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Abstract
The application of soft computing techniques can be largely found in engineering sciences. These include the design and

optimization of navigation systems for use in land, sea, and air transportation systems. In this paper, an attempt is made to

leverage on novel metaheuristic optimization approaches for designing integrated navigation systems. For this purpose, a

simplified version of the inclined planes system optimization (called SIPO) algorithm alongside its two standard and

modified versions are used in comparison with the two conventional methods of genetic algorithm and particle swarm

optimization. Considerations are made on an INS/GNSS problem with IMU MEMS modules. Outputs are presented in

terms of statistical and performance indicators, such as runtime, fitness, convergence, navigation accuracy (velocity,

latitude, longitude, altitude, roll, pitch, yaw), and routing along with the ranking of algorithms. Competitive performance

and relative superiority of the standard IPO over other methods in evaluating results have been confirmed. So that

compared to other state-of-the-art algorithms (GA, PSO, IPO, and MIPO), the best runtime rank with a value of 6/4 by

SIPO and the best performance rank of fitness, navigation accuracy for the two assumed IMU modules, and the total rank

with values of 4/4, 149/60, 165/60, and 332/128 obtained by IPO, respectively.

Keywords Inclined planes system optimization � IMU MEMS � INS/GNSS integrated navigation � Literature review �
Optimal design � Soft computing

1 Introduction

In autonomous vehicles, navigation has one of two mean-

ings: (a) estimating the position, velocity, and attitude of

the vehicle relative to a specific reference derived from

sensor observations; (b) design and carry out vehicle

movements to reach the desired location. Position, velocity,

and attitude are called navigation states. The term vehicle

is also used for a moving body whose position and attitude

must be determined. Positioning methods are divided into

three groups: inertial, satellite, and integrated navigation.

In inertial navigation, gyroscopes and accelerometers

measure rotation and specific force, respectively, and then

acceleration is obtained from the specific force.

An inertial navigation system (INS) suffers from a sharp

increase in error over time, which is due to both the nature

of the sensors and the type of mechanization. This can be

solved by considering the required conditions, such as

achieving high accuracy sensors along with the use of

appropriate and effective navigation algorithms. To
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overcome the problems in INSs, however, aided navigation

systems such as Global Positioning System (GPS), also

known as Global Navigation Satellite System (GNSS)

navigation systems, can be used alongside them. The main

problem in integrated navigation is using a properly inte-

grated filter that provides a navigation response in the

shortest possible time and with the least error.

In integrated navigation, two models are used: one to

model the state transition process INS and the other to

model GPS observation. In such models, the uncertainties

in INS and GPS sensors are modeled with two noise

sources, called process noise and measurement noise,

respectively (which can generally be non-Gaussian and

non-white). Based on these two models, and using the

correction and updating equations, the states estimated by

the INS are corrected based on GPS observations.

There are several significant challenges in designing and

implementing navigation systems to achieve this goal. One

of them is accurate modeling of the INS transition process

and GPS observation. Therefore, if linearized models of the

system and Gaussian white noise are used, since the INS is

essentially a nonlinear system with non-Gaussian and non-

white noise, the accuracy of the navigation system will be

reduced. Navigation algorithms based on the linear Kalman

filter (LKF) [1, 2] and the extended Kalman filter (EKF)

[2, 3] use linear error state models. Despite the advantages

of Micro-Electro-Mechanical System (MEMS) inertial

sensors (such as low-cost, small size, and low power con-

sumption), as one of the most widely used sensors in the

field of inertial navigation, KF-based methods when using

MEMS inertial measurement units (IMUs), from diver-

gence during GPS outages, which result from linearization

process approximations and undesirable system modeling,

are also not safe. Kalman navigation filter as the core of the

navigation system, especially integrated navigation, is an

optimal estimation tool that provides a sequential recursive

algorithm for estimating system states [4].

In various studies [5–15], nonlinear methods have been

proposed to compensate KF defects. The use of other

estimating filters, such as unscented Kalman filter (UKF)

[16] and particle filter (PF) [17] and other theoretical

methods to solve navigation problems have also been

pursued in them. Consequently, they have accepted the

high volume of calculations and theoretical considerations,

and operational assumptions to achieve the desired

answers. In contrast, some studies have achieved intelligent

and optimal navigation systems by focusing on integrated

navigation and exploiting the unique potential of artificial

intelligence (AI)-based soft computing approaches such as

artificial neural networks, fuzzy logic, deep and rein-

forcement learning, and evolutionary or metaheuristic

optimization algorithms [18–32]. Also, in [33–42], these

approaches have been used in other navigation

applications.

In the present study, in line with many similar studies,

emphasis has been placed on using new approaches,

including KF and AI hybrid systems, to complement each

other. Using a KF as the main integration filter and

adjusting its parameters can improve the performance of an

INS [43]. Such methods are known as adaptive Kalman

filters (AKF) [44–48]. The main methodology in such

research is a method and algorithm that can intelligently

and completely optimally estimate the control values of the

algorithm and provide the appropriate answer and solution

with the least possible computational and time volume.

