clearly display the 3D contour of the measured object
and the slice map in multiple directions. Therefore, physicians can work without too much
mental labor. Three-dimensional ultrasound images are obtained via 3D reconstruction
of a series of 2D ultrasound images. Before 3D reconstruction, there are several methods
for data acquisition, including 2D array, mechanical, tracked freehand, and untracked
freehand [1–4]. Because the acquisition method of a freehand linear array probe can not
only control the size of the scanning area but is also low-cost, this method is particularly
suitable for popularization [5].

At present, there are three main freehand 3D imaging methods: (1) fixing a linear
array ultrasonic probe on a robot arm for scanning [6–11]; (2) use of an ultrasonic probe
with external sensors for scanning [12–15]; and (3) use of a sensorless ultrasonic probe for
scanning. In contrast, a 2D array scanning system is very expensive and difficult to develop
in hardware and software [16]. Therefore, the application of a cheaper linear array has
attracted attention. A linear array ultrasound probe is also known as the 2D ultrasound
probe.

Using a robot arm for scanning is similar to using mechanical positioning tracking,
such as linear tracking systems [8–11]. Chung used eight high-performance digital cameras
to track a small rigid body mounted on an ultrasonic probe to realize optical motion track-
ing [12]. A Bayesian based nonlocal method was used for accurate volume reconstruction
of irregular interval B-scan freehand 3D ultrasound imaging. This method uses gamma
distribution instead of traditional Rayleigh distribution to achieve better suppression of
speckle noise [17]. A game controller position tracker has also been used to design and man-
ufacture a low-cost 3D ultrasound system based on standard 2D ultrasound. A Playstation’s
mobile location tracking not only provides a low-cost alternative, but is also a portable
device [18]. Gao verified the feasibility of using wireless communication technology and
an image-based motion tracking method to realize 3D ultrasound imaging.

Neural networks are used to track the B-scan action to complete 3D reconstruction [19]
and learn the speckle elimination correlation curve [20–23]. Cui Yang [24] uses a six degree
of freedom robotic arm taking the role of the physician. A full convolutional network (fuse
U-NET) based on a depth sensor and depth image is proposed to realize the automatic
recognition of the human spinal region and pre-planning of the scanning path. Prevost R
uses statistical learning and a convolutional neural network for modelling, which verifies
the feasibility of predicting the motion of the ultrasound probe through the ultrasound
image itself [25]. Guo proposed a deep-level context analysis learning network (DCL-
NET), which uses the feature relationship between ultrasonic image frames to perform
3D reconstruction without sensors [26]. In another article, an improved adaptive strategy
is proposed, which generates invariant features by minimizing the difference of image
features of samples so that the deep learning algorithm can adapt to the data collected
by different sensors [27]. Luo M [28] proposed an online learning framework that can
deal with complex sequences. An evaluation was carried out on self-scanned datasets,
and good results were obtained [29,30]. Later, the method based on deep learning was
extended, and measurement data from an inertial measurement unit (IMU) were added to
the process [31]. It can not only reconstruct the volume from the cross-sectional sequence,
but also reconstruct the context information from the test data themselves, thus improving
the perception ability of the neural network model. Su proposed a 3D-CNN model that can
simultaneously extract features from space and time through 3D convolution. This model
can capture motion information of multiple adjacent frames [32]. Su [33] performed a
detailed analysis and comparison on different models of sequence extraction and candidate
sequence classification, including U-NET [34,35] + CNN-LSTM, CNN-LSTM [36–38], V-
NET, R-CNN+3D-CNN [39,40], etc. Xie proposed a convolutional neural network for 3D
reconstruction by adding a pyramid distortion layer to fuse ultrasonic image and optical
flow characteristics [41].



Electronics 2023, 12, 1527 3 of 30

Generally speaking, the first method mainly relies on automation instead of manual
operation. The advantages are high imaging accuracy and strong stability; however,
the equipment is large in size and high in cost. Controlling the close coupling between
robot probe and human skin is a very important challenge. In the second method, the
data collected are generally a combination of the 2D ultrasound image sequence and its
relative spatial information, as provided by an external auxiliary positioning device. The
advantages of a freehand scanning system without using a position sensor are the low cost
and scanning flexibility. However, the 2D ultrasound frames acquired by the system are
usually irregular intervals between images, which may cause undesirable artifacts in the
reconstruction results. Therefore, it is necessary to research and develop reconstruction
methods or algorithms, for example, linear motion, IMU, speckle decorrelation, CNN,
to optimize the reconstruction results. The optical positioning sensor has high stability,
strong anti-interference ability and high positioning accuracy; however, it cannot solve the
occlusion problem in the process of freehand scanning.

In this paper, a freehand 3D ultrasonic reconstruction method based on deep learn-
ing is proposed. This method is named sequence prediction reconstruction based on
acousto-optic localization (SPRAO). The research architecture diagram of SPRAO is
shown in Figure 1. The advantages and disadvantages of using and not using SPRAO in
freehand 3D reconstruction are compared. The organization of this article is designed ac-
cording to the innovation of SPRAO in Figure 1. The implementation process of SPRAO
is as follows:

(1) An acousto-optic positioning handheld device based on linear array wireless ultra-
sonic probe is designed and fabricated. The wireless probe outputs 12FPS B-scans
raw data. Acousto-optic auxiliary positioning device is used to provide 60 sets of
pose information per second. If each group of pose information output can directly
correspond to a frame of B-scan, this is not a challenging problem. However, the
real situation is that it is impossible to continuously collect with a handheld probe.
For example, when we move continuously for 1 s at a speed of 1 cm/s, we can
only obtain 12 FPS B-scans within a distance of 1 cm, although we obtain 60 sets
of pose data. Among them, there are 48 groups of posture information without
corresponding B-scans. Therefore, in this paper, the algorithm and training model
are designed to make the probe collect the least number of times in the range of
1 cm, and finally synthesize 60 FPS B-scans within 1 cm. A 3D ultrasound imaging
system can not only collect data, but it can also provide support for the SPRAO
algorithm in this paper. It can be seen from Figure 1 that the innovation and advan-
tages of the SPRAO algorithm require the spatial pose information output by the
acousto-optic positioning device.

(2) Because the surface of the measured target will change due to the extrusion of the
probe, the position of the target will also change when the probe is collected back
and forth. The effect of 3D reconstruction using pose information directly is not good;
thus, curve fitting and speckle decorrelation are needed for position correction. The
probe can only obtain 12 frames of B-scans after the first acquisition. We need to insert
another 48 frames of B-scans through subsequent acquisition. The spatial position
of each frame of B-scans is actually determined by three points on different lines in
the space; therefore, three Bezier curves are needed to provide three points for each
plane. Three Bezier curves are fitted from the existing 12 frames of B-scans according
to the pose. Four points are inserted between two B-scans on each Bezier curve. The
original data is interpolated and synthesized on a Bezier curve. This not only ensures
the frame rate of the B-scan sequences, but also reduces the requirement of ultrasonic
probe output frame rate.

(3) Set ROI and extract the speckle decorrelation feature of two B-scans. Calibrate the
acousto-optic auxiliary positioning information. It should be noted that through
the speckle decorrelation results of two frames of B-scans, the reduction is not the
interpolation error but the change error caused by the extrusion of the probe. The
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mean square error (MSE) loss function is used to represent the difference between
the calculation result and the real value. The correct MSE between the actual and
theoretical values of 48 frames of B-scans is obtained through Bezier interpolation.

