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Enhancing RTK Performance in Urban Environments by Tightly
Integrating INS and LiDAR

Xingxing Li, Shiwen Wang, Shengyu Li, Yuxuan Zhou, Chunxi Xia, and Zhiheng Shen

Abstract—High-precision and continuous positioning is a fun-
damental requirement for intelligent navigation applications.
Nowadays, the global navigation satellite system (GNSS) real-time
kinematic (RTK) technique is recognized as a feasible solution to
provide precise positioning services, but its accuracy is susceptible
to signal attenuation and will deteriorate drastically in urban
environments. Fortunately, the low-cost inertial measurement
units (IMU) and light detection and ranging (LiDAR) are
available in modern vehicle systems and could be integrated
to enhance GNSS performance. In this contribution, aiming to
improve RTK performance in GNSS-challenging environments,
we propose a tightly coupled RTK/Inertial navigation system
(INS)/LiDAR integration method. The GNSS double-differenced
pseudorange and carrier-phase measurements, IMU data, and
LiDAR plane features are fused at the raw-data level via an
extended Kalman filter (EKF). Both simulated tests and real-
world experiments were conducted to evaluate the effectiveness
of the proposed method. The results indicate that the proposed
method is able to achieve sub-decimeter-level accuracy in GNSS-
challenging environments, with the improvements of (51.8%,
82.0%, 75.0%) and (53.9%, 71.0%, 41.5%) compared to state-of-
the-art LIO-SAM and loosely coupled GNSS/INS/LiDAR integra-
tion. Meanwhile, the ambiguity fixing rate could be improved by
more than 10% with the assistance of LiDAR plane features.
Similar improvements can also be achieved in velocity and
attitude estimation.

Index Terms—Global Navigation Satellite System, Inertial
Navigation System, LiDAR, Urban environment.

I. INTRODUCTION

ACCURATE, consistent, and continuous navigation solu-
tion is in great demand in modern intelligent vehicle

systems, such as autonomous driving and unmanned delivery
[1] [2]. Since the stand-alone sensor has its inherent limitations
and cannot cover all application scenarios, the multi-sensor
fusion, which could provide natural robustness to sensor degra-
dation, will be a core component of the vehicle navigation in
the near future [3] [4].

Recently, the global navigation satellite system (GNSS) is
becoming increasingly popular due to its capability to provide
all-weather positioning services, especially after the rapid
development of multiple GNSS constellations [5]. The most
representative high-precision GNSS technique is real-time
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kinematic (RTK), which uses both pseudorange and carrier-
phase measurements and could achieve rapid or instantaneous
decimeter-level positioning accuracy in open areas with the
assistance of base stations [6]. By recovering the carrier-
phase ambiguity from float to integer values, which is known
as the ambiguity resolution, the positioning accuracy could
be further improved to the centimeter-level [7]. The various
implementations and analyses of RTK have been extensively
studied over the past few decades [8]. However, GNSS signals
are susceptible to multipath effects or being blocked, resulting
in unreliable and discontinuous observations in urban environ-
ments [9].

Fortunately, the inertial navigation system (INS) is self-
contained and could provide high-frequency and continuous
navigation outputs. Thus, some studies incorporate GNSS
with INS to augment the positioning performance in urban
environments [10]–[15]. In such a system, GNSS can provide
global position information to restrain time-increasing INS
errors, while INS could bridge GNSS signal outages and
shorten on-the-fly ambiguity search time [10]. The existing
work of GNSS/INS integration can be characterized as loosely
coupled and tightly coupled methods [11]. Generally, the
loosely coupled methods process the measurements from each
sensor separately, whose navigation solution could be fragile
and discontinuous when the number of available satellites is
less than four [12]. In contrast, the tightly coupled methods
directly fuse the raw measurements of GNSS and INS, which
has been proved to outperform the loosely coupled methods
in terms of accuracy and robustness [13], therefore drawing
increasing research interests. Nevertheless, the research [14]
demonstrated that the navigation errors in GNSS/INS inte-
gration would still accumulate without bounds during long-
term signal outages, especially when equipped with the low-
cost micro-electro-mechanical system (MEMS) inertial mea-
surement units (IMU) [15]. To cope with this case, fusion
with additional sensors, such as light detection and ranging
(LiDAR), could be helpful.

LiDAR is an exteroceptive sensor that could provide accu-
rate bearing and ranging measurements of surrounding objects
for either perception or navigation tasks. With the advances
in manufacturing technology, LiDAR has become practical
in vehicle navigation applications and has been extensively
investigated, in which fruitful outcomes have been gained
[16]–[18]. Among them, the iterative closest point (ICP) [16]
and its variants [17] [18] are the conventional methods to
obtain relative pose estimates between LiDAR scans. These
methods are suitable for dense point clouds but still fragile
in environments with vertical sparse and circular structures.
To address this issue, the authors in [19] proposed a feature-
based ICP method to transform the raw LiDAR point clouds
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into more efficient features such as edges and planes. The
literature [20] leveraged the presence of a ground plane in its
segmentation and optimization steps to solve the distortion and
real-time local pose estimation. To reduce the computational
burden in large-scale dense feature matching, the authors
in [21] proposed a novel adaptive voxelization method to
efficiently search feature correspondence.