Therefore, contributions of the current research are the

application of a simplified version of the inclined planes

system optimization algorithm, for the first time, alongside

two standard and modified versions (IPO[49], MIPO [50],

and SIPO[51]) in this regard to intelligently estimate the

covariance noise matrices of an EKF from an INS/GNSS

system and achieve an optimal navigation algorithm and

desired results. In such a way that, over time and based on

the measured values reached to the filter, the correlation

matrices of process noise and the measurement noise,

denoted by Q and R, respectively, are adapted to obtain the

least estimation error.

In simulations, based on technical and theoretical con-

siderations governing an assumed INS/GNSS navigation

problem with two sets of IMU-based INSs with unique

features [52], the IPO algorithms for estimating matrices

Q and R are used. The results of the algorithms are com-

pared with two well-known algorithms, genetic algorithm

(GA) [53] and particle swarm optimization (PSO) [54]. The

rest of this paper is organized as follows: a comprehensive

literature review of recent related research is provided in

Sect. 2. The navigation problem is presented in Sect. 3.

Section 4 describes the concept of intelligent optimization

and the proposed algorithms. Section 5 presents the pro-

posed approach with its considerations. The results and

analysis are reported in Sect. 6 and, finally, the paper

concluded in Sect. 7.

2 Literature review

This section reviews some recent related research. Here, all

references in relation to the use of different types of soft

computing techniques in the design of inertial and inte-

grated navigation problems on different applications are

reviewed. For this purpose, the studied problem, the pro-

posed approach(s) along with the main outputs are repor-

ted. The references include all researches from 2019 to

2021, respectively, which give a complete perspective on

Neural Computing and Applications

123



the application of such soft computing methods and how

they work in this regard.

In 2019, Sathiya & Chinnadurai used a Heterogeneous

multi-objective differential evolution (HMODE) and elitist

non-dominated sorting genetic algorithm (NSGA-II) for

trajectory planning of mobile robot. They obtained desir-

able outputs based on the optimal trajectory planning of

differential-driven wheeled mobile robot (WMR). Jalali

et al. [19] designed an autonomous robot navigation

problem by training multilayer perceptron (MLP) networks

using six evolutionary algorithms (EAs), multi-verse opti-

mizer (MVO), moth-flame optimization (MFO), PSO,

cuckoo search (CS), grey wolf optimizer (GWO), and bat

algorithm. In [19], the overall evaluation indicated the

robust performance of the MVO in terms of two evaluation

metrics (accuracy and area under curve (AUC)), the con-

vergence profile, and the t-test results.

In 2020, several similar works have been done. For

example, in [20], using the deep reinforcement learning

approach in 3D robot navigation, a robot navigation envi-

ronment is launched in various dense pedestrian environ-

ments. In [21], the authors were able to design a MEMS-

based GNSS/INS land vehicle navigation system optimally

by enhancing the signal-to-noise ratio (SNR) of MEMS-

INS raw measurements, utilizing a hybrid denoising algo-

rithm with wavelet transform and support vector machine

(SVM), as well as improving the positioning accuracy by a

SVM-based data fusion approach. They have finally

effectively eliminated stochastic errors of MEMS-IMUs

and also improved the overall positioning accuracy [21].

Also in [22], quantum monarch butterfly optimization

(QMBO) has been used in path planning navigation for

uninhabited combat air vehicles (UCAV). The results

showed that the proposed method searches and finds a

much shorter path than the standard version MBO. In [23],

Bellemare et al. also proposed another method based on

reinforcement learning for use in autonomous navigation of

stratospheric balloons. The proposed controller in [23]

outperformed Loon’s algorithm and was robust to the

natural diversity in stratospheric winds. They acknowl-

edged that reinforcement learning is an effective solution to

real-world autonomous control problems in which neither

conventional methods nor human intervention suffice.

An integrated MEMS-based INS/GNSS problem based

on UKF and nonlinear autoregressive neural networks with

external inputs (NARX) (namely NARX aided UKF) has

been investigated in [24]. The proposed approach in [24]

has resulted the improvement in position accuracy about

85–90%, in velocity about 65–75%, and in attitude about

40–65%, which indicates its success. Using multiple fading

factor square root cubature kalman filter (MSCKF) and

generalized dynamic fuzzy NN model based on MSCKF

(MSCKF-GDFNN), Wang et al. were able to design a

strapdown inertial navigation system (SINS) and GNSS,

which reduced the position errors in latitude and longitude

by 85.00%, 89.71%, and the velocity errors in east and

north by 94.57%, 83.11% [25]. The results in [25] indicate

the success and good performance of new hybrid approa-

ches between kalman filters and intelligent soft computing

techniques.

Gul et al. recently proposed a new hybrid methodology

called PSO–GWO algorithm with evolutionary program-

ming as a multi-objective path planning algorithm [26] and

used it to solve path planning for autonomous guided robot.

In [26], they have shown that their proposed method has

achieved a more feasible path with a short distance and

overcoming the shortcomings of other conventional tech-

nique. The reported results indicate the success and use-

fulness of the multi-objective optimization approach in

such important problems in the field of navigation. In

another study in 2021, the authors solved a vision-based 3D

robotic navigation challenge by using deep reinforcement

learning techniques [27]. In this research [27], due to the

proposed approach, the ability to avoid collisions has been

met and the target object can be quickly traced and

detected. Also, in the continuation of recent researches, in

[28], a gravity compensation method based on multilayer

feedforward neural network has been used to overcome the

challenges of optimal design of INS problem. In [28],

researchers have improved the radial position error per-

formance more than 31.43%, and ensured the real-time

performance of the gravity compensation.