(4) The calculation of pose deviation and speckle decorrelation is integrated into 3DCNN.
LSTM is used to predict the output pose information of 3DCNN, so that MSE can reach
the minimum value quickly in a short time. 3DCNN-LSTM extracts deep abstract
features and establishes a model to predict the spatial pose of the ultrasonic probe.
Finally, the 3D reconstruction of B-scans sequence is realized.
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Compared with linear motion, IMU, speckle decorrelation or CNN, SPRAO can not
only reduce the output frame rate requirement of the wireless probe, but also reduce the
cumulative error of the positioning device via speckle decorrelation between two frames of
B-scans. 3DCNN is used to complete the speckle decorrelation calculation. LSTM is used
to reduce the time of SPRAO to obtain the minimum MSE, which is useful for real-time 3D
reconstruction. The contributions of this paper are as follows:

1. Bezier interpolation and Speckle decorrelation are applied to the data acquisition
process of freehand 3D ultrasound reconstruction so that doctors can obtain 60 FPS
B-scans of the target through 2–3 continuous acquisitions.

2. By extracting the speckle decorrelation feature of two B-scans, the acousto-optic-
assisted positioning information is compensated, and the cumulative error of the
positioning device in the freehand 3D ultrasound reconstruction process is solved.

3. The deep learning model 3DCNN-LSTM is used to implement the algorithm. The
calculation of pose deviation and speckle decorrelation is integrated into 3DCNN.
LSTM is used to predict the output pose information of 3DCNN so that MSE can
reach the minimum value in a short time.

2. Materials and Methods
2.1. Bezier Interpolation

It has been mentioned in the Introduction section that because only 12 FPS B-scans
can be obtained after the first acquisition of the probe, there are 48 sets of pose information
without corresponding B-scans in the 60 sets of pose raw data per second. Another 48
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frames of B-scans need to be inserted through the subsequent acquisition process. The
spatial position of each frame of B-scans is actually determined by three points on different
lines in the space; therefore, three Bezier curves are needed to provide three points for
each plane. The degree of Bezier polynomial used in this paper is not large, and the Bezier
curve is more in line with the moving trajectory of the handheld probe in space. Therefore,
the data obtained via Bezier interpolation is used as the basis for the improvement of
B-scans’ frame rate [42–44]. In reference [30], the frame rate of B-scan sequences used in the
experiment is 35 FPS; however, it is difficult for a general wireless ultrasonic probe to have
such a performance. For example, the frame rate of the wireless ultrasound probe used in
this paper is only 12 FPS. In order to obtain a high frame rate in the B-scan sequence, it
is necessary to fit several Bezier curves in the original B-scans sequence and calculate the
coordinate position of the space insertion point on the Bezier curve.

The higher the order, the longer the construction time of the Bezier curve, and the
higher the computational complexity of its interpolation. Therefore, the number of optimal
control points should be determined according to the situation. If the number of control
points is excessively small, the interpolation error is relatively large; otherwise, it will bring
additional computational overhead. The calculation equation of Bezier curve is as follows:

B(t) =
n

∑
i=0

(
n
i

)
Pi(1− t)n−iti, t ∈ [0, 1] (1)

There are n + 1 control points in total, P0, P1, · · ·Pn. These points are decisive to the
curve. P0 and Pn are the start and end of the curve. t is the curve function in which B(t)
passes through the control point Pn−1 to Pn described above. For example, the path is from
P0 to P1. When n = 1 and t = 0.5, the value of B(t) is just in the middle of this path.

The window includes four 2D ultrasound images and three Bezier curves, as shown in
Figure 2. Set the starting point of each curve at the first ultrasonic image I1. In the SPRAO
proposed in this paper, a control window is defined, as shown in Figure 3.
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The starting points P11, P21, P31 of each curve on I1 in the control window are traversed.
Because three points in space can determine a 2D plane, the three starting points in I1 cannot



Electronics 2023, 12, 1527 6 of 30

be on a straight line. Through the coordinate transformation matrix Te→E, the point on I1 is
mapped to the plane I′1 in the coordinate system of the reconstructed volume. The origin O
of the coordinate system of the reconstructed body is the placement position of the acousto-
optic positioning device. In Figure 2, the coordinate points of P11, P21, P31 in the coordinate
system of the 3D reconstruction volume are P′11(x1, y1, z1), P′21(x2, y2, z2), P′31

(
x3, y3, z3

)
,

of which the central coordinate point is M′1(X1, Y1, Z1). We calculate the vector passing
through M′1 and the coordinate origin O, and obtain the angle between the vector and the
three coordinate axes in the 3D reconstruction coordinate system θx1, θy1, θz1. The degree of
freedom parameters of the relative motion of the target point can be obtained. The plane
I′1 can be represented by the coordinates M′1

(
X1, Y1, Z1, θx1, θy1, θz1

)
of the center point.

The points on the first curve on the four ultrasound images in the control window are
represented by, respectively, P11, P12, P13 and P14, as shown in Figure 3. The corresponding
coordinate positions of these four points in the ultrasound image coordinate system are the
same; however, after mapping to the reconstruction volume coordinate system, the spatial
coordinates of the four points are different. According to Equation (1), Pn1, Pn2, Pn3 and Pn4,
n = 1, 2, 3, n represents different curves.

There are four control points on each curve. Three cubic Bezier curves can be con-
structed by twelve control points. pn1, pn2, pn3, pn4 are inserted between two control points
on each curve according to Equation (1). n = 1, 2, 3, n represents different curves, as
shown in Figure 3. For example, p11, p12, p13, p14 are the interpolation points on the first
bezier curve, and the values are 0.065, 013, 0.195 and 0.26. m′1

(
X1, Y1, Z1, θx1, θy1, θz1

)
,

m′2
(
X2, Y2, Z2, θx2, θy2, θz2

)
, m′3

(
X3, Y3, Z3, θx3, θy3, θz3

)
, m′4

(
X4, Y4, Z4, θx4, θy4, θz4

)
in the

reconstructed body coordinate system E is calculated in Figure 2. m′1, m′2, m′3, m′4 corre-
sponds to the center point m1, m2, m3, m4 of the plane I1, I2, I3, I4 where p11, p12, p13, p14
is located.

This method can take the ultrasonic probe data with a frame rate of only 12 FPS, and
finally synthesize a B-scans sequence with a frame rate of 60 FPS through repeated scanning.
Bezier interpolation in the SPRAO Algorithm 1 improves the frame rate as follows.

Algorithm 1: Bezier Interpolation of SPRAO

STEP1: An ultrasonic probe with an acousto-optic positioning device is used to move and scan the
target in one direction at a speed of 1 cm/s. In this process, the probe outputs 12 FPS B-scans,
while the acousto-optic positioning device can output 60 spatial position coordinates and angle
information in the reconstructed coordinate system per second.
STEP2: The control window starts to move from the first image frame, four frames at a time, until
all B-scans sequences are traversed. Three points of different straight lines are extracted from each
frame of image, and three Bezier curves are generated.
STEP3: Insert four points between two B-scans on each Bezier curve. Twelve points are inserted
into three curves. Calculate the center point coordinates of the plane where the insertion point is
located, and convert the coordinates to the reconstruction body coordinate system.
STEP4: Return to STEP1. Make several acquisitions along the original path. Repeatedly compare
the position of the acousto-optic positioning device and the coordinates of the insertion point.
When the two are consistent, insert the current B-scan into the original image sequence. Finally, 60
FPS B-scans were obtained, which were five times those of the original sequence. There are still
some errors between the coordinates of these inserted B-scans and the real values. The error will
be adjusted later using the speckle decorrelation of SPRAO.