On the basis of efficiently processing LiDAR point clouds,
many scholars have conducted in-depth research on the inte-
gration of GNSS, INS, and LiDAR. The most straightforward
approach is to fuse all the pose estimates from individual sen-
sors through a loosely coupled integration. As studied in [22],
both RTK and LiDAR were processed separately to provide
periodic corrections to suppress the time-increasing velocity
errors. Similarly, the literature [23] loosely integrated mature
GNSS/INS with LiDAR SLAM to achieve meter-level posi-
tioning performance in urban canyons. Apart from filter-based
methods, LIO-SAM [24] is an optimization-based method, in
which the IMU pre-integration factor, LiDAR odometry factor,
and optional GPS position factor are fused to obtain optimal
pose estimates through iterative optimization. Although the
study of loosely coupled integration of GNSS/INS/LiDAR
has made significant progress, it still shows the limitation of
inferior performance for its suboptimal condition. Accordingly,
to avoid degeneracy and to make the system more robust, the
authors in [25] tightly integrated GNSS/INS with 2D LiDAR
to achieve decimeter-level positioning accuracy in urban en-
vironments by using time-differenced GPS and tactical-grade
IMU measurements. In our previous work [26], the LiDAR
scan-to-scan geometric constraints were tightly integrated with
GNSS carrier-phase observations and IMU outputs. Specifi-
cally, each LiDAR constraint was built independently between
every two LiDAR scans in the sliding window, whose ge-
ometric strength and efficiency are insufficient. Meanwhile,
the GNSS submodule employed the precise point positioning
(PPP) technique, which is more prone to multipath effects than
RTK and can only maintain meter-level positioning accuracy
in urban canyons. As studied in [27], the LiDAR features were
initialized in advance with high-precision GNSS results in
open areas and were then used to construct position constraints
in GNSS-degraded environments. The two-stage constraints
could be effective but would be greatly restricted when GNSS
experiences long-term outages.

Although numerous efforts have been paid to the various
implementations of GNSS/INS/LiDAR integrations, most of
them mainly focused on the loosely coupled scheme, in
which limited support could be used to improve GNSS self-
performance in return. As a result, only meter-level positioning
accuracy could be achieved. To this end, aiming to achieve
accurate and robust navigation in urban environments, we
innovatively integrate double-differenced RTK measurements
with IMU data and LiDAR plane features in a tightly cou-
pled manner to fully exploit the complementary properties
of heterogeneous sensors. The continuously tracked LiDAR
plane features could construct strong geometric constraints
to prevent inertial sensors from drifting, so as to improve
ambiguity fixing rate and positioning accuracy.

The main contributions in this paper are highlighted as

Fig. 1. The pipeline of the proposed tightly coupled GNSS/INS/LiDAR
integrated system.

follows:
• We propose a tightly coupled RTK/INS/LiDAR integra-

tion method, in which the GNSS double-differenced pseu-
dorange and carrier-phase measurements, MEMS-IMU
data, and extracted LiDAR plane features are directly
fused at the raw-data level through an extended Kalman
filter (EKF). Compared with traditional decoupling meth-
ods, the proposed method enables increased robustness to
the failure of individual sensors and could enhance RTK
self-performance.

• To our best knowledge, it is the first time that con-
tinuously tracked LiDAR plane features are utilized to
improve the ambiguity fixing rate in the RTK processing.
Both theoretical analysis and experimental verification
were conducted to evaluate the aiding effect of LiDAR
on the carrier-phase ambiguity.

• We perform extensive experimental validations of the
proposed method on both simulated tests and real-world
experiments, showing that the proposed tightly coupled
RTK/INS/LiDAR integration method enables more accu-
rate and robust state estimation than the corresponding
loosely coupled methods and state-of-the-art LIO-SAM
[24].

The remaining paper is organized as follows: Section II
describes the overview of the system. The mathematical
models of involved sensors are introduced in Section III.
The implementation details of the proposed method and the
theoretical analysis of LiDAR aiding effect on ambiguity
resolution are presented in Section IV. The simulated tests and
real-world experiments are respectively conducted in Section
V and Section VI, and the corresponding results are analyzed.
Finally, some conclusions are drawn in Section VII.

II. SYSTEM OVERVIEW

Fig. 1 shows the system structure of the proposed tightly
coupled RTK/INS/LiDAR method. As can be seen, IMU is
regarded as the core sensor to bridge GNSS and LiDAR
submodules for its low fault rate and high sampling frequency.
To implement this integrated system, a centralized EKF is
employed due to its excellent real-time performance. The high-
rate pose prediction obtained by INS mechanization is utilized
to aid GNSS outlier detection, LiDAR de-skew as well as

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3257874

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2023 at 05:47:15 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 3

plane-feature association. Once the raw GNSS measurements
are available, the double-differenced operations will be per-
formed. Then, the precise prior position information from the
integrated system will assist in the ambiguity searching, fixing
and its validation. When a new LiDAR scan is recorded, the
current LiDAR states (position and attitude) and corresponding
covariance will be augmented into the integrated system. The
GNSS and LiDAR measurement updates are performed asyn-
chronously to correct the filter states. Finally, the estimated
IMU biases will be fed back to compensate next IMU data.

III. SENSOR MODEL

In this section, the INS dynamic model, RTK measure-
ment model, and LiDAR plane-feature tracking method is
introduced. The Earth-Centered, Earth-Fixed (ECEF) frame
(e-frame) is chosen as the reference frame in this integrated
system, making it easier to use raw GNSS measurements and
suppress the effect of the earth’s rotation on INS compared to
the local-level equivalent methods [28].

A. INS Model

In this integrated system, the IMU outputs are used to
propagate the system states forward in time, namely INS
mechanization. The INS continuous dynamic model can be
expressed as:{

δṗe=δve
b

δv̇e=− 2
(
ωe

ie

)
× δve+

(
Ce

bf
b
ib

)
× δθe +Ce

b δf
b
ib + δge

δθ̇e=−
(
ωe

ie

)
× δθe −Ce

b δω
b
ib

(1)

where (·)× denotes the skew-symmetric matrix; δpe, δve, and
δθe represent the position, velocity, and attitude errors of the
body with respect to the e-frame, respectively; f b

ib and ωb
ib

stand for the accelerator and gyroscope outputs, respectively;
Ce

b denotes the direction cosine matrix from body frame (b-
frame) to e-frame; ωe

ie represents the angular rate of earth
rotation, projected in e-frame; ge is the error vector of gravity
in the e-frame.