Proposing a novel meta reinforcement learning frame-

work based on transfer learning and providing a dynamic

proximal policy optimization with covariance matrix

adaptation evolutionary strategies (dynamic-PPO-CMA) to

extend original proximal policy optimization (PPO) algo-

rithm is a new approach that has recently been applied in

[29] to the problem of multi-robot path-planning for

autonomous navigation. In [29], using the above method, a

faster convergence rate is achieved and the vehicle arrived

quickly to the destination. The authors in [30] have also

designed and implemented another integrated INS/GNSS

system with a combination of UKF and NARX. They have

shown that the proposed intelligent hybrid approach can

dramatically improve the accuracy of the designed system

during GNSS outages. In another recent study, Yang et al.

designed a SINS/GPS integrated navigation system [31]. In

this regard, they have used a deep neural network (DNN)-

based real-time sequence analyzer (RTSA) and covariance

matching algorithm hybrid adaptive nonlinear filter to

estimate the dynamic state, and time-varying noise

covariances Q and R of SINS and GPS [31]. The outputs of

the proposed approach indicated high generalization

capability and accurately label multi-frequency compound
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vibrations, as well as better accuracy, robustness, and

flexibility.

Finally, [32] provides a survey on population-based

meta-heuristic algorithms for solving aircraft motion

planning (AMP) problems. There have been some effective

suggestions on how to select appropriate meta-heuristic

methods in such problems, including the outputs of the

present work. The overall assessment indicates the need

and initial motivations of this paper for evaluating new AI-

based approaches in the optimal design of integrated nav-

igation systems.

3 Problem statement

Navigation involves moving and finding the way from one

place to another. To achieve this goal, a variety of equip-

ment is available. Navigation covers a wide range of

applications, from industrial and commercial applications

to military applications [55].

The four types of sample coordinate devices used in

navigation systems are: inertia device, ground device,

navigation device, and body device. These coordinate

devices are used because of INS mechanized outputs

including attitude, velocity, and position need to be con-

verted into user-understandable navigation information

[56].

3.1 Inertial navigation system

The heart of an INS is its navigation processor, which uses

IMU measurements using mechanization. Mechanization

refers to generating navigation responses from a set of raw

measurements obtained from sensors. This process begins

with the initialization and alignment of the system, fol-

lowed by differential equations to provide navigation

responses [56].

3.2 Integrated navigation

Generally speaking, the final goal of integrated navigation

is to estimate a state vector xk of a moving device in the

current time step k by having a set of measurements (ob-

servations) collected in time steps of 0,1,…, k (Zk = {z0,

…, zk}). The state vector of a moving device is in the form

of Eq. (1):

xk ¼ ;k; hk;wk; v
N
k ; v

E
k ; v

D
k ; ck; kk; hk

� �T ð1Þ

where £k; hk;wk; v
N
k ; v

E
k ; v

D
k ; ck; kk; andhk are roll, pitch,

and yaw angles of the moving device, along with velocity

vectors, as well as the latitude, longitude, and altitude,

respectively.

The state transition model (motion model) of the system

is described as Eq. (2):

xk ¼ f ðxk�1; uk�1; wk�1Þ ð2Þ

where uk is the control input which is the read values of

IMU, wk is the process noise which is independent of the

past and present states of the system and is considered due

to the uncertainty in the movement of the moving device

and the read values of IMU.

The state measurement model is also:

zk ¼ h xk; vkð Þ ð3Þ

where vk is a measurement noise that is independent of the

past and current states of the system as well as independent

of process noise and is considered due to the uncertainty in

the read values of GPS.

The functions f and h are inherently nonlinear in the

state transition model and the measurement model, and the

process and measurement noises are essentially non-

Gaussian and non-white. Therefore, the main problem of

integrated navigation is the modeling of these functions

and noises, which is also considered by researchers in the

field of intelligent optimization based on artificial

intelligence.

3.3 Assumed INS/GNSS integrated navigation
problem based on NaveGo simulation
framework

The basic problem and considerations of the present article

are entirely based on [52]; therefore, some important issues

are briefly stated here and the rest are referred to [52]. In

the integrated structure designed in [52], a version of the

extended Kalman filter called the complementary filter has

been implemented. By disturbing the navigation equations,

the SINS error model is acquired (defined by a series of

first-order differential equations) [52]. The assumed struc-

ture is described in [52].

In the time domain, the continuous state-space of the

system is equal to [52]:

d _̂x tð Þ ¼ F tð Þdx̂ tð Þ þ G tð Þu tð Þ þ w tð Þ ð4Þ

dẑ tð Þ ¼ Hdx̂ tð Þ þ v tð Þ ð5Þ

The state space model, discrete time, is [52]:

dx̂ þð Þ ¼ Udx̂þ Guþ w ð6Þ

dẑ ¼ Hdx̂þ v ð7Þ

where w�Nð0;QÞ and v�Nð0;RÞ are process and mea-

surement noise vectors, respectively; and the vectors

u 2 R21, dbx 2 R21, and dbz 2 R6 are also calculated from

Eqs. (8) to (13) [52]:
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u ¼ ~xbT ; ~f bT ; gTgdb ; gTf db
h iT

ð8Þ

dx̂ ¼ dêT ; dv̂nT ; dp̂nT ; b̂Tg ; b̂Tf ; db̂Tg ; db̂Tf

h iT
ð9Þ

dẑ ¼ dẑTv ; dẑ
T
p

h iT
ð10Þ

dẑv ¼ v̂n � v̂nG
� �

ð11Þ

dẑp ¼ T̂r
p p̂n � ~pnG
� �

þ Ĉn
pl

b
ba ð12Þ

T̂ r
p ¼ diag R̂M þ ĥ

� �
; R̂N þ ĥ
� �

cos ĉð Þ;�1
� �� �

ð13Þ

where lbba is the lever arm from the GPS antenna to the IMU

module and the parameter bT
r

p is also the curvilinear-to-

Cartesian transformation matrix [52].