2.2. Speckle Decorrelation

Three Bezier curves of B-scans can be obtained through the collection of three points
on each B-scan that are not on the same line. With the help of the acousto-optic positioning
device, the position of the interpolation point between two B-scans can obtain another four
B-scans. However, the estimated coordinates obtained from the curve insertion point have
some errors in relation to the real values. Therefore, it is necessary to extract the motion
information between B-scans for error correction.
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There are many methods to extract the motion information between images. In this
paper, the speckle decorrelation tracking algorithm [45–48] of the ultrasonic image itself is
used to extract the motion information between two images, including displacement and
rotation. During the acquisition process of mobile ultrasonic probe data, the correlation
between two B-scans will change. The degree of decorrelation is proportional to the moving
distance of the probe. Therefore, the physical distance between B-scans can be determined
by speckle decorrelation. For example, two B-scans at the same position in space have
the same speckle pattern without any decorrelation. In the ultrasound images of human
tissues, Rayleigh scattering components are less apparent and coherent interference is more
apparent. Therefore, this paper uses an adaptive speckle decorrelation algorithm to estimate
relative motion. According to the ratio of coherent scattering and Rayleigh scattering, the
method automatically adjusts the curve parameters of speckle noise decorrelation.

As shown in Figure 2, P′11(x1, y1, z1), P′21(x2, y2, z2), P′31
(
x3, y3, z3

)
are the coordinates

on different lines of the 3D reconstruction coordinate system through Bezier interpolation.
Before speckle decorrelation, 64 × 64 image blocks IB11, IB21, IB31 are taken from around
P′11, P′21, P′31 on the first B-scan I′1. Then, ROI of N ×M size is extracted from each
ultrasound image of the B-scans sequence. The ROI includes three image blocks, as shown
in Figure 4.
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There is an ultrasonic echo signal between image blocks at the same position of two
B-scans. The signal strength has an approximate linear statistical relationship. Therefore,
for a given σ, b is the Gaussian function of d. The equation is as follows:

b = exp
(
− d2

2σ2

)
(2)

where d is the distance between two image blocks, σ is the width standard deviation of a
single resolution unit at the same position of the ultrasonic image.

The adaptive speckle resolution algorithm includes calibration curve and distance
estimation. In Equation (2), the echo signal of any point in the ultrasonic image can be
expressed as the scatter function in the resolution unit around the point. Therefore, the
correlation between two B-scans blocks at the same position depends on the degree of
overlap between resolution units.
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The process of generating calibration curves is to measure the correlation of image
blocks with different intervals and draw it as a “distance correlation” curve. In Equation (2),
σ is not only related to the characteristics of the medium and the probe, but also changes
with the lateral and axial direction of the image. Therefore, before speckle decorrelation, it
is necessary to collect speckle decorrelation curves at different positions of the image block
for reference. As shown in Figure 5, the probe moves along the z-axis with a fixed step size
∆z to scan the ultrasonic phantom, and collects and saves the B-scan sequences.
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Equation (4) can calculate the autocorrelation coefficients of the 64× 64 image blocks
of each frame of the B-scan sequence and the corresponding image blocks of the first
B-scan frame. Assuming that n is the number of B-scans, we can obtain n-1 discrete data
points. Through curve fitting these discrete points, the correlation curve of Z-axis direction
is obtained. In the same way, the correlation curve of the X-axis and the Y-axis can be
obtained, as shown in Figure 5. The range of single movement distance ∆x and ∆y of ROI
along the X-axis and Y-axis is shown in Equation (3).{

i× ∆x ≤ ∆N
i× ∆y ≤ ∆M

(3)

∆N and ∆M are the maximum moving distances of the ROI along the X-axis and the
Y-axis, so that IB11, IB21, IB31 is still within the ROI range after moving. i is the number
of movements, and the cumulative movement distance does not exceed ∆N and ∆M. We
repeat the acquisition steps of the ultrasonic probe in the Z-axis direction to obtain another
two correlation curves.

The distance estimation to obtain the distance between two frames from the calibration
curve comes from a lookup table. In order to calculate the spatial position and angle
relationship between the current frame and the previous frame, it is necessary to obtain the
distance of three groups of image blocks corresponding to two frames of images. Take the
previous frame image as a reference, and compare a frame image taken from the sequence
with the previous frame. Assume that the current frame and the previous frame have
enough speckle decorrelation. For a pair of image blocks from the same position of two
frame images, their correlation coefficient Z is calculated using Equation (4). The distance
dXY between the two image blocks corresponding to the ρXY position is obtained from
the calibration curve using the lookup table method. For example, there are two sets of
sequences X, Y. We calculate the Pearson correlation coefficient ρXY through Equation (4).

ρXY =
cov(X, Y)

σXσY
(4)
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where cov(X, Y) is the covariance of X and Y, σX and σY are the standard deviation of X
and Y.

Reference [45] mentions that only in the case of Rayleigh scattering can ρXY of Equa-
tion (4) be equivalent to b in Equation (1). However, in the actual ultrasound images
of biological tissues, there are coherent interference and Rayleigh scattering at the same
time. Reference [45] calculated speckle decorrelation reference curves for X, Y and Z axes,
respectively. It is used to correct the results to adapt to the existence of coherent interference.
ρr is the correlation coefficient of Rayleigh scattering. ρx is the correlation coefficient of
coherent scattering. kx is two scattering ratios, 0 ≤ kx ≤ 1. According to the consistency of
the coherent interference, ρx can be obtained as in the following equation:

ρx =

(
1 + k2

x
)
cov(X, Y) + 2kxσXσY

(1 + k2
x)σXσY + 2kxcov(X, Y)

=

(
1 + k2

x
)
ρr + 2kx

(1 + k2
x) + 2kxρr

(5)

According to kx between two image blocks, ρx is calculated using Equation (5). This
calculation process can also be reversed, as shown in Equation (6).

kx =
(1− ρxρr)

(ρx − ρr)
±
√
(1− ρ2

x)(1− ρr2)

(ρx − ρr)
(6)

According to the equation, the calibration curve can be obtained by measuring the av-
erage Rayleigh scattering correlation coefficient ρr of multiple B-scans sequences. Calculate
the coherent interference coefficient along the axial and lateral direction of the two B-scans
ρx = ρa and ρx = ρl .

For two consecutive images of B-scan sequences, ka is the Z-axis scattering ratio, kl is
the lateral scattering ratio, and kl includes X-axis and Y-axis. The scattering ratio values
kx = ka, kx = kl , kx = kr corresponding to ρx = ρa, ρx = ρl , ρx = ρr can be calculated
using Equation (6). ka and kl compose ke in proportion, and use Equation (5) to calculate
the ρe curve. Finally, the distance de is obtained from the lookup table.

