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Motion capture technologies reconstruct human movements and have wide-ranging applications. Mainstream research
on motion capture can be divided into vision-based methods and inertial measurement unit (IMU)-based methods. The
vision-based methods capture complex 3D geometrical deformations with high accuracy, but they rely on expensive optical
equipment and suffer from the line-of-sight occlusion problem. IMU-based methods are lightweight but hard to capture
fine-grained 3D deformations. In this work, we present a configurable self-sensing IMU sensor network to bridge the gap
between the vision-based and IMU-based methods. To achieve this, we propose a novel kinematic chain model based on the
four-bar linkage to describe the minimum deformation process of 3D deformations. We also introduce three geometric priors,
obtained from the initial shape, material properties and motion features, to assist the kinematic chain model in reconstructing
deformations and overcome the data sparsity problem. Additionally, to further enhance the accuracy of deformation capture,
we propose a fabrication method to customize 3D sensor networks for different objects. We introduce origami-inspired
thinking to achieve the customization process, which constructs 3D sensor networks through a 3D–2D–3D digital–physical
transition. The experimental results demonstrate that our method achieves comparable performance with state-of-the-art
methods.
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Sensors and actuators; Sensor applications and deployments.
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1 INTRODUCTION
Motion capture systems record and analyze human movements. Motion capture technologies have been widely
used in various applications such as virtual reality [15, 25, 38], health monitoring [7, 17, 28], gait analyzing [56, 95],
sports monitoring [77, 89], and film animation [47, 80]. Mainstream motion capture technologies can be divided
into vision-based and IMU-based methods.
Vision-based methods (e.g., multi-camera systems [103] and marker-based solutions [20]) are capable of

capturing complex 3D geometric deformations with high accuracy. The advantage of vision-based methods
in deformation capture tasks comes from the rich information provided by cameras [9, 36, 97]. Essentially, a
camera is the large-scale integration of ultrahigh-resolution pixel image sensor arrays. Vision-based methods
can utilize enough image information and depth information in reconstructing 3D deformations. However, they
rely on expensive auxiliary equipment, which suffers from large sizes and line-of-sight occlusions [49, 52]. Thus,
vision-based motion capture systems are usually limited to lab or studio scenarios.

Comparatively, IMU-based motion capture systems are lightweight and low-cost, and have no limitations
on line-of-sight shielding [71]. These advantages enable them to be more consumer-friendly and applicable for
human-computer interaction applications [6, 49, 56]. Nevertheless, current non-optical sensing technologies,
including IMU-based methods, are hard to integrate large-scale sensor nodes or sensor arrays to obtain dense
information. IMU-based motion capture methods are effective at reconstructing human limb movements based
on the motion information captured by sparse sensor nodes [49]. These methods usually deploy a sensor node
on each limb and only use the sensor to measure the angle of the limb, regardless of its exact location. Such
deployment methods are unsuitable for fine-grained deformation capture because imprecise positions of sensor
nodes will introduce random measurement errors, which reduces the accuracy of deformation capture. Thus,
current IMU-based motion capture systems mainly focus on detecting human limb movements [43] and are
hard to capture fine-grained deformations for a wider range of applications. Here, the fine-grained deformations
denote complex geometric deformations such as 3D curve deformations or 3D surface deformations, not only the
segmented deformations like body segment movements.
Therefore, it is necessary to bridge the gap between the vision-based and IMU-based methods to offer a

lightweight and high-accuracy deformation capture solution. To achieve this, we aim to address the data sparsity
problem and the sensor nodes’ deployment problem in an IMU sensor network.
In this work, we propose a self-sensing algorithm that can accurately and robustly reconstruct both global

motions and fine-grained 3D deformations using sparse motion data obtained from an IMU sensor network. All
sensor nodes of the sensor network are placed on the surface of the measured object in a sparse distribution.
Deformations occurring between two adjacent sensor nodes are regarded as a measurable minimum deformation
unit. We propose a novel kinematic chain model based on the four-bar linkage to describe this minimum
deformation process. This model calculates relative spatial positions between adjacent sensor nodes based on
three geometric priors. Specifically, the shape-associated geometric prior contains the initial positions and
orientations of sensor nodes placed on the surface of the object to be measured. The other two priors are based
on the material properties and motion features of a 3D sensor network respectively. The proposed algorithm
supports a reliable, accurate, and real-time self-sensing of the sensor network.
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In addition, we introduce origami-inspired thinking [35] to achieve the customization of 3D sensor networks.
The customized sensor networks can accommodate varying shape measurements by providing precise position
constraints for sensor nodes, thereby reducing deformation measurement errors. The construction process of
sensor networks can be regarded as a 3D–2D–3D digital–physical transition process. Specifically, in the process
of 3D-2D, we acquire the 3D mesh model of the object to be measured and unfold it into a 2D planar mesh model
while maintaining all geometric information. In the digital-physical transition process, we fabricate the planar
meshes using laser-cutting technology. Finally, in the 2D-3D transform process, we assemble the planar meshes
with sensor nodes to construct a 3D sensor network. Such a customized 3D sensor network not only fits the
shape of the measured object, but also provides effective geometric constraints for real-time capture.

To evaluate our method, we conduct three experiments on different deformation capture tasks, including the
3D curve deformation capture, the 3D surface deformation capture, and the arm motion and deformation capture,
respectively. The experimental results demonstrate that our method achieves comparable performance (average
error at 4.59𝑚𝑚, average error rate at 1.40%) with state-of-the-art methods. Our method supports the development
of various emerging interactive systems, such as wearable input devices, smart tangible user interfaces and
complex shape measurement tools. Our contributions are summarized as below.

• Wepropose a self-sensing algorithm to reconstruct both global movements and fine-grained 3D deformations
via an IMU sensor network. It uses a novel kinematic chain model based on the four-bar linkage to describe
the minimum deformation process of 3D deformations.

• We introduce three geometric priors to corporate with the kinematic chain model to capture minor
deformations, and to address the problem of data sparsity that occurred in the IMU sensor network.

• We design an efficient customized construction pipeline to build tailor-made 3D sensor networks for
different shapes. It incorporates origami-inspired thinking and constructs 3D sensor networks through a
3D–2D–3D digital–physical transition process.

2 BACKGROUND AND RELATED WORK

2.1 Vision-based Methods for Deformation Capture
Vision-based methods for deformation capture are widely used in film and animation production to help un-
derstand human behaviors or produce high-quality 3D virtual characters [8]. Common vision-based methods
contain marker-based systems [20], multi-camera systems [37, 102, 103], laser scanners [83] and radio-based
systems [18]. These systems capture human motions with high accuracy and resolution. However, they rely on
sophisticated hardware and strict system initialization [103], which are usually unaffordable and difficult for
most unprofessional people.