Assuming that If3�3g is an identical matrix and 0f3�3g is

an empty matrix, the state space matrices will be according

to the relations with (14) to (16) [52]:

F tð Þ 21�21f g ¼

Fee Fev Fep

Fve Fvv Fvp

0 Fpv Fpp

0 0 0

0 0 0

0 0 0

0 0 0

�Ĉn
b 0 �Ĉn

b 0

0 Ĉn
b 0 �Ĉn

b

0 0 0 0

0 0 0 0

0 0 0 0

0 0 � 1

sg
0

0 0 0 � 1

sf

2

6666666666664

3

7777777777775

ð14Þ

G 21�12f g ¼

�Ĉn
b 0 0 0

0 Ĉn
b 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 I 0

0 0 0 I

2

666666664

3

777777775

ð15Þ

H 6�21f g ¼
0 I 0 0 0 0 0

0 0 T̂ r
p 0 0 0 0

� �
ð16Þ

The Q and R covariance matrices are also described as

Eqs. (17) and (18), respectively [52]:

Q 12�12f g ¼ diag n2Tg ; n2Tf ; n2Tgdb ; n
2T
f db

h i� 	
ð17Þ

R 6�6f g ¼ diag r2Tv ; r2cm; r
2
km; r

2
h

h i� 	
ð18Þ

The values of the main diameter R are provided by the

GPS error profile, and:

n2g ¼ r2gdt ð19Þ

n2f ¼ r2f dt ð20Þ

n2gdb ¼ r2gdb � sg ð21Þ

n2f db ¼ r2f db � sf ð22Þ

where n2T
f db
, n2

gdb
, n2f , and n2g are the power spectral densities

of gyroscopes and accelerometers random noises, as well

as gyroscopes and accelerometers dynamic biases [52].

The covariance matrix P 21�21f g as a diagonal matrix

must be formed at the beginning of the mechanization

process [52]. The P 21�21f g entries are selected according to

the expected initial variances dbx [52]:

P 1ð Þ ¼ diag r2;; r
2
h; r

2
w; r

2T
v ; r2c ; r

2
k; r

2
h; b

2T
g ; b2Tf ; r2Tgdb ; r

2T
gdf

h i� 	

ð23Þ

In [52], a simulation framework for low-cost INS,

abbreviated NaveGo, is embedded as a MATLAB toolbox.

In this framework, data is generated and received by a

trajectory generator (Eq. (24)). This trajectory generator is

required to provide the correct input data to the simulator.

T ¼ e; p; vn; an; ts½ � ð24Þ

where the vectors e ¼ feigkSi¼1, p ¼ fpigkSi¼1, v
n ¼ fvni g

kS
i¼1,

an ¼ fani g
kS
i¼1, and ts ¼ ftigkSi¼1 are discrete-time sequences

with elements equal to kS, e ¼ £; h;w½ � is the attitude

vector, including the angles of roll, pitch and yaw,

respectively. The p parameter also contains the true posi-

tion vector mechanized in the local North-East-Down

(NED) coordinate system. The vectors vn and an are the

true velocity and acceleration vectors, respectively, and the

value of ts is also a vector of simulation time [52].

In NaveGo [52], the state vector ex is considered in the

form of the following Eq. (25):

~x ¼ êT ; v̂nT ; p̂nT ; b̂Tg ; b̂Tf ; db̂Tg ; db̂Tg

h iT
ð25Þ

In Appendix, descriptions about mathematical notations

are provided.

4 Optimization and metaheuristic
algorithms

Optimization is the process by which optimal output/so-

lution/result (maximum or minimum) is made by setting

the inputs of a problem or the specifications of a compo-

nent. Optimization in mathematics means the desire to

produce the desired result, which can be the minimum or

maximum value of an index in the form of one or more

objective functions. In practice, the application of defini-

tive solution approaches and methods in optimization is not

simply expressed; however, this has been met by using a

variety of stochastic optimization methods, also called

heuristics and metaheuristics.
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A set of intelligent methods that complement each other

to create robust and inexpensive systems are categorized

into soft computing techniques. Soft computing includes

methods such as neural networks, fuzzy logic, evolutionary

computations (including genetic algorithms), swarm intel-

ligence, and heuristic and metaheuristic approaches with

random and probability-based reasoning, which can deal

with uncertainty, ambiguity, incomplete or partial truth,

machine learning, and optimization problems. These fea-

tures allow the creation of inexpensive intelligent systems

with a high degree of machine intelligence.