The speckle decorrelation algorithm only uses two frames of B-scans to estimate the
displacement and angle. If the cumulative error of the equipment is not considered, the
accuracy of the speckle decorrelation algorithm is still worse than that of the method using
the auxiliary positioning device directly. Therefore, this paper combines the advantages
of speckle decorrelation and acousto-optic positioning equipment, and integrates the two
algorithms into 3DCNN, as shown in Figure 6. The steps of the related Algorithm 2 are
as follows:

Algorithm 2: Speckle Decorrelation of SPRAO

STEP1: Set the ROI of N×M for each B-scan frame in the dataset. Take three 64× 64 image blocks
that are not in the same line from the ROI. Input the B-scan image blocks of each frame into the
convolution layer of 3DCNN one by one.
STEP2: The speckle decorrelation features of B-scans image blocks are extracted via convolution
operation of 3DCNN. The estimated distance of the current two frames of B-scans can be obtained
by using the lookup table.
STEP3: On the basis of the distance estimation, the normal vectors of the plane where the three
image blocks are located are further extracted. Calculate the included angle between the normal
vector and the three coordinate axes and the coordinate value of the ROI center point.
STEP4: 3DCNN outputs pose information. When training the model, the pose information can be
input into LSTM for prediction, which can make MSE reach the minimum value in a short time.
After the model training is completed, 3DCNN can run the test set independently without LSTM,
show as Figures 6 and 7.
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2.3. 3DCNN-LSTM

CNN can automatically extract local features from original data by alternately using
convolution and pooling. 3DCNN is an extension of 2DCNN. Not only can it simultane-
ously capture spatial and temporal features, but it can also generate multiple information
channels from adjacent frames. The basic principle of 3DCNN is to execute 2DCNN on
each independent information channel. Then, all channel information is synthesized by
local connection and shared weight.

A 3DCNN of three-layer convolution constructed in this paper is shown in Figure 6.
Among them, the original image is the B-scans directly collected, and the inserted image is
the B-scans repeatedly collected according to the interpolation points of the Bezier curve.
These two parts constitute the reconstruction unit as the input of the network.



Electronics 2023, 12, 1527 11 of 30

Use ROI to uniformly set the size of each B-scan to 256× 256. The size of a single
3D reconstruction unit is 256× 256× 11. The reconstruction unit consists of three B-scans
directly acquired and eight B-scans inserted later. The size of the reconstructed volume
can be adjusted according to the actual situation. The spatial dimension is represented by
256× 256 and 11 represents the time dimension. In other words, 3DCNN operates on 11
B-scans at the same time.

This paper uses the 3D convolution kernel of the deep learning model to extract the
B-scans features, and uses LSTM to predict pose offset parameters. As shown in Figure 6,
the number of 3D convolution cores is 32, 64 and 128, including 9× 9× 5 and 9× 9× 3. To
increase the number of feature maps, the reconstruction unit is copied and divided into
two feature groups before 3D convolution. The two feature groups include six different 3D
convolutions, which are used to extract features from the reconstructed volume. Feature
group 1 includes speckle decorrelation in X, Y and Z directions. These features require two
B-scans each time. Feature group 2 includes gradient and grayscale in X and Y directions,
which can be directly extracted from a single B-scan. Therefore, the size of feature group 1
is 256× 256× 10, while the size of feature group 2 is 256× 256× 11.

The process of feature extraction is carried out to establish six groups of convolutional
filters in 3DCNN to perform local cross-correlation between frames. This process is similar
to 2DCNN, and different filters need to be assigned different weights in order to distinguish
these. Then, dimension reduction is carried out through a pooling layer to further collect
relevant feature information. Finally, reliable features and regions in the image are selected
using the relu activation layer.

A pooling layer reduces the computation of convolution. After sampling reduction,
the number of feature maps remains unchanged. However, maximum pooling reduces the
dimensions of the feature graph. After three episodes of 3D convolution and pooling, a
feature map with 128 frames of size of 5× 5× 15 is finally obtained. The 1D feature vector
data with a length of 5× 5× 15× 128 is obtained from the flat layer and the full connected
layer.

In this paper, adaptive motion estimation (Adam) is used to train the model. The
convolution weights are initialized randomly and fed back through MSE. The output result
includes two parts, the predicted position of ROI middle pixel, and six offset parameters.
The pose output of 3DCNN is compared with the real pose, and the MSE loss function is
used to represent the difference between the calculation result and the real value.

In order to extract the information in B-scans more accurately, SPRAO combines
3DCNN and LSTM. LSTM is an improved RNN, which can solve the problem of time series
prediction. The SPRAO model is shown in Figure 7.

The function of 3DCNN is feature extraction. From the B-scans sequence with a frame
rate of 60 FPS, use the sliding window to input 11 frames at a time. According to the inter
frame features, 77 features of 11 B-scans are extracted simultaneously, including ROI spatial
position sequence and offset parameters. Using freehand collection mode will produce
some unavoidable abnormal data. These abnormal data will affect the accuracy of the
prediction model; therefore, it is necessary to use exclusion and correction methods to
identify bad data and make compensation according to the situation.

The role of LSTM is to make predictions during model training. The sequence con-
structed from 3DCNN output feature vectors is used as the input data of LSTM. These
feature vectors are independent of each other, and temporal features are extracted through
LSTM. This paper refers to the expression method of word vector in natural language
processing, and connects the characteristics of specific time to form new time series data.
The model includes multiple layers of LSTM, and the number of neurons in each layer
is 77. Sequence prediction is completed by fully connecting and outputting the data in
the specified format. During the experiment, the number of LSTM layers can be adjusted
according to the situation to improve the prediction ability of the model.
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3. Experimental Setup
3.1. SPRAO System

The hardware of SPRAO experimental system in this paper is shown in Figure 8. The
hardware includes a customized handle for fixing a wireless ultrasonic probe and acousto-
optic positioning equipment, a positioning base station, positioning information-receiving
host, and a processor platform. A customized handle, positioning base station and posi-
tioning information-receiving host constitute the positioning system, which can output the
pose information of the wireless ultrasonic probe in 3D space. After the positioning system
and the wireless probe are fixed, the probe outputs B-scan image sequences containing
pose information, which are the input data of SPRAO. The processor platform runs the 3D
reconstruction algorithm and compensates the cumulative error of the positioning system.
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The specific functions of each hardware are as follows:

1. Customized handle. It is composed of a fixed base, a wireless ultrasonic probe and
acousto-optic positioning device, as shown in Figure 9. The wireless probe uses a
128 element linear array probe from Sonostar. The acousto-optic positioning device
sends the spatial position coordinates and angle information to the positioning base
station, and outputs 60 groups per second. The wireless ultrasonic probe uses a linear
array transducer with 128 elements, and uses a 12 FPS frame rate to collect B-scan
sequences. The frequency range of the probe is 7–10 MHz, and the depth range is
2–10 cm.

2. Positioning base station. The scanning area of the base station needs to be deter-
mined. The positioning information of the acousto-optic signal positioning device is
transmitted to the positioning information-receiving host through a wire.

3. Positioning information-receiving host. Receives the information of the positioning
base station. Runs the positioning host visualization software. The software can track
the spatial position and angle of the positioning handle in the scanning area.

4. Processor platform. Runs the deep learning framework 3DCNN-LSTM. Ubuntu OS
runs on Intel (R) Xeon (R) CPU e5-2660. The number of CPUs is 56. The GPU processor
model is GeForce RTX 2080, and the number of GPUs is 4. The platform memory
capacity is 64 GB, and the solid state disk capacity is 256 GB.
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The procedure for using the SPRAO system is as follows.

1. Determine the target scanning area of the probe, including the target and path.
2. The positioning base station and the positioning information-receiving host are placed

in the specified area.
3. Connect the positioning information-receiving host and processor platform.