Therefore, researchers paymore attention to using amonocular RGB or RGBD camera to capture and reconstruct
high-quality 3D human motion [11, 40, 85]. For example, Choi et al. [11] presented a temporally consistent mesh
recovery system (TCMR) to reconstruct temporally consistent 3D human poses from a video. Nevertheless,
monocular cameras are still inevitably susceptible to visual clutter, occlusions and ambient light effects, which
limits their applications in interactive scenarios [21]. Comparing with vision-based methods, the following
self-sensing methods are more lightweight and portable, and support more flexible applications.

2.2 Self-sensing Methods for Deformation Capture
The self-sensing methods are mainstream non-visual approaches for deformation capture [10, 14, 21, 60, 64, 73, 79].
These methods usually construct self-sensing input devices using various contact-based sensors. Such devices
have the capability of measuring their own deformation without external auxiliary equipment. We summarize
existing deformation capture methods based on different sensing principles in Table 1.
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Table 1. Existing works for deformation capture in different sensing principles.

Sensor Type Spatial Dimensions
of Sensor Data

Sensing Principle Key Features

Resistance 1D, 2D The sensors convert the shape or struc-
ture changes (stretching, bending, press-
ing, etc.) into the corresponding changes
in the electric resistance values [75].

• Low-cost with the widest applications [5, 10,
19, 44, 48].

• Significant drifts over time [1, 34, 79].

Capacitance 1D, 2D The geometrical changes of sensors affect
the overlapping area of capacitance units,
resulting in variations in capacitance val-
ues [79].

• Flexible and responsive [70, 96].
• Widely used in wearable electronics [22, 82,
100, 101, 104].

Piezoelectricity 1D, 2D The deformations of a piezo element
change the surface charge density of
the material and produce weak polarized
electrical signals with different applied
stress [39, 72].

• Operate without power supplies [76, 78, 81].
• High sensitivity for dynamic deformations [12,
39].

Optical fiber 1D, 2D When an optical fiber is under stress, its
curvature radius and bending direction
change, leading to changes in intensity,
phase, wavelength or polarization of out-
put light [64].

• Lightweight, compact and precise [3, 34, 64].
• Immunity to electromagnetic interference and
applicable to harsh environments [16, 53, 92,
94].

• Require expensive equipment for sophisti-
cated signal processing [2].

IMU 3D IMU sensors detect 3D orientation in-
formation using accelerometers, gyro-
scopes, magnetometers or their combi-
nations [32, 55].

• Suffer from data drift [24].
• Compact and lightweight [14].

Except for IMU-based methods, other self-sensing methods only capture 1D or 2D spatial information. To
apply these methods in 3D deformation capture, extra machine learning technologies are needed to map the
sensor data from a low-dimensional space to a higher-dimensional space [5, 21, 22, 72, 98]. However, machine
learning models rely on a large volume of data for training, and finetuning models for different users also require
extra personalized data. In practice, constructing a large-scale dataset is very time-consuming, and voluminous
data is unavailable in many scenarios.
IMU sensors are able to acquire the 3D orientation data directly. In this paper, we adopt a self-sensing IMU

sensor network to achieve 3D deformation capture. Current works mainly focus on the form factor of linear or
planar structures, while the 3D deformation capture is still relatively unexplored. Our goal is to improve the
accuracy and robustness of 3D deformation capture using an IMU sensor network.

2.3 Computational Fabrication of 3D Electronics
Recent advances in additive manufacturing technologies have enabled the integration of 3D forms and electronics
for embedding interactions in customized designs. Prior works [29, 30, 88, 105] focused on fabricating flat
electronic pieces and morphing them into 3D shapes. For example, MorphingCircuit [88] utilized 4D printing
thermoplastics to create highly complex rigid circuit board. Thermoformed Circuit Borads [29] employed the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 42. Publication date: March 2023.



3D Deformation Capture via a Configurable Self-Sensing IMU Sensor Network • 42:5

thermoforming of 3D printed plastics to construct rigid and highly conductive freeform circuit boards. These
techniques support the rapid fabrication of 3D circuit boards. Unfortunately, the flexibility of sensing function is
limited by the rigidity of the materials or mediums used in these works, while studies [84, 87] on the flexible
prototyping based on 3D printing rarely explore the integration of electronics.

In the field of wearable technologies, embedding circuits on flexible media or placing circuits on skin surface
directly enhances the flexibility of sensing [42, 51, 61, 63, 65, 68, 69]. For example, FabHandWear [65] created an
end-to-end pipeline from design to fabrication of hand wearables, which supported to create customized and
functional hand wearable templates. SensorKnit [63] proposed textile sensors to exploit resistive, piezoresistive,
and capacitive properties of various textile structures. BodyStylus [68] provided a computer-assisted approach
for on-body design and fabrication of epidermal interfaces. Most of these methods support linear or planar
sensing, yet perception in 3D space is limited. Additionally, most wearable electronics are usually designed for
relatively small body areas and regions [62]. We aim to improve the flexibility of 3D electronics and buildup
spatial perceptual capability of flexible electronics in a larger region.

2.4 Reconfigurable Sensor Network
Researches on the reconfigurable sensor network can be divided into two categories: the wireless sensor network
and the wired sensor network. The former focuses on environment monitoring applications in vast spaces,
such as pollution prevention [46], agriculture [50], and structure health monitoring [58]. Our study falls into
the latter category, which pays more attention to applications on finer-grained object deformation capture [14,
21, 31, 55, 79], interactive media [23, 66, 74], and flexible electronics for human wearables [45, 54, 90], etc. For
example, SensorTape [14] built a modular and programmable IMU sensor network in a tape to perform twist and
bend sensing. Mittendorfer et al. [55] designed skin patches based on a 3-axis accelerometer and assigned these
patches in a dense layout to reconstruct 3D surfaces according to their shapes, sizes and layouts. SensorNets [90]
presented an electronic skin that could integrate with reconfigurable multimodal sensor networks and be capable
of sensing and responding to a variety of stimuli simultaneously. In these studies, reconfigurable sensor networks
are usually built by developing modular sensor nodes. We also adopt this common scheme in this paper.