Many optimization problems in engineering are natu-

rally more complex and challenging than can be solved by

conventional optimization methods such as mathematical

programming methods and the like. On the other hand,

classical mathematics methods have two basic forms:

(a) they consider the local optimal point as the global

optimal point, and (b) each of these methods is used only

for a specific problem. Therefore, the main purpose of

intelligent methods is to find the optimal answer to engi-

neering problems.

The use of metaheuristic algorithms for intelligent

optimization leads to significant improvements in reducing

time and computational volume required to solve the

desired problems. These algorithms are heuristic search

methods mainly based on counting methods, with the dif-

ference that they use additional information to guide the

search. These methods are quite general in terms of

application and can solve very complex problems. They

mimic and exploit biological and physical processes. Some

of the optimization algorithms include genetic algorithm

(GA) [53, 57], ant colony optimization (ACO) [58], parti-

cle swarm optimization (PSO) [54], simulated annealing

(SA) [59], gravitational search algorithm (GSA) [60], dif-

ferential evolution (DE) [61–63], and gray wolf optimiza-

tion (GWO) [64]. These metaheuristic models have been

successfully used in various applications [65–68].

In the following, a detailed review of candidate algo-

rithms for use in this research is given. Therefore, the

inclined planes system optimization (IPO) algorithm [49],

its improved version MIPO [50], and its simplified version

SIPO [51] will be described, respectively.

4.1 Inclined planes system optimization

The basis of this algorithm has inspired by the dynamics of

sliding motion on a frictionless inclined plane [49]. In IPO,

a collection of agents (tiny balls) cooperate and move

toward better positions in the search space according to

Newton’s second law and equations of motion [49].

Consider a system with NP balls (see Fig. 1), the posi-

tion of the ball i is defined by Eq. (26):

pi ¼ p1i ; � � � ; pdi ; � � � ; pDi
� �

; for i ¼ 1; 2; � � � ;NP ð26Þ

That

pmin
j � pj � pmax

j ; 1� j� n ð27Þ

So that pdi is the position of the ball i in the dimension d,

in the D-dimensional space. At a specified time/step, such

as G, the angle between the ball i and j in dimension d, /d
i;j,

is calculated as Eq. (28):

/d
i;jð Þ;G ¼ arctan

f pj;G
� �

� f pi;G
� �

pdi;G � pdj;G

 !

8i; j ¼ 1; . . .;NP; i 6¼ j; d ¼ 1; . . .;D

ð28Þ

In Eq. (28), f pi;G
� �

is the value of the objective function

(height) for the i-th ball at step G. Since a certain ball must

move to the lowest height on an inclined surface, only the

balls at lower heights are used to calculate its acceleration.

The amount and direction of acceleration for the ball i in step

(iteration) G, in dimension d, is determined by Eq. (29):

€pdi;G ¼
XNP

j¼1
U f pj;G

� �
� f pi;G
� �� �

:sin /d
i;jð Þ;G

� 	
ð29Þ

where U(.) is the unit step function:

U xð Þ ¼ 1 if x[ 0

0 otherwise



ð30Þ

Also, _p
d

i;G is the velocity of the ball i in dimension d, at

step G, which is calculated according to Eq. (31):

_pdi;G ¼
pdbest;G � pdi;G

DG
ð31Þ

where pdbest;G is the ball with the lowest height (fitness) in

the total iteration until the current iteration G.

Finally, Eq. (32) is used to update the position of balls:

pdi;Gþ1 ¼ k1rand1€p
d
i;GDG

2 þ k2rand2 _p
d
i;GDGþ pdi;G ð32Þ

where rand1 and rand2 are two random weights distributed

uniformly over the interval [0, 1] [49].

Fig. 1 A sample search space with three balls in IPO [49]
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Algorithm I presents the general IPO operation, which

starts with a random initial population P0 2 RNP�D of NP

balls distributed inside the search space. This collection is

moving along the search space during Gmax displacements.

Its movements are driven by the acceleration €pi and velocity
_pi of i-th ball in the inclined plane by crossing straight lines

from the center of the particular ball to the center of other

balls. The newball position is computed at eachmovementG

as seen in Eq. (32), where rand1 and rand2 are two random

weights in the interval [0, 1], and k1 and k1 are exploration

and exploitation control parameters of the algorithm. Those

last parameters are defined inEqs. (33) and (34),where c1, c1,

scale1, scale2 shift1, and shift2 are tunable parameters that are

empirically determined for each problem [49].

k1;G ¼ c1
1þ e G�shift1ð Þscale1

ð33Þ

k2;G ¼ c2
1þ e� G�shift2ð Þscale2

ð34Þ

4.2 Modified inclined planes system
optimization

To reduce the complexity of the standard IPO, a modified

version called MIPO was proposed by Mohammadi et al. in

2017 [50]. Control parameters of MIPO are two parameters

of k1 and k2, which change under the proposed damping/

friction coefficients k1damp and k2damp with iterations, as

follows:

k1;G ¼ k1damp

Gmax � G

Gmax

� �
ð35Þ

k2;G ¼ k2damp

G

Gmax

� �
ð36Þ

where Gmax is the total number of iterations and G is the

current iteration.

So that high values of k1 and lower values of k2, cause

greater accelerations. This leads to the greater motility of

agents/balls. It means that, global searching or exploitation

occurs with larger values of k1 and lower measures of k2.