During the model training, the handle is moved repeatedly according to the target
path. The 3DCNN-LSTM hybrid network model is imported to predict the spatial position
and offset parameters of ROI.

The software components of the SPRAO system have two main programs. Program 1
runs on the positioning host to process the spatial position and angle information. Program
2 runs on the processor platform, training and running the deep learning model 3DCNN-
LSTM. Program 1 is developed using unity under a windows system. 3DCNN-LSTM is
built and debugged in Python under the ubuntu system. 3DCNN-LSTM uses TensorFlow
framework based on the keras deep learning tool.

3.2. Data Acquisition

The data acquisition handle with positioning device is shown in Figure 9. The spatial
position parameters of the probe can be returned. Since the positioning device and the
actual B-scan plane are not in the same spatial position, it is necessary to perform coordinate
transformation on the collected positioning data. The spatial relationship between the
actual position of a B-scan and the positioning device is shown in Figure 10. We obtain
a set of acousto-optic positioning information P

(
tx, ty, tz, θx, θy, θz

)
. Among the data, an-

gle information θx, θy, θz, the B-scan angle information, and the coordinate information
tx, ty, tz need to be modified according to Figure 10. The corrected B-scan true coordinate
information is Po

(
tx, ty − H, tz − L, θx, θy, θz

)
.
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Figure 10. Coordinate conversion of ultrasonic image.

The data collection method is shown in Figure 11. First, we define the relevant
parameters in the acquisition process. The lateral moving speed of B-scan is Vs, and the
vertical moving speed is Vr. During data collection, Vs and Vr are both 1 cm per second.
The probe scans in a straight line. The probe moves at a constant speed close to the target
surface. It is necessary to make sure the probe is close to the target surface before moving
to a predetermined distance. In this process, the surface and medium changes between the
target and the probe will affect the collected data. The movement of the hand-held probe
produces uneven pressure on the target surface. When the pressure is high, the noise of the
B-scan increases. Therefore, in the acquisition process, the moving direction of the B-scan
should be parallel to the target surface as much as possible, and the pressure direction
should be vertical to the target surface as much as possible.
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3.3. Datasets

Because freehand 3D ultrasound reconstruction is still in the research stage both on
national and international levels and has not been put into clinical application, it is impos-
sible to obtain a large number of B-scans data of human tissues with lesion information.
The SPRAO algorithm requires more B-scans data with lesions. The loss of ultrasonic
propagation in solids is very small. When transmitted to the junction of the metal and the
defect, it will be fully or partially reflected. The reflected ultrasonic wave is received by the
probe and displays the depth, position and shape of the metal target. Therefore, this paper
selects metal targets with different heights, diameters and shapes to construct multiple
datasets as simulations. At the same time, human tissue data were collected for verification.
As show in Figure 11, the datasets from DB1 to DB4 place different types of metal targets in
the ultrasonic phantom to simulate the disease area. Datasets DB5 and DB6 are non-lesion
human tissues, mainly used to verify the effect of 3D reconstruction.

According to the above data collection methods, six different targets were selected,
and B-scans were collected using an ultrasonic probe to construct six datasets DB1 to DB6,
as shown in Figure 12 and Table 1. Targets were placed in the ultrasound phantom of
Figure 11a for scanning. Among them, the target of DB1 is a metal sheet with a thickness of
1 mm, DB2 is a metal sheet with a thickness of 2 mm, DB3 is a symmetrical metal block
with a length of 26 mm, DB4 is an asymmetric metal block with a length of 21 mm, and
DB5 and DB6 are human arms which are shown in Figure 11b. The photos of the collection
targets of the datasets DB1 to DB4 are shown in Figure 12a–d. Each of the six datasets was
made into a training set and a test set at a ratio of 7:3.
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Figure 12. The collection targets of the datasets DB1 to DB4. (a) target of DB1:metal sheet with a thick-
ness of 1 mm; (b) target of DB2:metal sheet with a thickness of 2 mm; (c) target of DB3:symmetrical
metal block; (d) target of DB4:asymmetric metal block.

Table 1. Training and test dataset.

Dataset
Name Target Collection

Times
Number of

Direct Frames
Number of

Interpolation Frames
Moving

Track
Average

Distance (mm)

DB1 1 mm metal sheet 38 1000 4000 Line 15

DB2 2 mm metal sheet 38 1000 4000 Line 16

DB3 Symmetrical metal block 44 2000 8000 Line 26

DB4 Asymmetric metal block 58 2000 8000 Line 21

DB5 Right of human arm 20 1500 6000 Line 100

DB6 Left of human arm 20 1500 6000 Line 100

In Table 1, direct frames are the 12 FPS B-scans of the wireless probe output. The total
number of direct frames and interpolation frames, which is five times the original frame
rate, is 60 FPS B-scans, obtained using SPRAO.
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In addition, in the process of collecting datasets using a handheld probe, the human
arm cannot maintain the same speed movement as the robotic arm. Therefore, the average
speed can only be maintained by controlling the total moving distance and total time. Keep
Vr = 1 cm/s in Figure 10. The scanning direction of the probe and the normal vector
direction of the B-scan plane should be the same. In other words, the θr in Figure 10 must
be maintained at 90◦ during the acquisition process.

4. Experimental Results
4.1. Bezier Interpolation

Take several fixed points in the Z direction; when the probe passes a certain point,
we record the corresponding B-scan and calculate the normal vector of the current B-scan
plane. Set the fixed points and B-scans, take four fixed points each time, and calculate a
Bezier curve with Equation (1) to complete the interpolation. For example, the result of
Bezier interpolation on dataset DB1 is shown in Figure 13. Red dots are the fixed points,
and the black line is the Bezier curve calculated according to every four red fixed points.
The black curve in Figure 13 is composed of several independent Bezier curves. In practice,
it is necessary to interpolate by combining the position of every two red fixed points and
the trend of the Bezier curve. The interpolation result is represented by the blue points in
Figure 13. As you can see, four blue dots are inserted between every two red fixed points.
The red dots and blue dots constitute the space acquisition coordinates of B-scans. There
are still some errors between the coordinates of these inserted B-scans and the real values.
The error will be adjusted later by the speckle decorrelation of SPRAO.
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4.2. Speckle Decorrelation Calibration Curve

The speckle calibration curve is the first step in training the 3DCNN model. The
ultrasonic probe needs to be fixed on a three-axis motion platform for acquisition. The
probe moves in the range of 0–1 mm along the axial and lateral direction. According to the
coordinate points of Bezier interpolation, record the spatial position of the B-scans, and use
Equation (4) to calculate the correlation coefficients of three 64 × 64 image blocks in the
ROI of adjacent two frames of B-scans, as shown in Figure 14.
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The displacement correlation curves obtained by calibrating six datasets are shown in
Figure 15. It can be seen that the change trend of the calibration curve of the same probe
in different datasets is similar. With the displacement correlation curve, as long as the
correlation between three image blocks is not in the same, the straight line position on two
B-scans is calculated, and the corresponding distance value can be obtained. Then, calculate
the displacement of the B-Scan plane normal vector. With the calibration curve, in the
subsequent steps of SPRAO, Equations (5) and (6) can be used to calculate the displacement
value of the true speckle autocorrelation between two B-scans frames according to the
value of ρr.
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4.3. SPRAO

In Figure 7, 70% of the 60 PFS dataset is used as the training set. A fixed number of
B-scans from the training set are input into the 3DCNN-LSTM network for training each
time. After the training, it is only necessary to convert the spatial position of the continuous
B-scans to the 3D absolute coordinate system according to the method in Figure 2 and
through LSTM to repeatedly estimate and predict the offset parameters relative to the
previous frame image; thus, the spatial position and angle of the B-scans sequence in the
3D volume can be obtained.