B. RTK Measurement Model

RTK is a widely used differential GNSS (DGNSS) position-
ing technique, which has the potential to achieve centimeter-
level positioning accuracy in open-sky areas. Benefiting from
the aiding information provided by the base station, various
errors along the signal path can be well eliminated. On this
basis, millimeter-level double-differenced pseudorange and
carrier-phase measurements could be established. In this work,
we follow the standard framework of multi-constellation RTK,
which can be derived from undifferenced pseudorange and
carrier-phase model as follows [5]:{

P = ρ+ c (dtr − dts) + Iono+ Trop+ εP
λΦ = ρ+ c (dtr − dts) + λN − Iono+ Trop+ εΦ

(2)

where P and Φ are the pseudorange and carrier-phase mea-
surements, respectively; ρ is the geometric distance between
the receiver r and satellite s; dts and dtr denote the clock
offsets of the satellite and the receiver, respectively; λ and

N stand for the wavelength and ambiguity of the carrier-
phase measurements; Iono and Trop represent the ionospheric
and tropospheric delay, respectively; εP and εΦ contain the
measurement noise and other unmodeled errors.

By performing single differencing between the base station
(b) and rover station as well as reference satellite (Si) and non-
reference satellite (Sj), we could obtain the double-differenced
measurement model as follows:{

∇∆P
Si,Sj

r,b = ∇∆ρ
Si,Sj

r,b +∇∆εP,
Si,Sj

r,b

λ∇∆Φ
Si,Sj

r,b = ∇∆ρ
Si,Sj

r,b + λ∇∆N
Si,Sj

r,b +∇∆εΦ,
Si,Sj

r,b

(3)

where ∇∆(·)Si,Sj

r,b =
(
(·)Si

r − (·)Si

b

)
−
(
(·)Sj

r − (·)Sj

b

)
de-

notes the double-differenced operator.
By applying the double-differenced operations in (3), the

clock offsets dts and dtr can be well eliminated. Furthermore,
if the short baseline is less than 5 km, the remaining double-
differenced Iono and Trop can also be neglected [9].

It is worth mentioning that the phase lock loop (PLL) in the
GNSS receiver couldn’t directly obtain the starting point of
the carrier cycle counter, namely ambiguity N , which makes
the carrier-phase measurements ambiguous. If the ambiguity
can be determined correctly, the accuracy of carrier-phase
measurements can be further improved to the millimeter-level
[29]. Therefore, the correct determination of ambiguity is
of great importance for high-precision RTK positioning. To
address this issue, the least-square ambiguity decorrelation
adjustment (LAMBDA) method is employed in this paper [30],
which solves the integer least-squares estimates of ambiguities
based on the following objective function:

f (∇∆N) =

min

{(
∇∆N̂ −∇∆N

)⊤
P∇∆N̂

(
∇∆N̂ −∇∆N

)} (4)

where the ∇∆N̂ and P∇∆N̂ stand for the real-valued esti-
mates for the ambiguity and corresponding covariance matrix.
Once the optimal integer ambiguity ∇∆

⌣

N has been obtained,
it will be used to revise the receiver position p̂r as below:

⌣
pr = p̂r − Pp̂r,∇∆N̂P−1

∇∆N̂

(
∇∆N̂ −∇∆

⌣

N
)

(5)

where p̂r and N̂ are regarded as the “float-solution”; ⌣
pr

and ∇∆
⌣

N are the “fixed-solution”. Moreover, the ratio test
proposed in [30] is used to ensure the accuracy of fixed
ambiguity.

C. LiDAR Plane-Feature Tracking Model

With rapid development in manufacturing technology, Li-
DAR has become a feasible option for either navigation or
perception tasks. However, traditional methods always come at
the cost of computational burden and cumbersome preparation
[31]. To address this issue, a modified plane-feature tracking
method including extraction, merging, and epoch association is
presented to extract the dominant structural information from
raw point clouds to construct a more efficient and stable data
association between multiple LiDAR scans.

Adhering to [32], a plane feature could be extracted from
raw point clouds and represented by a six-degree-of-freedom
(6-DOF) vector composed of a center point c and a unit normal
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Fig. 2. The simplified models of plane-feature extraction (left) and merging
(right).

vector u. Generally, the structural information contained in
a single plane feature is limited. Meanwhile, many “pony
planes” would represent the same surface (e.g., buildings
and walls). This data redundancy cannot be ignored as it
significantly increases the computational burden. To this end,
it is reasonable to merge the plane features belonging to the
same surface, which can be completed by constructing the
residual as:

rs,n =

 arccos ∥us · un∥
us

⊤ (cn − cs)
un

⊤ (cs − cn)

 (6)

where the {us, cs} and {un, cn} are the sparsely selected
plane feature and its closest plane feature, respectively. The
first row of the residual is the parallelism of the two planes,
and both the second and the third rows represent the distance
between the two planes.

If the residual is less than the threshold, the corresponding
candidate points in the two planes will jointly re-extract a new
{u, c} following [33]. This process will be repeated several
times to ensure the planes that belonged to the same surface
are merged as much as possible. The illustration of merging
processing is shown in Fig. 2.

Subsequently, the merged plane features will participate
in the epoch association between consecutive LiDAR scans.
Based on the INS-predicted pose

{
Clcur

lpre
, tlcur

lpre

}
between

current frame lcur and previous frame lpre, we could project
the plane feature from the previous frame to the current frame
to construct a residual to check whether the correspondences
can be built.

rlpre,lcur
m,n =

 arccos
∥∥∥ulcur

n ·
(
Clcur

lpre
· ulpre

m

)∥∥∥
ulcur
n

⊤
(
clcur
n − tlcur

lpre
+Clcur

lpre
· clprem

)  (7)

where {ulpre
m , c

lpre
m } and {ulcur

n , clcur
n } represent the mth

plane feature in the previous frame and the nth plane feature
in the current frame, respectively. Once the residual passes the
threshold, an epoch association will be built. Noted that the
KD-Tree [34] is used for fast indexing in this processing.