On the contrary, if the values of k1 and k2 become smaller

and larger, respectively, exploration is intensified [50].

4.3 Simplified inclined planes system
optimization

This algorithm was presented by Mohammadi-Esfahrood

et al. in 2019 [51]. The SIPO has improved the perfor-

mance and simplification of the standard IPO from two

perspectives of improving the execution mechanism and

establishing a favorable compromise between the explo-

ration and extraction parameters.

• Mechanism simplification

In SIPO, the following equation is proposed to update

acceleration:

€pdi;G ¼
_pdi;G � _pdmean;G

DG
ð37Þ

where _p
d

mean;G is defined by Eq. (38):

_pdmean;G ¼
pdbest;G � pdmean;G

DG
ð38Þ

By placing _p
d

i;G and _p
d

mean;G in Eq. (37), Eq. (39) will be

obtained (for simplifying, the power of 2 parameter DG is

ignored):

€pdi;G ¼
pdmean;G � pdi;G

DG
ð39Þ

where pdmean;G is the average position of the search agents

with a better fitness than the ball i. It is obtained from

Eq. (40):

pdmean;G ¼
pdSbetteri;G
Si;G

ð40Þ

Si;G ¼ s1;G þ s2;G þ � � � þ sI;G ð41Þ
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where pdSbetteri;G is the sum of the position of the balls with

better fitness than the ball i in step G. Also, s1, s2, and si
represent the number of balls with better fitness than the

first ball (the first member of a population), the second ball

and the ball i in step G, respectively.

Finally, the Pmean factor to control the mean position is

included in Eq. (39):

€pdi;G ¼
Pmeanp

d
mean;G � pdi;G
DG

ð42Þ

That Pmean is defined as Eq. (43):

Pmean ¼ F � Gmaxð Þ
G

ð43Þ

where G, Gmax, and F represent the current iteration, the

total number of iterations, and a control volume of Pmean,

respectively.

• Exploration & exploitation improvement

The parameters k1 and k2 in SIPO are defined according

to Eqs. (44) and (45):

k1;G ¼ 1

G

� �b

ð44Þ

k2;G ¼ c

1þ e� G�Tð Þ ð45Þ

That

T ¼ mratio � Gmax ð46Þ

where b, c, and mratio are the convergence controller, a

constant, and indicating the ratio of T from Gmax, respec-

tively [51].

5 The proposed approach

The INS/GNSS integration problem is a nonlinear problem.

We look for an optimal nonlinear filter in the form of

intelligently estimating the values of the process and

measurement noise covariance matrices (Q & R) for

accurately determining the navigation response. Therefore,

the proposed solution is to improve the efficiency of the

Kalman integration filter by the SIPO algorithm to design

an optimal navigation system.

The optimization is done in two ways: one is the optimal

estimation of Kalman parameters, and the other is the

definition of an intelligent mechanism in the objective

function of the problem. The proposed approach improves

the performance of the INS/GNSS system only by adjust-

ing the noise covariance matrices in the integrated navi-

gation algorithm without changing the structure of the

assumed integration problem simulated in [52]. Therefore,

the basis of comparison is based on the results extracted

from the reference navigation system in [52].

To validate the performance and outputs of the proposed

approach, the outputs are compared with the standard and

modified versions of IPO and MIPO, as well as two well-

known competitor algorithms, GA and PSO, that the results

of them have been previously reported in [69]. The

implementation considerations of the assumed INS/GNSS

problem are entirely consistent with [52]. All data and

route specifications, inertia sensors, GPS, navigation and

integration mechanism, calculations, problem-solving

relations, etc., are also described in detail in [52] and

included in its MATLAB source.

In the proposed approach, instead of replacing the val-

ues obtained from the GPS error profile in the main

diameter of the measurement matrix R and instead of

inserting the noise and bias values of each sensor in the

process covariance matrix Q, the values estimated by the

proposed metaheuristic methods are used. Given that in

[52], the root-mean-square error (RMSE) for both actual

and simulated INS systems per MEMS IMU module are

compared and reported, the sum of these two errors as a

weighted sum function (with the same weight and simple

algebraic sum as Eq. (47)) is minimized as a single-ob-

jective function of the problem.

objective ¼ sum RMSE IMU1ð Þ;RMSE IMU2ð Þ½ �ð Þ ð47Þ

where RMSE is the difference between the simulated INS/

GNSS system and the actual registered reference values as

well as the independent GNSS system with the reference

for the two sets of IMU based on MEMS technology in

[52]. RMSE values include the difference of all values of

performance parameters, including latitude and longitude,

altitude, roll, pitch, yaw, and velocity in three directions.

The flowchart of Fig. 2 shows the general framework of

the proposed approach. The purpose of optimizing matrices

(Q) and (R) is to estimate their elements so that the fitness

error of Eq. (47) is minimized, so the search agents’ vector

is defined as follows:

XT ¼ xR1 ; x
R
2 ; � � � ; xR6 ; x

Q
7 ; � � � ; x

Q
N

� �
ð48Þ

The solution is an N-dimensional vector. N is the

number of search agents and is equal to the sum of the

main diameters, two measurement and process noise

covariance matrices, and is considered in the proposed

optimization algorithms.