The distance estimation of SPRAO speckle decorrelation is completed in 3DCNN.
Using the estimated distance of the three non-collinear image blocks on the current B-scan
from the previous frame, the spatial position of the current B-scan can be determined. In
this process, Equation (4) is used to calculate the displacement correlation coefficient ρa
curve and ρl curve of coherent interference, where a is the axial correlation coefficient and
l is the lateral correlation coefficient. Taking dataset DB1 as an example, the curve of the
axial and lateral variation with distance is shown in Figure 16, where the lateral correlation
coefficient ρl is the combination of the X and Y directions. According to the curve and table
lookup method in Figure 16, the curves of ka and kl can be calculated using Equations (5)
and (6). The curves of ka and kl for dataset DB1 are shown in Figure 17.

Electronics 2023, 12, x FOR PEER REVIEW 19 of 31 
 

 

  

(a) (b) 

Figure 16. Displacement correlation coefficient of dataset DB1. (a) axial; (b) lateral. 

  

(a) (b) 

Figure 17. Dataset DB1 curve. (a) 𝑘𝑘𝑎𝑎; (b) 𝑘𝑘𝑙𝑙. 

It can be seen from the experimental results that axial 𝑘𝑘𝑎𝑎 and lateral 𝑘𝑘𝑙𝑙 are equally 
important in the actual acquisition process. Therefore, take the average of 𝑘𝑘𝑎𝑎 and 𝑘𝑘𝑙𝑙 as 
the final estimate 𝑘𝑘𝑒𝑒. The 𝑘𝑘𝑒𝑒 curves calculated from each of the six datasets are shown in 
Figure 18. 

 
Figure 18. 𝑘𝑘𝑒𝑒 curve of six datasets. 

Figure 16. Displacement correlation coefficient of dataset DB1. (a) axial; (b) lateral.

Electronics 2023, 12, x FOR PEER REVIEW 19 of 31 
 

 

  

(a) (b) 

Figure 16. Displacement correlation coefficient of dataset DB1. (a) axial; (b) lateral. 

  

(a) (b) 

Figure 17. Dataset DB1 curve. (a) 𝑘𝑘𝑎𝑎; (b) 𝑘𝑘𝑙𝑙. 

It can be seen from the experimental results that axial 𝑘𝑘𝑎𝑎 and lateral 𝑘𝑘𝑙𝑙 are equally 
important in the actual acquisition process. Therefore, take the average of 𝑘𝑘𝑎𝑎 and 𝑘𝑘𝑙𝑙 as 
the final estimate 𝑘𝑘𝑒𝑒. The 𝑘𝑘𝑒𝑒 curves calculated from each of the six datasets are shown in 
Figure 18. 

 
Figure 18. 𝑘𝑘𝑒𝑒 curve of six datasets. 

Figure 17. Dataset DB1 curve. (a) ka; (b) kl .

It can be seen from the experimental results that axial ka and lateral kl are equally
important in the actual acquisition process. Therefore, take the average of ka and kl as
the final estimate ke. The ke curves calculated from each of the six datasets are shown in
Figure 18.
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Finally, ρe is calculated by looking up the table and Equations (5) and (6). ρe is the
corrected displacement evaluation curve, which is close to the ground truth. The ρe curves
of the six datasets are shown in Figures 19 and 20. With these curves, the current actual
displacement can be obtained from the corresponding ρe curve by calculating the speckle
decorrelation coefficient of two frames of B-scans.
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Figures 6 and 7 are the process of training the model using the training set. LSTM is
used to predict the output pose information of 3DCNN so that MSE can reach the minimum
value in a short time. LSTM can speed up the training process of the model. When the
model training is completed, 3DCNN can be separated from LSTM and used alone to
output the pose information within the expected error.

Firstly, when training the model, the training set of the same dataset is cloned from
one to six copies. Six different convolution kernels are used in the convolution layer of
3DCNN, as shown in Figures 6 and 7. Then, three convolution operations are performed on
the B-scans sequence in the training set to complete the inter-frame speckle decorrelation,
gradient and grayscale operations. Finally, through the pooling layer and activation
layer of 3DCNN, the elimination of abnormal pose data and the lookup table process of
displacement correlation coefficient are completed, as shown in Figures 19 and 20.

In this process, 3DCNN extracts the speckle decorrelation features of 60 FPS B-scans,
and calculates the MSE of each frame B-scan and the true value. The 3DCNN outputs a 1D
pose information array of 5× 5× 15× 128. When there is no LSTM in the training process,
it takes a considerable amount of time to adjust the parameters of 3DCNN to minimize
MSE according to the MSE of the output pose information array. LSTM predicts the pose
information of the next set of B-scans sequences based on the current B-scans sequence
pose information. As shown in Figure 7, the prediction results of LSTM and the next set
of 60 FPS B-scans are used as input of 3DCNN. Combining the prediction information of
LSTM, 3DCNN continues to complete the inter-frame speckle decorrelation, gradient and
grayscale operations, and calculates the MSE of each frame B-scan and the true value. In
the same training times, different MSE error can be obtained by changing the number of
LSTM layers in Figure 7. The experimental results are shown in Table 2. It can be seen
that increasing the number of LSTM layers can improve the prediction ability; however,
when the number of LSTM layers increases to eight, the training error increases. Therefore,
SPRAO chooses seven layers LSTM in the training process. The MSE in Table 2 is obtained
through the average of all B-scans pose deviations, including ROI center point gray level
offset and six pose parameter offset, as shown in Figure 6.
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Table 2. Number of layers of LSTM and prediction results.

Number of LSTM Layers Training Times MSE Error

2 500 3.2%

4 500 3.1%

5 500 2.5%

6 500 2.1%

7 500 1.8%

8 500 2.0%

After completing the model training, the test set can be input into 3DCNN without
LSTM. 3DCNN outputs the characteristics of speckle decorrelation and gradient in both
axial and lateral directions of B-scan. At the same time, the gray level of the center point is
output. Linear motion (LM), linear motion with IMU (LM + IMU), speckle decorrelation
(SD), CNN, CNN combined with speckle decorrelation (CNN + SD) and SPRAO are
used for DB1, DB3 and DB5 datasets in Table 2. The experimental results are shown in
Figures 21–23 using box plots. In each Figure, different boxes use different colors, represent
LM, LM + IMU, SD, CNN, CNN + SD and SPRAO. The absolute error of all B-scans in a
single dataset under different methods is represented by six sub figures. Subfigure (a), (b)
and (c) are the absolute angular errors of the B-scan plane normal vector and the coordinate
axes X, Y, and Z, as shown in Figures 3 and 5. Subfigure (d) and (e) are the absolute error of
the offset distance of the B-scan center point in the two directions of Lateral X and Lateral
Y, as shown in Figures 5 and 20. Subfigure (f) is the final drift error of the dataset, that is,
MSE which is output by 3DCNN-LSTM.

Electronics 2023, 12, x FOR PEER REVIEW 22 of 31 
 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 21. Error of different methods for dataset DB1. (a) Theta X; (b) Theta Y; (c) Theta Z; (d) Lateral 
X; (e) Lateral Y; (f) Drift. 