3 METHOD OVERVIEW
In this paper, we present a configurable self-sensing IMU sensor network to capture 3D deformation. The sensor
network measures its own deformation and reconstructs the local shape changes during deformation. To construct
such a sensor network, we develop modular IMU sensor nodes and design an origami-inspired customized pipeline.
The pipeline can be regarded as a 3D–2D–3D digital–physical transition process. Firstly, we utilize an optical
measurement system to obtain the 3D digital model of the shape to be measured, which offers the shape-associated
geometric prior. Secondly, we simplify and unfold the 3D model into a 2D planar mesh model using a graph
theory-based method. Thirdly, we fabricate the planar meshes by laser-cutting the 2D planar mesh model. This
is also a digital-physical transition process. Fourthly, we assemble the fabricated planar meshes with the IMU
sensor nodes to construct a customized 3D sensor network, which is a 2D-3D restoration process.
Based on the customized 3D sensor network, both the global movements and the fine-grained deformations

could be reconstructed with our proposed robust self-sensing algorithm. Our algorithm proposes a novel kinematic
chain model based on the four-bar linkage to describe the minimum deformation process between two adjacent
sensor nodes in the sensor network. With this model, the relative spatial positions of two adjacent sensor nodes
can be estimated based on three geometric prior knowledge. Finally, the locations of all sensor nodes in the
sensor network are calculated through the optimal update path. Thus we can reconstruct the full deformations of
a 3D shape with further interpolation.
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In the following sections, we provide detailed descriptions on the hardware design (Section 4), the customized
construction pipeline (Section 5), and the self-sensing algorithm of the sensor network (Section 6). We evaluate
the performance of our sensor network through three experiments (Section 7). Finally, we discuss the applications
and limitations of our method (Section 8).

4 HARDWARE DESIGN OF SENSOR NETWORK

4.1 Sensor Network Architecture
The architecture of the proposed sensor network is shown in Fig. 1(a). The network consists of a master node
and a set of slave sensor nodes. The master is composed of a microcontroller unit (MCU) and a bluetooth low
energy (BLE) module. It requests orientation data from all slave sensor nodes by a software inter-integrated
circuit (𝐼 2𝐶) bus and sends them to the PC in real-time. Each slave is designed as a modular sensor node and
consists of an MCU and an IMU sensor. The slave node is responsible to sample orientation data from an IMU
sensor through a hardware 𝐼 2𝐶 bus and transmit the data to the master node in the quaternion format.

Fig. 1. (a) The architecture of the sensor network. (b) The illustration of the two types of hardware interfaces in sensor nodes.
(c) The prototype of the hardware.

4.2 Hardware Interface Design
To ensure a standardized and efficient sensor network construction process, we design two types of sensor nodes
with different hardware interfaces based on wired connection. We adopt the wired connection instead of the
wireless communication in the sensor network to reduce the cost of components and the size of the printed circuit
board (PCB) of a sensor node. Such a design supports a dense layout of the sensor network with a lightweight
using experience. In practice, it is necessary to design a network with low cost and small size to support high
resolution and wide range of sensing.
However, using wired connection in the sensor network results in the problem that we can not connect two

nodes randomly when all sensor nodes have the same hardware interface. This is because both the power and 𝐼 2𝐶
ports have inherent polarities in physical connections. Therefore, we design two types of sensor nodes: the even
node with counter clockwise ports and the odd node with clockwise ports (Fig. 1(b)). An even node is assigned
an even number and an odd node is assigned an odd number in our network. The 𝐼 2𝐶 address of each sensor
node is hardcoded with its own number. Therefore, two random nodes equipped with opposite polarity or parity
in the sensor network can be connected.
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4.3 Hardware Implementation
In the sensor network, we use an open-source electronic prototyping platform (Arduino Nano 33 BLE) with a
BLE (nRF52840) module as the master node. As shown in Fig. 1(c), an expansion board is designed for the master
node to support wired connection with slave sensor nodes. Meanwhile, we design modular and compact IMU
sensor nodes with two types of hardware interfaces as the slave sensor nodes, the size of which is 1𝑐𝑚∗1𝑐𝑚∗0.1𝑐𝑚.
Specifically, the slave sensor node includes an MCU (ATmega328P) and an IMU sensor (MPU6050). The IMU
consists of a 3-axis accelerometer and a 3-axis gyroscope. The sampling rate of IMU signals is 30𝐻𝑧. In addition,
different polarity identifiers in IMU sensor nodes represent different hardware interfaces. Each sensor node has four
same hardware interfaces to support multiple connections. The required orientation data in the quaternion format
comes from the IMU’s internal digital motion processor (DMP), which has built-in filtering and compensation
algorithm. We calibrate all IMU sensor nodes. During the test, despite the lack of a magnetometer, there is no
obvious data drift after one hour of static operation.

5 CUSTOMIZED CONSTRUCTION PIPELINE OF SENSOR NETWORK
We introduce origami-inspired thinking [35] to achieve a rapid and efficient customized construction pipeline
of 3D sensor networks. Origami-inspired design constructs 3D functional structures from 2D planar structures,
while reversely morphs 3D structures into planar structures [13, 35, 57, 67]. Motivated by this thinking, we regard
the customized construction pipeline of 3D sensor networks as a 3D–2D–3D digital–physical transformation
process, which is composed of 3 main steps and 7 substeps. We take the process of customizing a wearable 3D
sensor network for an arm to illustrate the proposed construction pipeline intuitively (Fig. 2).

Fig. 2. The customized construction pipeline of a wearable 3D sensor network for an arm.
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In the process of 3D-2D transformation, we unfold the complex 3D model scanned from the arm into simple
2D shapes. This process supports us to use more time-saving and inexpensive methods to fabricate our prototype.
We select the laser cutting technology to perform a rapid digital–physical fabrication process.

In the process of 2D-3D transformation, we assemble 2D fabricated planar meshes with IMU sensor nodes to
construct a customized sensor network. Because the 2D planar meshes contain the shape-associated geometric
prior knowledge, the restored sensor network can fit the arm well.

The 3D model simplification determines the numbers and locations of sensor nodes placed on the arm surface.
The vertices of the 3D quadrilateral mesh model in the digital space correspond to the sensor nodes of the 3D
wearable sensor network in the physical space. The quadrilateral meshes represent the geometric constraints.
Thus, the fabricated planar meshes provide the corresponding position constraints for sensor nodes to ensure
accurate measurement of arm surface deformations.

5.1 Data Acquisition and Preprocessing
We use an optical measurement system, EinScan Pro 2X Plus1 , to scan the measured object (e.g., a person’s
arm) and obtain its point cloud model, which contains the shape and size of the object. We intercept a part from
the point cloud model, which corresponds to the deployment area of the sensor network on the arm. Then the
remaining point cloud model is denoised and smoothed, and imported into a 3D modeling software, Rhinoceros,
to be converted into an open mesh model.

5.2 3D Model Simplification
We further simplify the open mesh model into a 3D quadrilateral one with 𝑁 vertices in Rhinoceros, where 𝑁
vertices denote 𝑁 sensor nodes in the final sensor network. The quadrilateral mesh ensures that the directions of
edges in the following fabricated planar meshes can be aligned with the motion directions naturally. Each vertex
in the quadrilateral mesh model contains a position vector and a normal vector. Therefore, the 3D quadrilateral
mesh model provides the initial positions and orientations of all sensor nodes deployed on the arm, which serve
as the shape-associated geometric prior knowledge for the subsequent deformation capture.