The pseudo-code of the proposed INS/GNSS integration

algorithm (based on SIPO algorithm) is given as follows

(Algorithm II):
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5.1 Pros and cons of the proposed approach

The main strengths and distinguishing features of the pre-

sent work compared to other related researches are as

follows: (1) novel metaheuristic optimization approaches

for designing integrated navigation systems, (2) overcom-

ing the high volume of calculations and theoretical con-

siderations, and operational assumptions of the standard

INS/GNSS problem, (3) intelligent estimation of covari-

ance noise matrix of an EKF and achievement of an opti-

mal navigation filter; (4) implement the structure offline

and achieve a powerful and robust integration algorithm for

online applications (by increasing the executive iterations

of the proposed algorithms), and (5) utilizing statistical and

performance indicators.

Also, among the weaknesses of the present work, the

following can be mentioned: (1) full reliance on the cal-

culations and considerations of the assumed basic problem

in [52], (2) the need for powerful hardware to complete the

offline intelligent design process, (3) requirement of

understanding and knowledge of the assumed algorithms

and proper adjustment of their control parameters, and (4)

finally, not using other types of Kalman filters, such as

CKF, UKF, etc. in the proposed structure.

5.2 Computational complexity of the proposed
approach

For calculating the computational complexity of the pro-

posed approach based on IPO algorithm, four main steps

should be taken into account. In the beginning of the

algorithm, all initial population NP must be randomly

generated and evaluated. So, the computational complexity

of the initialization step is O(NP). In the second step,

according to all NP number of population, operations are

performed to calculate the angle between the balls, accel-

eration, velocity, update the control variables k1;G and k2;G,

and then update the positions and evaluate their fitness,

respectively, which corresponds to O(NP) complexity.

The algorithm may need to be evaluated between 0 or 1

times (if the best current value is better than before) to

update the best fitness values (positions). Therefore, the

Fig. 2 Optimal design of the INS/GNSS integrated navigation

problem using the proposed SIPO algorithm
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computational complexity of the third process is between

O(0) and O(1), regarding the quality of solutions. It should

be noted that the first step is performed only once and the

second and third steps are repeated as many times as the

number of iterations (G). Putting these together, the com-

putational complexity of the proposed algorithm is between

O(NP (G ? 1) and at most O(NP ? G(NP ? 1)).

6 Results and analyses

In this section, outputs are reported according to the fol-

lowing indicators and criteria: trajectory (in terms of lati-

tude, longitude, and altitude), attitude (roll, pitch, and

yaw), errors of roll, pitch and yaw, changes in velocity

(received from GPS including components north velocity

VN, east velocity VE, and vertical velocity VD), velocity

errors, variations in latitude, longitude, and altitude, and

finally errors of latitude, longitude, and altitude. All of

these are extracted by simulating the movement of a

vehicle on a specific trajectory [52], and in three formats

(REF or True (correct vehicle route), single GPS output,

and using two modules IMU1 and IMU2) are displayed

distinctly and symmetrically.

Here, the INS/GNSS navigation is formulated as a sin-

gle-objective optimization problem and is simulated for all

the proposed SIPO in comparison with IPO and MIPO

along with GA and PSO algorithms. Due to the very high

volume of data collected in the reference problem [52],

implementations have led to a lot of time spent. Therefore,

several computer systems have been used. Simulations

have been carried out in MATLAB (versions R2015b and

R2019b) on a laptop and three other computer systems with

the following specifications: Intel (R) Core (TM) i3-

2348 M CPU@2.30 GHz, 6 GB RAM under Windows 7

Ultimate; Intel (R) Core (TM) i5-6500 CPU@3.20 GHz,

8 GB RAM under Windows 10 Pro; Intel (R) Core (TM)

i7-4790 CPU@3.60 GHz, 16 GB RAM under Windows 10

Pro; Intel (R) Core (TM) i5-3570 CPU@3.40 GHz, 20 GB

RAM under Windows 10 Pro.

Each algorithm is executed for five independent trials/

runs with a different number of iterations. Graphic results

are presented for the best trial of each algorithm and

numerical and statistical analyzes for all of them. Iterations

are selected to estimate the operational success of each

method for low to high iterations. Control values have been

adopted based on numerous experimental results and sim-

ilar studies. In PSO, the inertia coefficient w decreases

linearly with a friction factor of wdamp corresponding to the

iteration step of the algorithm.

The range of variations of the design variables in the

form of vectors of minimum and maximum selectable in-

tervals (equal to 18 variables including the main diameters

of the matrices R and Q, respectively) in Eqs. (49) and (50)

is considered in a specific and limited way:

Min var ¼ 0 0 0 0 0 0 1e�10 1e�10 1e�10 1e�10 1e�10
�

1e�10 1e�10 1e�10 1e�10 1e�10 1e�10 1e�10
�
;

ð49Þ
Max var ¼ 1 1 1 100 100 100 1 1 1 1 1 1 1 1 1 1 1 1½ �;

ð50Þ

In the analysis of the results, the best numerical values

are displayed in bold. The Outputs are reported in the form

of estimated values of design variables (XT of Eq. (48)),

convergence curves, statistical analysis of fitness values of

the objective function, execution times, numerical values

of performance criteria of the problem, all based on 5 trials

of all algorithms, and graphical results for the best trial of

each algorithm, respectively.

Due to the long-running time, it is reported by the hour.