   
(a) (b) (c) 

   

(d) (e) (f) 

Figure 22. Error of different methods for dataset DB3. (a) Theta X; (b) Theta Y; (c) Theta Z; (d) Lateral 
X; (e) Lateral Y; (f) Drift. 

Figure 21. Error of different methods for dataset DB1. (a) Theta X; (b) Theta Y; (c) Theta Z; (d) Lateral
X; (e) Lateral Y; (f) Drift.



Electronics 2023, 12, 1527 22 of 30

Electronics 2023, 12, x FOR PEER REVIEW 22 of 31 
 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 21. Error of different methods for dataset DB1. (a) Theta X; (b) Theta Y; (c) Theta Z; (d) Lateral 
X; (e) Lateral Y; (f) Drift. 

   
(a) (b) (c) 

   

(d) (e) (f) 

Figure 22. Error of different methods for dataset DB3. (a) Theta X; (b) Theta Y; (c) Theta Z; (d) Lateral 
X; (e) Lateral Y; (f) Drift. 
Figure 22. Error of different methods for dataset DB3. (a) Theta X; (b) Theta Y; (c) Theta Z; (d) Lateral
X; (e) Lateral Y; (f) Drift.

Electronics 2023, 12, x FOR PEER REVIEW 23 of 31 
 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 23. Error of different methods for dataset DB5. (a) Theta X; (b) Theta Y; (c) Theta Z; (d) Lateral 
X; (e) Lateral Y; (f) Drift. 

5. Discussion 
In this part, SPRAO is compared with linear motion (LM), LM + IMU, speckle decor-

relation (SD) and CNN + SD. According to the experimental results of different methods, 
the differences between the proposed method SPARO and other related works are dis-
cussed. It can be seen that the spatial pose deviation of B-scans output by SPRAO is the 
best of these methods. 

Firstly, box plots are used to compare the intermediate variables of different methods 
in the process of 3D reconstruction. It can be seen from the diagram that the LM method 
has a large range of intermediate data errors due to lack of feedback. Since some interme-
diate data errors cancel each other out in the calculation process, the MSE error of LM 
does not look so large; however, it is still the largest compared to other methods. The LM 
+ IMU method uses high-precision IMU to provide feedback for LM, which can effectively 
reduce errors. 

Because the SD method relies only on the speckle decorrelation of B-scans, the error 
performance of the intermediate data of SD is similar to that of LM, and its MSE error is 
larger than that of LM. If we only analyze (a), (b) and (c) in Figures 21–23, we can see that 
the absolute angular errors of SPARO, LM + IMU and CNN + SD in the normal vector of 
B-scan plane are almost the same. From (e), (f) and (g) in Figures 21–23, we can see that 
when calculating lateral distance and drift, the output error of SPARO is significantly re-
duced compared with other methods. In addition, the dataset of DB5 in Table 2 is large; 
therefore, the SPARO performance is improved when the size of the dataset increases. 
This is also why box plots are used. 

Secondly, the absolute angular errors, absolute offset distance errors and final drift 
errors of DB1, DB3, DB5 and DB6 under different methods are shown in Table 3.The ab-
solute angle error, absolute offset distance error and final drift error will have an im-
portant impact on the effect of 3D reconstruction. Final drift errors include maximum, 
intermediate and minimum. The unit of X,Y and final drift is mm, and the unit of 𝜽𝜽𝒙𝒙,𝜽𝜽𝒚𝒚 
and 𝜽𝜽𝒛𝒛 is degree. 

Figure 23. Error of different methods for dataset DB5. (a) Theta X; (b) Theta Y; (c) Theta Z; (d) Lateral
X; (e) Lateral Y; (f) Drift.

5. Discussion

In this part, SPRAO is compared with linear motion (LM), LM + IMU, speckle decorre-
lation (SD) and CNN + SD. According to the experimental results of different methods, the
differences between the proposed method SPARO and other related works are discussed.
It can be seen that the spatial pose deviation of B-scans output by SPRAO is the best of
these methods.
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Firstly, box plots are used to compare the intermediate variables of different methods
in the process of 3D reconstruction. It can be seen from the diagram that the LM method has
a large range of intermediate data errors due to lack of feedback. Since some intermediate
data errors cancel each other out in the calculation process, the MSE error of LM does
not look so large; however, it is still the largest compared to other methods. The LM +
IMU method uses high-precision IMU to provide feedback for LM, which can effectively
reduce errors.

Because the SD method relies only on the speckle decorrelation of B-scans, the error
performance of the intermediate data of SD is similar to that of LM, and its MSE error is
larger than that of LM. If we only analyze (a), (b) and (c) in Figures 21–23, we can see that
the absolute angular errors of SPARO, LM + IMU and CNN + SD in the normal vector
of B-scan plane are almost the same. From (e), (f) and (g) in Figures 21–23, we can see
that when calculating lateral distance and drift, the output error of SPARO is significantly
reduced compared with other methods. In addition, the dataset of DB5 in Table 2 is large;
therefore, the SPARO performance is improved when the size of the dataset increases. This
is also why box plots are used.

Secondly, the absolute angular errors, absolute offset distance errors and final drift
errors of DB1, DB3, DB5 and DB6 under different methods are shown in Table 3. The abso-
lute angle error, absolute offset distance error and final drift error will have an important
impact on the effect of 3D reconstruction. Final drift errors include maximum, intermediate
and minimum. The unit of X, Y and final drift is mm, and the unit of θx, θy and θz is degree.

Table 3. Comparison of average error and final drift of different methods.

DB1
Methods

Average Error (mm/◦) Final Drift (mm)

X Y θx θy θz Min. Med. Max.

Linear motion (LM) 3.94 3.87 1.69 1.81 2.38 2.23 3.92 5.19

LM + IMU 2.25 2.23 0.87 0.91 1.19 1.59 2.4 3.08

Speckle decorrelation (SD) 3.35 3.33 1.53 1.37 1.87 2.4 3.54 4.51

CNN 2.52 2.52 1.36 1.45 1.85 0.89 2.34 3.45

CNN + SD 2.23 2.23 0.79 0.85 1.05 0.29 1.88 2.9

SPRAO 1.55 1.55 0.61 0.67 0.83 0.41 1.25 1.98

DB3
Methods

Average Error (mm/◦) Final Drift (mm)

X Y θx θy θz Min. Med. Max.

Linear motion (LM) 3.92 3.87 2.05 2.15 2.86 2.35 4.07 5.4

LM + IMU 2.25 2.25 1.06 1.01 1.44 1.58 2.34 3.13

Speckle decorrelation (SD) 3.37 3.37 1.79 1.91 2.28 2.48 3.56 4.67

CNN 2.54 2.54 1.66 1.8 2.05 0.83 2.33 3.39

CNN + SD 2.2 2.21 0.96 0.98 1.31 0.42 1.8 2.95

SPRAO 1.53 1.55 0.75 0.75 1.03 0.26 1.33 2.14

DB5
Methods

Average Error (mm/◦) Final Drift (mm)

X Y θx θy θz Min. Med. Max.