IV. THE TIGHTLY COUPLED RTK/INS/LIDAR
INTEGRATED SYSTEM

A. State Description and Prediction

Based on the sensor models mentioned above, the entire
state vector composed of INS state δxINS , GNSS state
δxRTK , and LiDAR state δxLiDAR can be described as:

δx=
[
δxINS δxRTK δxLiDAR

]⊤
(8)

where δxINS includes the position, velocity, and attitude of
the body with respect to the e-frame. Besides, to model the
inertial sensor errors, the bias-drifts of accelerator δba and
gyroscope δbg are also considered, which are modeled as
random walk process [35]. Thus, the INS state is defined as:

δxINS =
[
δpe δve δθe δba δbg

]
(9)

As for GNSS, the receiver position δpe
r can be related to

the IMU center, so the estimated parameters in RTK are only
the double-differenced ambiguities ∇∆N for each observable
satellite, which could be represented as follows:

δxRTK = [∇∆N ] (10)

In terms of LiDAR parameterization, a sliding window
of LiDAR poses is maintained for plane-feature geometric
constraints. The corresponding states can be written as:

δxLiDAR =
[
... δpe

lk
δθe

lk
...
]

(11)

where the δpe
lk

and δθe
lk

denote the position and attitude error
of LiDAR at epoch k, respectively. The capacity of the sliding
window is pre-defined and the oldest LiDAR frame will be
marginalized when the window is full.

In the state prediction, the INS states are propagated for-
ward in time by INS mechanization. The double-differenced
ambiguities and the LiDAR poses in the sliding window
are regarded as constants without process noises. As for the
covariance propagation, it can be calculated by the continuous
system model, which can be written as follows: δẋINS

δẋRTK

δẋLiDAR

 =

 FINS

0
0

 δxINS

δxRTK

δxLiDAR

+ η

(12)
where η is the system noise, which contains the Gaussian
noise of the accelerometer and gyroscope. The detailed form
of FINS can refer to Appendix.

Based on equation (12), the covariance propagation could
be expressed as:

P(k,k−1) = ϕk,k−1P(k−1)ϕ
⊤
k,k−1 +Qk−1 (13)

where Qk−1 is the discrete-time noise covariance matrix;
ϕk,k−1 is the discrete-time state transition matrix. Once a
new LiDAR scan is recorded, the system states would be
augmented with a copy of the current LiDAR pose. The
corresponding variance is also augmented as follows [36]:

P ∗
(k,k−1) =

(
I15+m+6n

J

)
P(k,k−1)

(
I15+m+6n

J

)⊤
(14)

with

J =

(
I 03×3

(
Ce

b t
b
l

)
× 03×(6+m+6n)

03×3 03×3 −
(
Ce

bC
b
l

)⊤
03×(6+m+6n)

)
(15)
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where m and n represent the number of double-differenced
ambiguities and LiDAR poses, respectively; J is the Jacobian
matrix of the augmented LiDAR pose with respect to the
INS states; tbl and Cb

l stand for the extrinsic parameters
between LiDAR and IMU, which are accurately calibrated
offline following [37].

B. RTK Measurement Update

Based on equation (3), the residual vector of the double-
differenced pseudorange and carrier-phase measurements can
be written as: {

δP =
(
∇∆P −∇∆P̂

)
λδΦ = λ

(
∇∆Φ−∇∆Φ̂

) (16)

where (∇∆P,∇∆Φ) and
(
∇∆P̂ ,∇∆Φ̂

)
denote the original

and INS-predicted GNSS measurements, respectively.
Since that GNSS has a different reference point from IMU

center, the lever-arm lbr should be calibrated in advance and
considered in the RTK measurement update, which can be
expressed as [38]:

δpe = δpe
r −

(
Ce

b l
b
r

)
× δθe (17)

By introducing equation (17) into equation (16), the lin-
earized residual vector can be simply written as:

δrRTK = HδxINS +ΛδxRTK + εRTK (18)

with

H =

[
pe
r−pS

∥pe
r−pS∥ 0

pe
r−pS

∥pe
r−pS∥

(
Ce

b l
b
r

)
× 0 0

]
(19)

Λ = diag
(
λ1 ... λm

)
(20)

where εRTK stand for the measurement noise; H and Λ are
the Jacobians with respect to INS states and double-differenced
ambiguity, respectively.

C. LiDAR Measurement Update

In Section III, the associated plane-feature correspondence
in the sliding window can be obtained. Since the redundant
representation of 6-DOP vector {u, c} could lead to possi-
ble numerical instability, it cannot be directly used in the
measurement updates. To address this issue, the traditional
plane parameters will be simplified into a 3-DOF vector, which
represents the foothold point of the origin to the plane. The
relationship between the footholds and the plane features can
be described as follows:

Γ = u
(
u⊤c

)
= u · d (21)

where d is the distance from the origin of the LiDAR frame
to the plane.

Then, we can use the INS-predicted pose estimates to
construct the relationship of associated plane features as:

Γ
lpre,lcur

i,j = ui,j · di,j

=
(
Clcur

lpre
u

lpre
i

)[
d
lpre
i −

(
Clcur

lpre
tlcur
lpre

)⊤
u

lpre
i

] (22)

where i and j represent the index of the associated plane
features, respectively; ulpre,lcur

i,j is the plane feature projected
from the previous to the current LiDAR epoch.