The total number of sensor nodes and the minimum distance between two adjacent sensor nodes are customiz-
able parameters to fulfill different application demands. For example, reducing the number of sensor nodes to
reduce the energy consumption and hardware cost; increasing the density of sensor nodes to improve the capture
resolution.

5.3 Number Assignment
We assign numbers to vertices of the 3D quadrilateral mesh model to guide the subsequent assembly. Firstly,
we build a connected and undirected graph 𝐺 (𝑉 , 𝐸) from the 3D quadrilateral mesh model. The graph 𝐺 (𝑉 , 𝐸)
contains a vertex set𝑉 and an edge set 𝐸. The vertex𝑉𝑖 ∈ 𝑉 represents the 𝑖-th sensor node, and the edge 𝐸𝑖, 𝑗 ∈ 𝐸
represents the adjacent relation of two sensor nodes 𝑉𝑖 and 𝑉𝑗 .

The operation of assigning numbers to sensor nodes is based on the breadth-first search algorithm [4], and it
automatically assigns the numbers with opposite parity for each pair of adjacent nodes. Specifically, we randomly
select a vertex as the root node and allocate its parity. Starting at the root node, we traverse the rest of nodes
layer by layer. Nodes at the same layer are assigned the same parity and the others at the adjacent layer are
assigned the opposite parity. In this way, we assign the numbers for all nodes from 1 to 𝑁 in order according to
their parity labels.

1https://www.einscan.com/
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Fig. 3. The process of 3D model unfolding.

5.4 3D Model Unfolding
3D model unfolding transforms the 3D quadrilateral mesh model into a 2D planar mesh model, which facilitates
applying the laser cutting technology to fabricate a 3D sensor network rapidly and efficiently.

Current studies mainly segment and unfold 3D meshes based on the irregular polyhedral or triangles [26, 59,
86, 93]. However, the segmented planar meshes obtained by these methods are usually numerous and irregular in
shape, which leads to a complex and difficult fabrication and assembly process. Therefore, they are not applicable
to the construction of 3D sensor networks. To solve this problem, we use quadrilateral mesh to represent a 3D
model (Section 5.2).

We adopt the Kruskal’s minimum spanning tree algorithm [41] to unfold a 3D quadrilateral mesh into planar
meshes and minimize the number of planar meshes to simplify the fabrication and assembly process. The process
of 3D model unfolding is shown in Fig. 3.

Firstly, we create the dual graph𝐺∗ (𝑉 ∗, 𝐸∗) from the 3D quadrilateral mesh model. In the graph𝐺∗ (𝑉 ∗, 𝐸∗), the
node 𝑉 ∗

𝑖 ∈ 𝑉 ∗ represents the 𝑖-th quadrilateral plane of the original 3D mesh and each edge 𝐸∗𝑖, 𝑗 ∈ 𝐸∗ represents
the adjacent relation between two quadrilateral planes 𝑉 ∗

𝑖 and 𝑉 ∗
𝑗 .

Secondly, we assign a weight to each edge in the graph 𝐺∗ based on the distance between the centroids of
its two adjacent quadrilateral planes. By dividing a quadrilateral into two disjoint triangles, the centroid 𝐶 of a
quadrilateral can be calculated according to the centroid 𝑂𝑖 and the area 𝑆𝑖 of the two triangles:

𝐶 =

∑(𝑆𝑖 ·𝑂𝑖 )∑
𝑆𝑖

(1)

Thus, the weight𝑊𝑒𝑑𝑔𝑒 between two adjacent quadrilateral planes with the centroid 𝐶𝑖 and 𝐶 𝑗 is defined as:

𝑊𝑒𝑑𝑔𝑒 =

���−−−→𝐶𝑖𝐶 𝑗

��� (2)

Thirdly, we use the Kruskal’s minimum spanning tree algorithm to segment the weighted dual graph 𝐺∗ into
a minimum weight spanning tree connecting all vertices. Subsequently, we split the tree into several subtrees
based on whether the weight of an edge is larger than the next edge in the tree hierarchy. Specifically, if the
weight deviation of two edges on adjacent layers is greater than the preset maximum edge weight deviation in
the tree and the number of nodes in a subtree is greater than the preset minimum value, the edge with a larger
weight would be removed. Therefore, a series of minimum weight spanning trees are obtained. This strategy
ensures small quadrilateral planes to be retained as much as possible while large quadrilateral planes to be split
out. Retaining small quadrilateral planes as much as possible is helpful to simplify the assembly process of sensor
network.

Finally, we can produce a planar mesh model from the original 3D quadrilateral mesh according to the structure
of the minimum weight spanning trees. Our 3D model unfolding method ensures the obtained planar mesh model
to maintain original geometric characteristics of the 3D mesh model.
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Fig. 4. The workflow of the self-sensing algorithm for deformation capture.

5.5 Laser Cutting and Sensor Network Assembly
We choose a flexible, translucent and weakly elastic clothing material, the thermoplastic polyurethane (TPU)
fabric, to fabricate the planar meshes. These planar meshes can be quickly fabricated by laser cutting the planar
mesh model in a few minutes. The final fabricated planar meshes provide the corresponding position and motion
constraints for all sensor nodes to ensure accurate measurement of 3D deformations, and details are explained in
Section 6.2. Then, the 3D sensor network can be obtained by assembling the fabricated planar meshes with the
numbered IMU sensor nodes. The final result in Fig. 2 shows the case of wearing the sensor network on an arm.

6 SELF-SENSING PRINCIPLE OF SENSOR NETWORK
The 3D sensor network is used to reconstruct complex geometric deformations primarily by sensing its own
deformation. We propose a robust self-sensing algorithm to reconstruct both global movements and fine-grained
3D deformations via an IMU sensor network. Our method supports a reliable, accurate, and real-time self-sensing
of sensor networks by two main procedures: 1) Relative position estimation based on the geometric prior
knowledge. 2) Sensor nodes’ coordinates update based on the optimal update path. The complete workflow of the
self-sensing algorithm for deformation capture is shown in Fig. 4.

6.1 Sensor Data Representation
To avoid the gimbal lock problem [27] in Euler angle representation, our IMU sensor network outputs the 3D
orientation data in the quaternion representation. The quaternion 𝑞 is a four-dimensional complex number and
is usually used to represent a 3D rotation. A quaternion 𝑞 can be described as [𝑥,𝑦, 𝑧,𝑤], where the 𝑥 , 𝑦 and 𝑧
define the direction of rotation, and the𝑤 indicates the degree of rotation. In our method, the sensor network
with 𝑁 sensor nodes update 𝑁 quaternions at the sampling rate of 30𝐻𝑧.

6.2 Relative Position Estimation
The relative position estimation is to calculate the relative spatial position between adjacent sensor nodes in a
sensor network. We propose a novel kinematic chain model based on the four-bar linkage to represent a minimum
deformation unit and achieve the relative position estimation. Since the IMU sensor only captures the orientation
information, it cannot be used to measure spatial distance directly. Therefore, we introduce three geometric prior
knowledge to assist the sensor network in reconstructing the minimum deformation unit.