Linear motion (LM) 3.94 3.94 3.18 3 3.93 2.25 3.98 5.52

LM + IMU 2.25 2.25 1.65 1.49 2.1 1.43 2.34 3.16

Speckle decorrelation (SD) 3.37 3.37 2.77 2.57 3.53 2.25 3.54 4.66

CNN 2.54 2.54 2.6 2.45 3.09 0.87 2.32 3.48

CNN + SD 2.25 2.25 1.48 1.35 1.85 0.35 1.84 3.17

SPRAO 1.55 1.55 1.16 1.05 1.44 0.26 1.3 2.15
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Table 3. Cont.

DB6
Methods

Average Error (mm/◦) Final Drift (mm)

X Y θx θy θz Min. Med. Max.

Linear motion (LM) 3.94 3.92 3.18 3.03 4.34 2.28 4.02 5.49

LM + IMU 2.25 2.25 1.57 1.55 2.03 1.46 2.37 3.14

Speckle decorrelation (SD) 3.37 3.37 2.8 2.7 3.48 2.24 3.53 4.68

CNN 2.54 2.54 2.52 2.48 3.15 0.81 2.31 3.51

CNN + SD 2.25 2.25 1.45 1.41 1.89 0.23 1.81 3.14

SPRAO 1.55 1.53 1.1 1.07 1.49 0.2 1.31 2.16

Thirdly, the final drift error of each frame of B-scan is graphically plotted using scatter
plot. The final drive performance of each dataset under different methods is shown in
Figures 24–27. X-axis is ground truth and Y-axis is the results of other models. It can be
seen that although the variation range of final drive of SPRAO under different datasets is
not the smallest, the average error performance is the best. The error of the final drive is
small; therefore, each B-scan can be placed in the correct position in the 3D space, making
the reconstruction result more realistic. At the same time, the Pearson correlation coefficient
(PCC), R2, MSE, and MAS are added to describe the fitting effect of the prediction results,
as shown in Table 4.
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Figure 27. Reconstruction results of dataset DB6.

It can be observed in Table 4 that the prediction results of LM + IMU, CNN, CNN + SD
and SPRAO are well-fitted. However, compared with other methods, SPRAO adds LSTM
for prediction. Therefore, the MSE and MAS of SPRAO perform better. The closer PCC is
to 1, the smaller MSE deviates from ground truth. It can be seen that the PCC results of the
six methods are not very good. The table also reflects that the R2 value of the prediction
result and the ground truth fitting result is not the same as the PCC. It is mainly due to the
error of freehand movement in space and the change of target surface due to extrusion.
Because the cause of the error is fully considered and corrected, the PCC and R2 of SPRAO
are better than other methods.
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Table 4. Different evaluation methods compare the prediction results and fitting effects.

Results of Dataset DB1 PCC R2 MSE MAS

Linear motion (LM) −0.17 −0.04 14.75 3.79

LM + IMU 0.13 0.83 5.57 2.35

Speckle decorrelation (SD) −0.13 0.51 11.66 3.39

CNN 0.23 0.84 7.75 2.29

CNN + SD −0.02 0.69 3.29 1.78

SPRAO 0.25 0.94 1.55 1.24

Results of Dataset DB3 PCC R2 MSE MAS

Linear motion (LM) 0.14 0.02 14.72 3.79

LM + IMU −0.16 0.88 5.22 2.28

Speckle decorrelation (SD) 0.12 0.67 12.28 3.49

CNN 0.19 0.79 7.91 2.26

CNN + SD 0.22 0.76 3.09 1.74

SPRAO 0.45 0.89 1.67 1.28

Results of Dataset DB5 PCC R2 MSE MAS

Linear motion (LM) 0.17 0.03 14.08 3.71

LM + IMU 0.29 0.75 4.99 2.21

Speckle decorrelation (SD) 0.14 0.46 11.28 3.33

CNN 0.23 0.77 7.28 2.18

CNN + SD 0.41 0.71 3.19 1.76

SPRAO 0.55 0.91 1.63 1.26

Results of Dataset DB6 PCC R2 MSE MAS

Linear motion (LM) 0.17 0.03 2.05 2.15

LM + IMU 0.26 0.76 1.06 1.01

Speckle decorrelation (SD) 0.19 0.56 1.79 1.91

CNN 0.27 0.81 1.36 1.45

CNN + SD 0.29 0.66 0.79 0.85

SPRAO 0.53 0.91 0.61 0.67

Finally, the effect of Bezier interpolation and speckle decorrelation in SPRAO algorithm
is demonstrated in the 3D reconstruction results. Figures 28–30 are the results of 3D
ultrasound reconstruction of DB3. Figure 28 is the result of 12PFS B-scans without Bezier
interpolation. Because the frame rate is not high, the reconstruction results lose more details.
Figure 29 is the result of 60PFS B-scans using only Bezier interpolation. Figure 29 does not
perform speckle decorrelation operation. The frame rate after interpolation is five times
that of the original, and more details can be obtained. However, because the interpolation
is based on the fitted Bezier curve, there is a certain error between the inserted B-scans and
the real position. Figure 30 shows the results of 3D ultrasound reconstruction using SPRAO
in DB3.
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6. Conclusions

In this paper, a wireless linear array probe is used to build a freehand acousto-optic
positioning 3D ultrasonic imaging system, using this system to collect and construct
multiple 2D B-scans datasets for experiments. According to the experimental results, a
freehand 3D ultrasonic reconstruction method based on depth learning is proposed, which
is called sequence prediction reconstruction based on acoustic optical localization (SPRAO).
Compared with other freehand 3D reconstruction methods without SPRAO, the proposed
method has three advantages:

(1) The doctor can obtain 60 FPS B-scans of the target through 2–3 continuous acquisitions.
Limited by the speed of the wireless transmission chip, the wireless probe can only
output 12 FPS. If SPRAO is not used, the doctor needs to stay for a few seconds after
each movement of the probe to ensure that the target B-scans are collected. When
using SPRAO, three Bezier curves are fitted from the existing 12 frames of B-scans
according to the pose. From the experimental results of Bezier interpolation, it can be
seen that the output of 60 FPS can be synthesized by inserting four points between
two B-scans of each Bezier curve and using the speckle decorrelation between B-scans
for pose calibration. This not only effectively reduces the requirement for the output
frame rate of the ultrasonic probe, but also increases the moving speed of the wireless
probe.

(2) The cumulative error can be compensated by the speckle decorrelation between two
frames of B-scans. Firstly, the positioning information output by the acousto-optic
positioning device is not easily affected by obstacles. Secondly, setting ROI to extract
the speckle decorrelation features of two B-scans can not only help to construct 60
FPS B-scans output, but also calibrate the cumulative error of acousto-optic auxiliary
positioning information.

(3) 3DCNN-LSTM reduces the time for MSE to reach the target value. It provides the
necessary conditions for real-time 3D reconstruction. Without deep learning, in order
to obtain more B-scans, the probe must stay for several seconds after each move to
complete the acquisition and reconstruction. In this paper, 3DCNN-LSTM model is
used to improve the efficiency of B-scans sequence feature extraction. The calculation
of pose deviation and speckle decorrelation is integrated into 3DCNN. The LSTM
predicts the output pose information of the 3DCNN, which makes the MSE reach the
minimum value in a short time. The experimental results not only show that the deep
learning model can track the spatial pose change of B-scans better than other methods,
but also that the MSE of the test dataset is less than 2.5 mm.

The future work will focus on SPRAO. Optimize the 3DCNN-LSTM model to improve
the real-time performance of SPRAO. At the same time, the number of features and cali-
bration curves extracted during the training process will be further reduced, and a lighter
model will be constructed for the embedded platform.
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