By linearizing equation (22), we have:

δri,jLiDAR = Γ
lpre,lcur

i,j − Γ̂
lpre,lcur

i,j

= Hi,j
LiDARδxLiDAR +Hi,j

Γ δΓ+ εi,jLiDAR

(23)

where Hi,j
LiDAR and Hi,j

Γ are the Jacobians with respect to
the LiDAR states and the 3-DOF plane features, respectively;
εi,jLiDAR is the measurement noise. By stacking the residual of
all the associated plane features, we have:

δrLiDAR = HLiDARδxLiDAR +HΓδΓ+ εLiDAR (24)

To decorrelate the plane feature with LiDAR poses, the δΓ
is projected to its null space following [36], which can be
written as:

δrLiDAR = A⊤HLiDARδxLiDAR +A⊤εLiDAR (25)

To ensure the robustness of LiDAR measurement update,
the Chi-square test is carried out to reject plane-feature outliers
[39].

D. LiDAR Aiding Effect on Ambiguity Resolution

Although the idea of integrating more sensors to improve
positioning performance is quite straightforward, the under-
lying reasons are still worth exploring. Since the RTK self-
performance is closely correlated to ambiguity resolution,
the detailed theoretical analysis of LiDAR aiding effect on
ambiguity resolution is presented in this section.

For simplicity, we assume that the measurement error can
be expressed as the product of the error coefficients and
corresponding weight. The weights of different GNSS mea-
surements are determined by their satellite elevations and can
be expressed with a simplified weight matrix W , while LiDAR
observations are considered to be equal-weighted. Thus, the
measurement noise R can be written as:

R = diag
(
σ2
P ·W σ2

ϕ ·W σ2
L · I

)
(26)

where the σP , σϕ and σL represent the noise coefficient of
pseudorange, carrier-phase, and LiDAR plane features, respec-
tively. Based on the standard EKF routines, the relationship
between prior state covariance P(k,k−1) and posterior state
covariance P(k) can be expressed as:

P−1
(k) = P−1

(k,k−1) +H⊤
k R−1Hk (27)

Taking the ith GNSS measurement and corresponding
wavelength λi as an example, the ambiguity covariance before
integrating with LiDAR can be expressed as follows:

Pk,∇∆N,i =
σ2
ϕ

λi
2

(
wi +

σ2
P

σ2
ϕ

αi

(
αi

⊤wi
−1αi

)−1
α⊤
i

)
(28)

That after integrating with LiDAR can be written as:

Pk,∇∆N,i
′
=

σ2
ϕ

λi
2

(
wi +

σ2
P

σ2
ϕ
αi

(
αi

⊤wi
−1αi +

σ2
P

σ2
L
hL

⊤hL

)−1

α⊤
i

)
(29)
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Fig. 3. The simulated scenario and distribution of satellite constellations.

where the αi and hL are the corresponding measurement
coefficient of GNSS and LiDAR, respectively; wi is the noise
weight of the ith GNSS measurement.

The ambiguity dilution of precision (ADOP) is widely used
to reflect the accuracy of float ambiguity estimates [40], which
can be calculated by:

ADOP =
√
det(P∇∆N )

1
n (30)

In the light of equations (26), (27), and (28), we can infer
that the ADOP is reduced after the introduction of LiDAR
plane features:

ADOPAfter < ADOPBefore (31)

The authors in [30] have demonstrated that smaller ADOP
has a positive effect on faster ambiguity convergence and
higher position accuracy. In other words, the more precise the
float ambiguity estimate is, the higher the ambiguity fixing
rate and better RTK performance will be. Consequently, the
theoretical analysis above shows that the enhancement effect
of LiDAR aiding effect on RTK is interpretable.

V. SIMULATED TEST

The simulated tests were first carried out to evaluate the
proposed integrated system. As shown in Fig. 3, a simulated

TABLE I
THE CONFIGURATION OF THE SIMULATED TEST. THREE SETS OF

PARAMETERS OF NSAT AND NOISE DENOTE THE GNSS CONFIGURATIONS
OF THE “GOOD”, “NORMAL” AND “CHALLENGING” SEGMENTS,

RESPECTIVELY

Average NSAT 27/21/14
GNSS Pseudorange noise (m) 0.3/1.0/1.3

Carrier-phase noise (m) 0.003/0.010/0.013
Observation model Double-Differenced
Sampling rate (Hz) 100

Angle random walk (°/
√
hr) 0.5

IMU Velocity random walk (m/s/
√
hr) 0.1

Gyroscope drift (°/hr) N(0, 2002)
Accelerator bias (mGal) N(0, 20002)

Sampling rate (Hz) 10
Maximum range (m) 100
Range accuracy (m) 0.02

LiDAR Elevation Resolution (°) 2.5
Field of view (Horizontal) (°) [0 360]

Azimuth Resolution (°) 0.16
Field of view (Vertical) (°) [-20 20]

Fig. 4. The time series of velocity in the simulated test.

Fig. 5. The time series of position uncertainties for RTK, TC-RI, and TC-
RIL in the simulated test. The dark blue, yellow, blue, and green lines denote
the TC-RIL integrations with the sliding window sizes of 2, 4, 6, and 8,
respectively.

urban scenario including roads and buildings was constructed
based on the Scenario Canvas of MATLAB Toolbox. Accord-
ing to the GNSS observing conditions, the simulated trajectory
can be categorized into three segments: “Good”, “Normal” and
“Challenging”, in which the numbers of available satellites are
27, 21, and 14, respectively. Based on the simulated vehicular
scenario, the raw GNSS measurements, IMU data, and LiDAR
point clouds are generated with different noise levels. The
overall simulated configuration for different sensors is listed
in Table I. As evident from the time series of vehicle velocity
in Fig. 4, the simulated experiment lasts about 360 s and the
velocity varies from 5 m/s to 10 m/s. It should be noted that the
vertical speed of the vehicle is maintained at 0 m/s, which is
consistent with the real-world urban roads without noticeable
height difference.