• The prior knowledge P1: The planar meshes are made from a kind of weakly elastic and flexible
material (TPU). Therefore, we assume that the “connection distance”, rather than the spatial distance,
between adjacent sensor nodes on planar meshes would remain constant under any deformation.

• The prior knowledge P2: The planar meshes maintain the geometric characteristics of the 3D mesh
model and provide the specific movement constraints for the sensor network. Restricted by the degree of
freedom of the local geometric deformation, we assume that the planar mesh connecting two sensor nodes
can only perform single-degree-of-freedom motions and would be shaped as an arc in most cases.
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Fig. 5. The kinematic chain model represents a minimum deformation unit.

• The prior knowledge P3: The planar meshes simplified from the 3D quadrilateral mesh model provide
the kinematic chain model with the shape-associated geometric prior knowledge, including the initial
relative positions and orientations of all sensor nodes in the sensor network.

Based on three prior knowledge, we propose a novel kinematic chain model based on the four-bar linkage to
represent a minimum deformation unit. The IMU sensor network provides the orientation information as the
posteriori knowledge. The kinematic chain model fuses the geometric prior knowledge and the real-time updated
posteriori knowledge to accurately estimate the relative spatial positions between adjacent sensor nodes.

The kinematic chain model representing a minimum deformation unit is shown in Fig. 5. In this model, a static

node 𝒔 and a dynamic node 𝒅 are connected together by the planar mesh, which is denoted as the
⌢

𝑠𝑑 . The static
node 𝒔 has the known fixed position and the dynamic node 𝒅 has the unknown dynamic position. We define two
link points between two nodes to establish the relation of a four-bar linkage. We denote the four-bar linkage
relation using the link vector

−→
𝑙𝑠,𝑡 ,

−→
𝑙𝑝,𝑡 and

−→
𝑙𝑑,𝑡 respectively. The magnitude of

−→
𝑙𝑠,𝑡 is equal to the magnitude of

−→
𝑙𝑑,𝑡 .

The orientations of two nodes are denoted by the quaternion 𝑞𝑠,𝑡 and 𝑞𝑑,𝑡 , as well as the unit normal vectors −→𝑣𝑠,𝑡
and −−→𝑣𝑑,𝑡 . The spatial relation between two nodes can be represented by a transformation vector

−−→
𝑇𝑠𝑑,𝑡 . The variable

𝑡 represents different moments during the deformation process.
Thus, we have the following three deductions based on the kinematic chain model and three prior knowledge.

• Based on the prior knowledge P1, we propose an approximate strategy to improve the accuracy and

robustness of our algorithm. Specifically, we use
−→
𝑙𝑝,𝑡 ,

−→
𝑙𝑠,𝑡 and

−→
𝑙𝑑,𝑡 to approximately represent the

⌢

𝑠𝑑 , so the
sum of the magnitudes of

−→
𝑙𝑝,𝑡 ,

−→
𝑙𝑠,𝑡 and

−→
𝑙𝑑,𝑡 remain as a known constant 𝐿.

• Based on the prior knowledge P2, when the node 𝒔 and 𝒅 are parallel, the
⌢

𝑠𝑑 becomes a semicircle. It is

certain that the magnitude of
−→
𝑙𝑝,𝑡 should be equal to the diameter of the semicircle

⌢

𝑠𝑑 , which is equal to
2𝐿/𝜋 . Thus, the magnitudes of

−→
𝑙𝑠,𝑡 and

−→
𝑙𝑑,𝑡 can be derived as (𝐿 − 2𝐿/𝜋)/2.

• Based on the prior knowledge P3, the initial orientations, including −→𝑣𝑠,0, −−→𝑣𝑑,0 and 𝑞𝑠,0, 𝑞𝑑,0, are given, and
the initial positions of the node 𝒔 and 𝒅 can also be obtained to calculate the initial transformation vector
−−−→
𝑇𝑠𝑑,0 and the reference link vectors,

−→
𝑙𝑠,𝑟 and

−→
𝑙𝑑,𝑟 , which represent the link vector

−→
𝑙𝑠,𝑡 and

−→
𝑙𝑑,𝑡 respectively in

the horizontal state and the positive direction. The
−→
𝑙𝑠,𝑟 and

−→
𝑙𝑑,𝑟 are both static vectors. Here we define the

initial time as 𝑡 = 0.

To obtain the reference link vectors
−→
𝑙𝑠,𝑟 and

−→
𝑙𝑑,𝑟 , we need to obtain the initial link vector

−→
𝑙𝑠,0 and

−→
𝑙𝑑,0. Take the

calculation of
−→
𝑙𝑠,0 as an example, we need to calculate the projection vector

−→
𝑉𝑝 of the initial transformation vector
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−−−→
𝑇𝑠𝑑,0 onto the −→𝑣𝑠,𝑡 , as shown below:

−→
𝑉𝑝 = (−−−→𝑇𝑠𝑑,0 · −→𝑣𝑠,0) × −→𝑣𝑠,0 (3)

The vector
−→
𝑙𝑠,0 can be calculated as:

−→
𝑙𝑠,0 =

−−−→
𝑇𝑠𝑑,0 −

−→
𝑉𝑝���−−−→𝑇𝑠𝑑,0 − −→
𝑉𝑝

��� ×
���−→𝑙𝑠,0��� (4)

Then, the rotation of a node relative to its horizontal state in the positive direction can be represented by the
real-time quaternion vector from the IMU sensor. Based on the known initial link vector

−→
𝑙𝑠,0, the reference link

vectors
−→
𝑙𝑠,𝑟 can be reversely calculated as:

−→
𝑙𝑠,𝑟 = 𝑞

∗
𝑠,0 ·

−→
𝑙𝑠,0 (5)

Where 𝑞∗𝑠,0 represents the inverse of the quaternion 𝑞𝑠,0. The vector
−→
𝑙𝑑,𝑟 can also be calculated based on the

above process accordingly. The reference link vectors
−→
𝑙𝑠,𝑟 and

−→
𝑙𝑑,𝑟 are both static vectors, never changing with

nodes moving and rotating. So we can reverse above calculation process to derive the transformation vector
−−→
𝑇𝑠𝑑,𝑡

in any moment. At the moment 𝒕 , the link vector
−→
𝑙𝑠,𝑡 and

−→
𝑙𝑑,𝑡 can be derived as:

−→
𝑙𝑠,𝑡 = 𝑞𝑠,𝑡 ·

−→
𝑙𝑠,𝑟 (6)

−→
𝑙𝑑,𝑡 = 𝑞𝑑,𝑡 ·

−→
𝑙𝑑,𝑟 (7)