The values reported for the performance criteria of the

problem represent the output accuracy of the INS/GNSS

integrated system optimized by the proposed intelligent

algorithms. So that the value in each row corresponding to

the column of an algorithm, indicates the system error in

terms of the parameters of attitude (roll, pitch, and yaw),

velocities, and position (latitude, longitude, and altitude).

Figure 3 shows the estimated design variables per 5 runs

for all algorithms. The convergence curves of the algo-

rithms for 5 trials are also shown in Fig. 4.

Figure 5 shows the best routing (trajectory) of each

algorithm during the 5 independent runs.

Finally, in Table 1, to evaluate the overall performance

of the algorithms, a final ranking for each algorithm is

presented. Table 1 shows the numerical superiority of the

statistical indicators of the algorithms (based on each of the

performance criteria and dividing by the total number of

them). This analysis represents the overall performance of

each algorithm in terms of a combination of statistical

indicators and performance metrics that confirm the suc-

cess and superiority of algorithms, respectively.

In Table 1, the results of the total rating calculations of

each algorithm based on the use of each of the inertial

navigation systems IMU1 and IMU2 along with the ratings

obtained from the statistical results of runtimes and fitness

values of the objective function and finally an overall and

final ranking are reported in the last row. As can be seen in

Table 1, the final ranking indicates that the success and

operational superiority of the algorithms in the given

integrated navigation problem has been achieved through

the use of IPO, PSO, SIPO, GA, and finally, MIPO meth-

ods, respectively.

As a general assessment of the results, it is clear that all

motivations and policies of the current research are well
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met, some of which are listed in detail below: (a) achieving

optimal results and proper performance outputs from the

assumed integrated navigation problem than the volume of

considerations and calculations of techniques and heavy

theories to improve the performance of these problems

indicates the success of the proposed method for using in

this regard and also overcoming the challenge of optimal

design of such problems for the first time, (b) the tangible

superiority of the standard IPO over its modified and

simplified versions and other competing methods due to the

embedding of a precise exploration and exploitation

mechanism through control with 6 parameters, and per-

forming a continuous and powerful navigation process

during its execution, (c) presenting and reviewing various

performance aspects of algorithms and integrated naviga-

tion problem along providing comprehensive statistical

analysis on the operation of metaheuristic optimization

algorithms for integrated navigation systems, (d) finding

the operational gaps in improved versions of IPO algorithm

(arising from inaccuracies in improving the computational

complexity of the proposed versions and the lack of exe-

cution of a continuous and powerful process in exploration

and exploitation mechanisms that have led to unfavorable

results compared to the standard version and competing

methods), (e) estimation of performance stability and

reliability of the proposed approaches by performing a

variety of independent trials, as well as providing multiple

rankings based on fitness, runtime, for IMU1 & IMU2

modules, and overall ranking, and, finally, (f) covering

various types of soft computing techniques based on evo-

lutionary and metaheuristic processes and providing sta-

tistical and functional analysis to comprehensively assess

how they function and their desirability or lack of

Fig. 3 Estimated design variables for all algorithms

Fig. 4 Convergence curves of algorithms for iterations a 100, b 200,

c 300, d 400, and e 500
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desirability in using them in designing and smartening

integrated navigation systems.
7 Conclusions

In this research, the intelligent optimization of INS/GNSS

integrated navigation systems was investigated and ana-

lyzed based on a reference problem using two IMU

(b)

(c)

(d)

(e)

(a)

Fig. 5 Trajectories of optimized navigation systems by the best trial of a GA, b PSO, c IPO, d MIPO, e and the proposed SIPO algorithm
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modules with MEMS sensor technology. The implemen-

tations and simulations were performed under MATLAB,

and the resulting outputs were presented and analyzed in

detail.

The basis of this work is the use of intelligent methods

and algorithms of evolutionary and metaheuristic opti-

mization based on artificial intelligence. In such a way that

acceptable results can be extracted with minimal opera-

tional considerations, and these approaches and estimated

results can be implemented operationally. Therefore, for

the first time, the capabilities and robustness of the SIPO

algorithm were used along with two standard and modified

versions of IPO and MIPO. Also, the results were evaluated

using two well-known and common evolutionary algo-

rithms, GA and PSO. The performance of the proposed

method was measured to intelligently estimate the

numerical values of process and measurement noise

covariance matrices R and Q. From the general assessment,

it can be acknowledged that the use of metaheuristic IPO

approaches to optimally design and smartize integrated

navigation systems is successful and can be a good can-

didate compared to the computational volume of other

mathematical and theoretical methods.

Some suggestions for future work include: (1) replacing

navigation algorithms with techniques based on reinforce-

ment or deep learning; (2) utilizing multi-objective opti-

mization versions of evolutionary and metaheuristic

algorithms; (3) using the potential and capabilities of other

intelligent algorithms; (4) applying hybrid approaches such

as fuzzy logic and artificial neural networks to improve

performance criteria of navigation problems.

Appendix

Note that variables with subscript (-) correspond to the

previous sample (such as t(k-1)), and (?) to the next sample

(such as t(k?1)); the tilde symbol (-) is for noisy measure-

ments, and the estimated variables based on these mea-

surements also have a hat (^); Finally, an entry-wise

product is expressed by the symbol ‘s’.

All source codes are fully and publicly available

at https://github.com/ali-ece
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