Attention is first paid to the time series of position uncer-
tainties, which is shown in Fig. 5. There are three configura-
tions considered for comparison and analysis: 1) stand-alone
RTK, 2) tightly coupled RTK/INS integration (abbreviated as
TC-RI), and 3) tightly coupled RTK/INS/LiDAR integration
(abbreviated as TC-RIL). It can be seen that the position
uncertainty of RTK increases rapidly in the “Challenging”
area. After the inclusion of INS, the corresponding uncertainty
decreases notably. When integrated with both IMU data and
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Fig. 6. The position errors of RTK, TC-RI, and TC-RIL in the east, north,
and up directions, the sliding window size in TC-RIL is set to 6.

LiDAR plane features, the position uncertainty has a further
decline, which indicates that additional LiDAR information
could provide extra observability for position estimation. It
can be found that the increasing LiDAR sliding window size
could bring about limited improvement. This is reasonable
since the large size of the sliding window makes it difficult to
construct effective epoch associations. Moreover, the position
uncertainties begin to converge when the vehicle returns
from the “Challenging” area to the “Good” area. The fastest
convergence of position uncertainty in TC-RIL also reflects
the extra observability provided by plane features.

Since the uncertainty may not truly reflect the performance
of the state estimation, the time series of position errors
for RTK, TC-RI, and TC-RIL are also presented in Fig.
6. Obviously, RTK could achieve high-precision positioning
accuracy in open-sky conditions, but it degrades to meter-level
accuracy when the visible satellites significantly reduce in the
“Normal” area. While in the “Challenging” area, even the TC-
RI is prone to degradation. The maximum position errors of
the east, north, and vertical components are 0.579 m, 0.442
m, and 1.542 m in TC-RI, respectively. Comparatively, the
corresponding position errors of TC-RIL decrease to 0.276 m,
0.236 m, and 1.039 m. According to the root mean square
error (RMSE) and ambiguity fixing rate listed in Table II, the
position RMSEs reduced from 0.113 m, 0.113 m, and 0.492 m

TABLE II
THE RMSES OF POSITION, YAW, AND AMBIGUITY FIXING RATE OF RTK,

TC-RI, AND TC-RIL IN THE SIMULATED TEST

Position RMSE (m) Yaw RMSE
(deg)

Fixing
RateEast North Up

RTK 0.265 0.237 0.962 / 60.6%
TC-RI 0.131 0.113 0.492 0.39 63.3%
TC-RIL 0.046 0.048 0.199 0.09 85.6%

Fig. 7. Overview of the hardware platform.

for the east, north, and vertical components of TC-RI to 0.046
m, 0.048 m, and 0.199 m of TC-RIL. For the ambiguity fixing
rate, TC-RIL could achieve a satisfactory ambiguity fixing
rate of 85.6%, with improvements of 25.0% and 22.2% with
respect to RTK and TC-RI, respectively. Such improvement
mainly benefits from the direct position constraints provided
by accurate plane-feature correspondences across the sliding
window. Moreover, the introduction of LiDAR also brings
higher accuracy of attitude estimates, whose RMSE reduces
from 0.39° to 0.09°.

VI. REAL-WORLD EXPERIMENTS

A. Experimental Description

In order to further validate the feasibility of the proposed
TC-RIL system, vehicular field experiments were conducted
at Wuhan University on 27 November 2021. As shown in
Fig.7, the hardware platform is equipped with a GNSS receiver
(Septentrio PolaRx5), a MEMS-IMU (ADIS-16470), and a
LiDAR (Velodyne VLP-16). A Tactical-grade IMU (Starneto
XW-GI7660) was also installed on the platform for generating
reference solutions. Moreover, another Septentrio PolaRx5
GNSS receiver with the antenna was rigidly installed on
the rooftop of the School of Geodesy and Geomatics as a
reference station for RTK. The performance specifications of
the two IMUs are shown in Table III. The sampling rates of
the GNSS receiver, MEMS-IMU, Tactical-IMU, and LiDAR
were 1 Hz, 100 Hz, 200 Hz, and 10 Hz, respectively. In
addition, the GNSS-IMU lever-arm and IMU-LiDAR extrinsic
parameters were also pre-calibrated in advance. As for the time
synchronization, the pulse per second (PPS) signal generated
by the GNSS receiver was used to trigger other sensors and
unify their time systems to GPS time at the hardware level.
To make a fair comparison, a post-processing software Inertial
Explorer 8.9 was employed to calculate the forward-backward

TABLE III
THE PERFORMANCE SPECIFICATIONS OF THE TWO IMUS

IMU
Bias Random Walk

Gyro. Acc. Angular Velocity
(°/hr) (mGal) (°/

√
hr) (m/s/

√
hr)

XW-GI7660 0.3 100 0.01 /
ADIS-16470 8 1300 0.34 0.037
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Fig. 8. The top view of the vehicle trajectory and various scenarios in the
real-world experiment.

Fig. 9. The time series of velocity and the GNSS visibility in the real-world
experiment.

smoothed RTK/Tactical-IMU tightly integrated solution as the
reference in the experiment.

Based on the field test trajectory shown in Fig. 8, the vehicle
started moving from an open-sky scenario with few trees, low
buildings, and wide roads, then ran through the urban canyon,
where tall buildings made it difficult to track satellite signals
continuously. In the second half of the experiment, frequent
signal blockages further challenged GNSS positioning as the
vehicle moved into the forest canopy shaded by dense trees.
Consequently, the proposed methods can be fully tested in this
real-world experiment.

The time series of vehicle velocity and the GNSS visibility
during the whole experiment are shown in Fig. 9. The vehicle
showed frequent acceleration and deceleration in the horizontal
direction, which could provide sufficient excitation for IMU.
As for GNSS visibility, even with the inclusion of the GPS,

Fig. 10. The time series of position errors for RTK, TC-RI, LC-RIL, TC-RIL
and LIO-SAM in the east, north, and up directions.