Where 𝑞𝑠,𝑡 and 𝑞𝑑,𝑡 come from IMU sensors directly. Then, the transformation vector
−−→
𝑇𝑠𝑑,𝑡 can be figured out:

−−→
𝑇𝑠𝑑,𝑡 = (1 +

���−→𝑙𝑝,𝑡 ������−→𝑙𝑠,𝑡 − −→
𝑙𝑑,𝑡

��� ) (−→𝑙𝑠,𝑡 − −→
𝑙𝑑,𝑡 ) (8)

Finally, given the coordinate (𝑠𝑥,𝑡 , 𝑠𝑦,𝑡 , 𝑠𝑧,𝑡 ) of the static node 𝒔, the real-time coordinate (𝑑𝑥,𝑡 , 𝑑𝑦,𝑡 , 𝑑𝑧,𝑡 ) of the
dynamic node 𝒅 can be derived directly by the transformation vector

−−→
𝑇𝑠𝑑,𝑡 = (△𝑥,𝑡 , △𝑦,𝑡 , △𝑧,𝑡 ) as follows.

𝑑𝑥,𝑡 = 𝑠𝑥,𝑡 + △𝑥,𝑡

𝑑𝑦,𝑡 = 𝑠𝑦,𝑡 + △𝑦,𝑡

𝑑𝑧,𝑡 = 𝑠𝑧,𝑡 + △𝑧,𝑡

(9)

6.3 Coordinates Update
In the process of coordinates update, the measurement error of each kinematic chain model in sensor network
would be accumulated step by step. To enhance the universality of our method, we introduce the optimal
update path to overcome the cumulative errors. Our method is to minimize the error cumulation number while
updating all nodes’ coordinates. We firstly use the exhaustive method to acquire all the spanning trees from the
aforementioned graph𝐺 (𝑉 , 𝐸) (Section 5.3) as different update paths. The root node of a spanning tree is set as
the starting point of an update path. Therefore, the number of error cumulation times 𝐾 can be denoted as the
sum of the distances among the root node 𝑛0 and all the other nodes 𝑛𝑖 :

𝐾 =
∑︁

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑛0, 𝑛𝑖 ) (10)
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The spanning tree with the minimum 𝐾 would be set as the optimal update path and used for the final
coordinates update. Finally, we could obtain the coordinates of all sensor nodes. It is possible to reconstruct a
dense 3D model with more fine-grained geometric information by further interpolation. This 3D model can be
used to represent the whole 3D deformations in real time.

7 EXPERIMENT SETUP AND RESULTS
In this section, three experiments are conducted to validate the performance of our method, including the 3D
curve deformation capture, the 3D surface deformation capture, and the arm motion and deformation capture
respectively.

7.1 Experimental Setup
We use a 3D printer to print different shapes of 3D models to conduct the 3D curve and 3D surface deformation
capture experiments. These printed 3D models serve as the 3D objects to be measured and the original virtual 3D
models serve as the ground truth. The customized sensor network measures the shape of a printed 3D models
and output the coordinates of sensor nodes to reconstruct a 3D virtual model. Therefore, the differences between
the original 3D model and the reconstructed 3D model indicate the performance of our method, and the smaller
differences indicate the higher deformation capture accuracy.

The evaluation on deformation capture is to compare the difference when the measuring object changes from
the start shape to the destination shape from one moment to another. In our experiments, the printed 3D models
are fixed and inflexible, and cannot be reshaped. Therefore, the destination shape is set to be the same as the start
shape, and a series of deformations will be added into the intervals from the start moment to the destination
moment, which ensures the effectiveness of the evaluation. Although our evaluation method based on the 3D
printing cannot evaluate the real-time differences between the measurement value and the ground truth, we
focus on the evaluation of the same shape in different moments while considering deformation adequately. Such
an evaluation process can achieve the same evaluation effects as the optical measurement-based methods do
while effectively saving time.

We also conduct an experiment on arm motion and deformation capture to validate the performance of our
method in practical applications. In this experiment, we use the aforementioned optical measurement system to
capture and reconstruct the motions and deformations of a person’s arm. The optical reconstructed results serve
as the ground truth. We compare the ground truth and the 3D arm model reconstructed by our sensor network to
obtain the final evaluation results.

7.2 3D Curve Deformation Capture
A conical spiral model (Fig. 6(a)) in the length of 1015𝑚𝑚 is printed to conduct this experiment. A network with
30 IMU sensor nodes (Fig. 6(b)) is constructed to capture the deformation of the 3D curve. Since the curve’s
geometry is simple, all the sensor nodes are assigned directly to a straight-line model with the same length. Then
the planar mesh of the line model is obtained by laser cutting and the sensor network is assembled quickly. The
complete fabrication and assembly process takes about 10 minutes.
We measure the deformation process in which the 30 sensor nodes deform from a straight line into a conical

spiral. This measurement process is conducted 10 times by repeatedly folding and unfolding the sensor network.
Fig. 6(c) shows the virtual conical spiral model reconstructed by the sensor network. The final average evaluation
results for 10 times are shown in Table 2 (Section 7.5), including the average error (6.15𝑚𝑚), the maximum
error (15.25𝑚𝑚), the root mean square (RMS) error (7.07𝑚𝑚) and the average error rate (2.42%).
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Fig. 6. (a) The 3D model of a conical spiral. (b) The 3D printed model of a conical spiral attached with the sensor network. (c)
The virtual model reconstructed by the sensor network. (d) The 3D model of a rotational paraboloid. (e) The 3D printed model
of a rotational paraboloid attached with the sensor network. (f) The virtual model reconstructed by the sensor network.

Fig. 7. The results of model simplification, unfolding and fabricating.

7.3 3D Surface Deformation Capture
A rotational paraboloid model (Fig. 6(d)) in the size of 180𝑚𝑚150𝑚𝑚72𝑚𝑚 is printed to conduct this experiment.
A network with 30 IMU sensor nodes (Fig. 6(e)) is constructed to capture the deformation of the 3D surface. Fig. 7
shows the customization pipeline of model simplification, unfolding and fabricating respectively. The complete
fabrication from cutting to assembling takes about 20 minutes. Fig. 6(f) shows the virtual rotational paraboloid
model reconstructed by the sensor network. Especially, the assembled 3D meshes instead of the cables in the
sensor network constrain the motions of sensor nodes.

To evaluate the accuracy of the sensor network, we conduct static and dynamic experiments respectively. The
static experiment measures the initial shape without any motion and deformation. The dynamic experiment
measures the final results of the sensor network after a series of deformations. Fig. 8(a) shows the detailed
deformation process in the dynamic experiment, which contains 5 steps. Fig. 8(b) shows the corresponding virtual
models reconstructed by the sensor network in 5 steps. It can be seen that our method accurately reconstructs
the deformed model in the case of various complex deformations.