BDS, and Galileo systems, the average number of available
satellites was only 11.3 and the average PDOP (Position
Dilution of Precision) was 3.67, which reflects the poor GNSS
observing condition. It is worth mentioning that in the forest
canopy, the number of visible satellites decreased greatly and
the PDOP rose rapidly, which could cause huge challenges for
precise positioning. Since the whole experiment was carried
out at Wuhan University and the baseline was limited within
3 km, the double-differenced tropospheric and ionospheric
delay can be ignored. As for LiDAR, the size of the sliding
window was set to 6 to ensure stable plane-feature association
as described in Section V.

B. Result Analysis

To comprehensively verify the performance of different
methods, the loosely coupled RTK/INS/LiDAR integration
(abbreviated as LC-RIL) and state-of-the-art LIO-SAM [24],
which both use position results from stand-alone RTK module
for fusion, are also considered in real-world experiments.
The time series of position errors for different methods are
illustrated in Fig. 10. It can be seen that the stand-alone RTK
performance deteriorated to meter-level during the time period
from 240 s to 480 s, especially in the forest canopy. As shown
in Fig. 9, the deterioration is mainly caused by the lack of visi-
ble satellites and short-term signal interruptions. By integrating
RTK with INS, the gross errors over 2 m could be eliminated
to some extent. However, the rapid error accumulation during
long-term GNSS outages is still unavoidable, especially when
equipped with MEMS-IMU with high noise levels and un-
stable biases. Fortunately, the introduction of LiDAR could
significantly improve the accuracy and stability of TC-RI,
which could be contributed to the strong geometric constraints
constructed by the extracted plane features. Interestingly, the
LC-RIL performs much worse than TC-RIL, even worse than
TC-RI in some periods. The main reason could be the lack
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Fig. 11. The CDFs of 3D position errors for RTK, TC-RI, LC-RIL, TC-RIL,
and LIO-SAM.

of robustness against possible outliers in loosely coupled inte-
gration. As for optimization-based methods, LIO-SAM could
achieve considerable accuracy to TC-RIL in GNSS-degraded
environments, but its performance is worse than pure RTK for
the first 300 s in open-sky environments. This phenomenon is
mainly caused by the fact that the GNSS positioning results are
only used when the covariance of estimated positions becomes
larger than that of received GNSS information. Considering
this, the periodic correction of position errors for LIO-SAM
in Fig. 10 is reasonable.

The overall position RMSEs for different methods are
listed in Table IV. Influenced by several signal blockages,
RTK presents sub-meter-level positioning accuracy. With the
inclusion of INS, the position RMSEs reduce to 0.197 m, 0.132
m, and 0.259 m in the east, north, and up components. When
both LiDAR information and tight integration are used, the
positioning accuracy is the highest among all methods, with
improvements of (51.8%, 82.0%, 75.0%) and (53.9%, 71.0%,
41.5%) with respect to LIO-SAM and LC-RIL. Moreover,
the pure RTK could achieve ambiguities to be fixed in 383
epochs out of a total of 541 epochs. Since both LC-RIL
and LIO-SAM directly use GNSS position results from stand-
alone GNSS module, they own the same ambiguity fixing rate
as pure RTK at 70.8%. Benefiting from the tightly coupled
integration, the prior precise position information derived
from INS mechanization could assist in GNSS cycle slip and
outlier detection, thereby improving the ambiguity fixing rate

TABLE IV
THE POSITION RMSES AND AMBIGUITY FIXING RATES OF RTK, TC-RI,

LC-RIL, TC-RIL, AND LIO-SAM

Position RMSE (m) Fixing
RateEast North Up

RTK 0.844 0.855 1.022 70.8%
TC-RI 0.197 0.132 0.259 76.5%
LIO-SAM 0.276 0.334 0.428 70.8%
LC-RIL 0.289 0.207 0.183 70.8%
TC-RIL 0.133 0.060 0.107 86.6%

Fig. 12. The time series of velocity errors for TC-RI, LC-RIL, and TC-RIL
in the east, north, and up directions.

to 76.5%. By introducing LiDAR plane features to further
improve the accuracy of INS-predicted pose estimates, the
highest ambiguity fixing rates with 86.6% can be achieved
among all methods.

To further evaluate the positioning accuracy, the cumulative
distribution functions (CDF) of the 3D position errors are
also analyzed. The errors within 0.2 m are concerned as their
distribution depends heavily on the effectiveness of “fixed
solutions”. According to the statistics shown in Fig. 11, LC-
RIL improves the distribution of errors within 0.2 m by only
3.8% compared to RTK. As the GNSS is used as a stand-
alone submodule, it is difficult for LiDAR to influence the
performance of ambiguity resolution. In this case, LiDAR-
aided information in the loosely coupled integration has lim-
ited improvement in positioning accuracy, especially when
fusing with accurate GNSS positioning results. Comparatively,
TC-RI can make full use of the raw GNSS measurements
and enhance RTK self-performance to achieve a higher am-
biguity fixing rate, resulting in an 8.5% improvement in
the distribution of errors within 0.2 m. Furthermore, the
relative geometric constraints of LiDAR plane features could
help reject possible GNSS gross errors and maintain high-
precision extrapolated navigation outputs to wait for accurate
and reliable GNSS information. Therefore, the introduction of
LiDAR plane features into TC-RI enables increased robustness
to failure of RTK, especially in urban environments, leading
to a 21.1% improvement of errors within 0.2 m. Interestingly,
the CDF of LIO-SAM shows a steady upward trend, due to the
incremental smoothing of pose graph optimization. However,
the distribution of errors within 0.2 m for LIO-SAM is only
26.0% because GNSS is considered as a loop closure factor
rather than global position information, resulting in a worse
performance than RTK. This corresponds to the frequent jumps
of LIO-SAM in Fig. 10.