After calculating the coordinates of all sensor nodes, the radial basis function (RBF) interpolation algorithm [91]
is applied to produce more points, which facilitates reconstructing a denser rotational paraboloid (Fig. 9). The
error comparison and analysis are carried out between the reconstructed rotational paraboloid and the original
rotational paraboloid model in a 3D point cloud processing software, CloudCompare2.
We repeat the measurement 10 times by following the folding and unfolding sequence in Fig. 8(a). The final

average evaluation results for 10 times are shown in Table 2 (Section 7.5), including the average error (static:
4.22𝑚𝑚, dynamic: 3.90𝑚𝑚), the maximum error (static: 8.75𝑚𝑚, dynamic: 8.43𝑚𝑚), the RMS error (static: 4.55𝑚𝑚,
dynamic: 4.29𝑚𝑚) and the average error rate (static: 1.71%, dynamic: 1.63%). The detailed error comparisons of

2https://cloudcompare.org/

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 42. Publication date: March 2023.



3D Deformation Capture via a Configurable Self-Sensing IMU Sensor Network • 42:15

Fig. 8. A series of deformations on the sensor network. (b) The corresponding virtual model reconstructed by the sensor
network.

Fig. 9. Interpolated dense rotational paraboloid model and the details of error comparison in static and dynamic conditions.
Colors that tend toward blue have smaller errors. The “C2M” in the figures is the abbreviation of “ Cloud to Mesh”. (a)
oblique view in the static condition. (b) vertical view in the static condition. (c) oblique view in the dynamic condition. (d)
vertical view in the dynamic condition.

the static and dynamic experiments are shown in Fig. 9. Here, the results in the static condition are shown in
Fig. 9(a) and Fig. 9(b) and the results in the dynamic condition are shown in Fig. 9(c) and Fig. 9(d). The colors
that tend toward blue have smaller errors. It is clear that our method can accurately reconstruct the 3D surface
deformation with no more than 1𝑐𝑚 error.

7.4 Arm Motion and Deformation Capture
A customized wearable sensor network containing 30 IMU sensor nodes is constructed to conduct the arm motion
and deformation capture experiment (Fig. 10(a)). The complete fabrication and assembly process takes about 25
minutes (Fig. 2). We use an optical measurement system to evaluate the arm test prototype in different bending
angles. The deformation process is presented in Fig. 10(a) from left to right. Fig. 10(b) shows the reconstructed
virtual arm models. Fig. 10(c) shows the interpolated dense arm models and the details of error comparison.

We repeat the experiment 10 times by following the deformation process in Fig. 10(a), and then calculate
the average results for different bending angles in these 10 experiments. As shown in Table 2 (Section 7.5), the
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Fig. 10. (a) Arm test prototypes in different bending angles. (b) Reconstructed virtual arm models in different bending angles.
(c) the interpolated dense arm model and details of error comparison in different bending angles. Colors tend to blue have
smaller errors.

average error is 4.59𝑚𝑚, the maximum error is 21.00𝑚𝑚, the RMS error is 5.88𝑚𝑚 and the average error rate is
1.40%.

Fig. 10(c) shows the detailed evaluation results in different bending angles. The errors are calculated by the
comparison of the optical ground truth and the interpolated dense arm model. The colors that tend to blue have
smaller errors. The detailed evaluation results in the five bending angles from left to right in Fig. 10(c) are as
follows. The average errors are 3.26𝑚𝑚, 4.21𝑚𝑚, 7.31𝑚𝑚, 4.48𝑚𝑚 and 3.71𝑚𝑚 respectively, the maximum errors
are 10.44𝑚𝑚, 16.37𝑚m, 38.10𝑚𝑚, 26.83𝑚𝑚 and 13.24𝑚𝑚 respectively. These results indicate that errors increase
with increasing bending angles. However, even in a challenging scenario, namely at the 90-degree bending angle,
the worst average error result (7.31𝑚𝑚) is less than 1.00𝑐𝑚. The above results indicate that our method can
accurately reconstruct the arm motions and deformations.

7.5 Comparison with Existing Researches
Table 2 shows the comparison results between our evaluation examples and the existing works based on different
sensing methods including the capacitance [21, 79], the IMU sensor network [55], the piezoelectricity [72] and the
resistance [10]. Specially, we add works on monocular 3D human pose estimation on Human3.6M dataset [33, 99]
as the representative of vision-based methods. Especially, it is hard for us to reproduce all the compared methods
in the experiments. Although our experimental setup is different from the existing works, the deformations
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Table 2. Comparisons with Existing Researches.

Methods Deformation
Types

Average
Error (mm)

MaximumEr-
ror (mm)

RMS Error
(mm)

Average Error
Rate (%)

Ours

conical spiral case 3D Curve 6.15 15.25 7.07 2.42
rotational paraboloid case (static) 3D Surface 4.22 8.75 4.55 1.71
rotational paraboloid case (dynamic) 3D Surface 3.90 8.43 4.29 1.63
arm case 3D Surface 4.59 21.00 5.88 1.40

Capacitance (arm case) [21] 3D Surface 3.46 30.82 \ \
Capacitance (radii test case) [79] 3D Curve 19.03 \ \ 4.16
IMU sensor network (closed loop case) [55] 3D Curve 10.46 \ \ 4.71
Piezoelectricity (2.5D surface case) [72] 2.5D Surface 15.00 22.00 \ 4.12
Resistance [10] 1D Curve 7.15 18.81 \ \
Monocular 3D human pose
estimation on Human3.6M [33, 99] 3D Surface 39.8 \ \ \

measured in our experiments are much more complex than that measured by the most compared methods.
Therefore, the comparison results can be used to verify the performance of our method.

As shown in Table 2, our method achieves the state-of-the-art performance in terms of maximum error and
average error rate. Our average error is 1.13𝑚𝑚 higher than [21], but our maximum error is 9.82𝑚𝑚 less than its
result. In summary, the comprehensive performance of our method outperforms existing methods.

7.6 Robustness Analysis
3D curve deformation capture is a challenging task because of the large cumulative error, caused by the form factor
of the curve and the dynamic gained drifts from all IMU sensor nodes during motion. Refer to the equation (10)
in Section 6.3, theoretically, the cumulative error of the sensor network in measuring the conical spiral model is
larger than that in measuring the rotational paraboloid case and the arm case. Our experimental results show
that the results in the conical spiral case (average error = 6.15𝑚𝑚) are not substantially higher than the results in
the rotational paraboloid case (average error = 3.90𝑚𝑚) and the arm case (average error = 4.59𝑚𝑚). It shows that
our method is robust and still performs well while dealing with a large cumulative error.

8 DISCUSSION AND FUTURE WORKS

8.1 New Possibility of Applications
Our method is able to accurately capture 3D deformations of various objects by quickly customizing a sensor
network that matches the shape of the object. It can be applied in various emerging interactive applications. We
further discuss the potential design space for three test prototypes in evaluation experiments.

• Shape Measurement Tools. By setting the initial shape of the sensor network to a specific shape, such as
a straight line or a square plane, a shape measurement tool can be created. The sensor network needs to
take the initial shape as the starting point for each measurement, then close to the surface of the measured
object. The final deformation result is the measured shape of the object. Such a shape measurement tool can
be used to measure the surface curvature, bending angle, angularity, profile shape and other characteristics
of an object.

• Smart Tangible User Interface. Integrating the sensor network into the tangible user interface is one of
the most important applications of our method. Our method can enhance the self-perception ability of
existing tangible user interfaces, and support a more natural and free form of interaction. For example, a

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 42. Publication date: March 2023.



42:18 • Zhou et al.

smart sleep monitoring system could be developed by integrating our sensor network into pillows. The
user’s sleep posture can be accurately restored by capturing the pillow’s surface deformation.

• Wearable Input Devices. Another important application is to build wearable input devices. Our sensor
network can work on different human body parts such as human limbs, hands, torso and face, as long
as the deformation space of the body part is large enough to place 1𝑐𝑚 ∗ 1𝑐𝑚 ∗ 0.1𝑐𝑚 sensor nodes. Our
method will support a wide variety of body gesture control applications in the future, such as providing
accurate and fine-grained avatar manipulation to increase immersive experience in virtual reality, and
reconstructing body motions and deformations to support medical rehabilitation training.

8.2 Usability of the Sensor Network
Our sensor network provides a low-cost, low-power and real-time deformation capture solution. We use low-cost
hardware components to design IMU sensor nodes. The cost of a single IMU sensor node is less than $3. The
average power consumption of each sensor node is about 58mW, so a 3800mAh 3.7V lithium polymer battery
is enough to power a sensor network with 30 sensor nodes for 8 hours. We adopt the 7-bit addressing in the
software 𝐼 2𝐶 bus to achieve the communication between the master and slave sensor nodes, thus allowing up to
128 sensor nodes to be connected simultaneously. The pull-up resistor value should be changed with the number
of slave sensor nodes to keep the system running. In addition, the average update rate of IMU signals in this
paper is about 30𝐻𝑧, supporting the real-time interactions of most applications.

In this paper, we only construct the sensor network with no more than 48 sensor nodes (30 in evaluation and
48 in supplementary video). For the large object deformation capture scenarios such as the measurements of
full-body, where more slave sensor nodes are required, we suspect that the stability problem may occur in the
communication bus. This is because 𝐼 2𝐶 is a short-distance communication protocol and is highly sensitive to
capacitance changes. One solution is to set up several independent hardware subsystems, namely using multiple
masters to control different slave sensor networks. This method is able to avoid long-wire connections and is still
applicable to our self-sensing algorithm. Another way is to replace 𝐼 2𝐶 with differential RS485 protocol, which
supports long cabling distances in electrically noisy environments. However, this approach requires incorporating
additional RS485 interface IC into the hardware design, leading to an increase in component cost and PCB size
of sensor nodes. In the future, we will develop an RS485-based version of the sensor node to improve system
stability and extend the application scope of our sensor network.

Another work that needs to be improved in the future is the 𝐼 2𝐶 addressing scheme in our sensor network. The
𝐼 2𝐶 address of each sensor node is assigned by hardcoding. Actually, when we were hardcoding a sensor node,
we manually tagged its 𝐼 2𝐶 address number on its PCB. These tags on sensor nodes would guide users on how to
connect the sensor nodes in the right configuration while ensuring that their address matched their physical
location. Indeed, such a manual tagging process is not very convenient, but it only occurs in the preliminary
hardcoding works and does not influence the sensor network assembly process. We would like to upgrade our
sensor network to a peer-to-peer network in the future, thus allowing automatic address assignment based on
the physical locations of the nodes.

8.3 Necessity of Customized Fabrication Pipeline
Our customized fabrication pipeline is a 3D–2D–3D digital–physical transformation process. The core of this
pipeline is to simplify and unfold complex 3D models into 2D meshes for rapid fabrication and meanwhile
support efficient assembly of 2D meshes to restore 3D shapes. Such a fabrication pipeline also cooperates with
our self-sensing algorithm to achieve deformation capture. Specifically, the 3D model simplification provides the
algorithm with the shape-associated geometric prior knowledge, namely the prior knowledge P3. The 3D model
unfolding provides the prior knowledge P2 and ensures that the fabricated planar meshes can provide motion
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constraints for the sensor network while maintaining the geometric properties of the original 3D shape. Besides,
the material properties of the planar meshes provide the algorithm with the prior knowledge P1. The pipeline
fabricates a set of planar meshes that contain the 3D model shape information and provide motion constraints,
which helps our sensor network to accurately capture the deformation process of complex 3D shapes.

Additionally, our fabrication pipeline is primarily used to convert complex 3D surfaces into 2D planes, where
3D surfaces are much more difficult to be fabricated than 2D planes. For 3D curves or simple 2D surfaces, this
method is not necessarily required.

8.4 Generality of Self-sensing Algorithm
Although we use the low-cost 6-axis IMU sensors (MPU6050) to obtain orientation data, our self-sensing algorithm
is compatible with any other types of 6-axis and 9-axis IMUs. In this paper, using 6-axis IMUs is to ensure
immunity to magnetic interference, and thus extend the application scope. The selection of IMU sensors depends
on application demands for cost, precision, etc.

8.5 Limitations on Wearing Experience
For wearable applications, although our customized sensor network could fit the human body surface well, we
still feel slight constraints from the planar meshes while bending arms. This is because the fabricated planar
meshes lack sufficient elasticity to accommodate the large deformations caused by elbow bending at a sharp
angle. In the future, we hope to explore new fabrics to fabricate wearable meshes to enhance the flexibility of the
network, and provide more comfortable wearing experiences for users.

9 CONCLUSION
In this paper, we present a configurable self-sensing IMU sensor network for complex 3D deformation capture in
real time.We propose a kinematic chain model based on the four-bar linkage to describe the minimum deformation
process of 3D deformations. We also introduce three geometric priors to assist the kinematic chain model in
achieving robust 3D deformation capture. In addition, we design an efficient pipeline to fabricate customized 3D
sensor networks for different shapes. It incorporates origami-inspired thinking and customizes a sensor network
through a 3D–2D–3D digital–physical transition process. The experimental results demonstrate that our method
achieves comparable performance (average error at 4.59𝑚𝑚, average error rate at 1.40%) with state-of-the-art
methods. In summary, our method supports an accurate and reliable 3D deformation capture. We release the
design files in this project at github.com/ZJUZZH/Deformation-Capture-By-IMU-Sensor-Network.
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