Similar to position, noticeable velocity improvement can be
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Fig. 13. The time series of attitude errors for TC-RI, LC-RIL, TC-RIL, and
LIO-SAM in the east, north, and up directions.

obtained with LiDAR-aided information. Fig. 12 gives out the
velocity errors of various methods. Noted that the velocity
indicator of LIO-SAM is neglected for the lack of outputs.
The velocity errors of TC-RI and LC-RIL frequently increase
above 0.2 m/s during the time period of 240 s to 480 s when
crossing the forest canopy. Comparatively, the error of TC-RIL
keeps within 0.1 m/s and exhibits insignificant degradation.
Based on the RMSEs of the velocity shown in Table V, the
statistics indicate that the RMSEs of TC-RIL are 0.024 m/s,
0.021 m/s, and 0.015 m/s, respectively, showing improvements
of (59.3%, 58.8%, 11.8%) compared with LC-RIL.

Autonomous driving not only requires high-precision posi-
tioning results but also relies on accurate attitude information.
The time series of the attitude error for different methods are
presented in Fig. 13 and the corresponding attitude RMSEs
are calculated in Table VI. As can be seen, the estimate of
yaw angle underperforms the roll and pitch angles among

TABLE V
THE VELOCITY RMSES OF TC-RI, LC-RIL, AND TC-RIL

Velocity RMSE (m/s)
East North Up

TC-RI 0.033 0.032 0.033
LC-RIL 0.059 0.051 0.017
TC-RIL 0.024 0.021 0.015

TABLE VI
THE ATTITUDE RMSES OF TC-RI, LC-RIL, TC-RIL, AND LIO-SAM

Attitude RMSE (°)
Yaw Pitch Roll

TC-RI 0.47 0.10 0.26
LIO-SAM 0.70 0.33 0.88
LC-RIL 0.50 0.11 0.15
TC-RIL 0.29 0.06 0.14

Fig. 14. Detailed processing time of each module.

all methods due to its weak observability in LiDAR-Inertial
system. Meanwhile, the roll and pitch angles can be recov-
ered from the LiDAR plane features and IMU measurements
alone. As Table VI depicts, the attitude RMSEs of LIO-
SAM are 0.70°, 0.33°, and 0.88° for the yaw, pitch, and roll
angles, respectively. Compared to LIO-SAM, TC-RI and LC-
RIL upgrade the attitude estimates with the improvement of
(32.9%, 69.7%, and 70.5%) and (28.6%, respectively) 66.7%,
and 83.0%), respectively. Our proposed TC-RIL achieves the
highest attitude accuracy with 0.29°, 0.06°, and 0.14° in the
yaw, pitch, and roll angles. Such improvements are mainly
due to the fact that LiDAR plane features can provide direct
bearing measurements to slow the drift of attitude errors.

C. Efficiency Analysis

In addition to the accuracy evaluation, the computation
efficiency of TC-RIL is tested on a laptop PC with Intel i7-
10875H CPU at 2.30 GHz and 16 GB of RAM. Fig. 14 shows
the detailed processing time of our proposed TC-RIL method,
which can be mainly divided into INS mechanization module,
LiDAR plane feature tracking module, LiDAR and GNSS
measurement update modules. The average processing time in
one epoch is only 60.4 ms and the maximum processing time
is 93.7 ms. It can be seen that the major time-consuming part
is the GNSS measurement update as the position information
is further utilized in the ambiguity searching and fixing. Due to
the 10Hz sampling rate of Velodyne VLP-16, the maximum
available processing time in the real-time mode is 100 ms.
Thus, our proposed method can achieve real-time performance,
and free up more available time for other tasks, such as
planning and decision-making.

TABLE VII
AVERAGE PROCESSING TIME OF LIDAR WITH DIFFERENT SLIDING

WINDOW SIZES

Window Size 2 4 6 8
Feature Tracking

[ms] 2.9±0.5 4.5±0.8 6.2±1.2 7.4±1.5

Measurement
Update [ms] 15.4±0.7 14.1±1.2 14.3±1.2 14.0±1.3
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To further explore the impact of different sliding window
sizes on computational efficiency, the average processing time
of LiDAR with different sliding window sizes is given in
TABLE VII. It can be seen that the processing time of LiDAR
feature tracking increases with larger window sizes since the
system needs to handle more geometric constraints between
frames in the sliding window. Although the expansion of
sliding window clones more LiDAR states to be estimated, the
plane feature correspondence that can be built across the whole
sliding window also decreases. This leads to the phenomenon
that the linear growth in processing time does not appear in
the LiDAR measurement update. As expected, the processing
time under different sizes of sliding window is roughly the
same, which only occupies 25% of the real-time benchmark.

VII. CONCLUSION

In order to meet the increasing demand for high-precision
positioning for modern navigation applications in urban en-
vironments, we propose a tightly coupled RTK/INS/LiDAR
integration method. The LiDAR aiding effect on ambiguity
resolution is investigated through theoretical analysis. Both
simulated tests and real-world experiments were conducted to
evaluate the effectiveness of the proposed method. The results
indicate that TC-RIL is able to maintain centimeter-level posi-
tioning accuracy in open-sky environments and decimeter-level
accuracy in challenging environments, which outperforms the
loosely coupled methods and state-of-the-art LIO-SAM.

However, several aspects still need to be considered in the
future. First, it is necessary to develop the multi-data mutual
inspection mechanism to ensure the system robustness. Sec-
ond, the integration with more sensors involved in intelligent
vehicle applications, such as camera and odometer, would be
investigated to further improve the positioning performance of
the system.
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APPENDIX

The specific form of FINS in equation (12) can be ex-
pressed as:

FINS =


0 I 0 0 0
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0 0 − (ωe

ie)× 0 −Ce
b

0 0 0 0 0
0 0 0 0 0


(32)
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