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Abstract—Integration of global navigation satellite systems 

(GNSS) with other sensors, such as inertial measurement units 

(IMU) and visual sensors, has been widely used to improve the 

positioning accuracy and availability of the vehicles for the 

Internet of Things (IoT) applications in smart cities. The 

traditional Extended Kalman Filter (EKF)-based fusion scheme, 

with the assumption of fixed measurements of different sensors 

and inaccurate GNSS quality assessment, is vulnerable to Non-

line-of-Sight (NLOS) and multipath contaminated GNSS, as well 

as low-quality vision measurement. In order to tackle this issue, 

we have proposed an adaptive weighting strategy for 

GNSS/IMU/Vision integration. On the basis of dual-check GNSS 

assessment, we adjust the weights of the vision and GNSS 

measurements adaptively based on the chi-square test statistic. 

The field tests have demonstrated that the proposed algorithm 

achieves horizontal positioning root mean square errors 

(RMSEs) of 11.92 m and 3.61 m in deep and mild urban 

environments. The accuracy has improvements of 78.57% and 

43.9% over traditional EKF-based GNSS/IMU fusion, and 

21.53% and 23.49% over compared EKF-based 

GNSS/IMU/Vision fusion, respectively. 

 
Index Terms— Adaptive Kalman filter, Integrated navigation, 

Vision. 

I. INTRODUCTION 

n the Internet of Things (IoT) technology, each object 

needs to know its own and others’ statuses and then 

exchanges their information over the Internet. Accurate 

and reliable Positioning, Navigation and Timing (PNT) 

information is essential for each object in IoT networks. 

GNSS and its multi-sensor navigation system can provide 

PNT information and play an increasingly important role in 

IoT applications such as Internet of Vehicle (IoV) and 

autonomous dr iv ing  [1] .  GNSS s ignals  a re  easi ly 

contaminated by multipath and NLOS reception in built 

environments, leading to the excessive positioning errors [2]. 

One solution to this problem is integrating IMU with GNSS, 
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and this has been shown to improve the positioning accuracy 

and reliability in urban areas [3][4]. But IMU errors 

accumulate in the absence of GNSS [5]. Thus, the persistent 

contaminated GNSS signals, or even long GNSS outages in 

urban areas will still result in rapid reductions in the 

performance of the integrated navigation [6]. Besides IMU, 

other sensors, including lidars, cameras and odometers, have 

been used to limit the reduction in performance [7]. The 

complementarity and economic feasibility of visual sensors 

has meant that these have been extensively adopted in such 

integrated navigation systems [8]. In complex urban 

environments, visual sensors obtain more feature points, such 

as foliage, buildings, or other complex objects [9], helping to 

improve the quality of the vision measurement. While in open 

areas, the lack of feature points in the images will degrade the 

quality of the vision measurement, but the GNSS signals are 

not shadowed. 

Multi-sensor fusion algorithms are mainly based on filter or 

graph optimization [10]. According to whether the feature 

information of the image is added into the state vector, they 

are divided into loosely coupled and tightly coupled. MSCKF 

is a filter-based and tightly-coupled VIO framework with a 

measurement model of the geometric constraints observed 

from multiple cameras poses [11]. VINS is a very advanced 

monocular VIO tightly coupled algorithm based on nonlinear 

optimization and sliding windows [12]. Its loop detection can 

correct accumulated drift. The final drift with loop closure is (-

0.032, 0.09, -0.07) m in xyz-axis. However, the loop closure is 

post-processing, and not applicable to real-time vehicle 

navigation. GVINS further realizes GNSS and VIO tightly 

coupled based on factor graph optimization, achieving 

accurate and continuous positioning in complex environment 

with a positioning accuracy of 4.508 m in urban driving 

experiment [13]. The theory and model are more complex, and 

the computation load is relatively large. In the filter based 

fusion algorithms, EKF is the most common fusion 

framework. Federated filter and particle filter are also used as 

the architecture for fusion [14]. However, these algorithms 

only change the filter type, and lack the research of adaptive 

strategy for sensor access and fusion. In [15], an EKF-based 

integrated camera/IMU/GNSS system is developed, using a 

GNSS differential technique to resolve the scale ambiguity 

problem of a monocular camera. Similarly, IMU data were 

denoised before integration with an 3D positioning accuracy 

improvement of 58% over traditional GNSS/INS integration 

[16]. However, they only focus on the performance of a single 

sensor.  
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These algorithms perform quite differently in different 

scenarios due to lack of adaptivity. In fact, adaptive switch of 

the algorithm and the sensor data quality assessment is the 

basis of the adaptivity in the changeable urban environment. 

GNSS signals were divided into different modes according to 

Dilution of Precision (DOP), and switch strategy depending on 

different modes [17][18]. The algorithm improves positioning 

accuracy by 27.4% in [18]. The accuracy of the algorithm in 

[17] with KITTI dataset in a relatively open environment can 

reach an accuracy of less than 1 m, but its performance in 

complex urban environments has not been verified. Although 

their experimental results showed improvements in 

positioning accuracy, only DOP-based GNSS modes 

determination method still lacks reliability. In [19], 

meanwhile, the Kalman Filter residuals are calculated to 

determine if the GNSS measurement should be used in the 

positioning calculation. This system is not robust enough 

because the reliability of this judgment cannot be absolutely 

guaranteed. [20] established a robust Kalman Filtering based 

GNSS/IMU/VO integrated navigation, using chi-square 

statistic to adjust the measurement noise covariance. This 

method, is not always significantly effective due to the limited 

ability to adjust the measurement noise covariance and the fact 

that it is only sensitive to abrupt errors. 

In conclusion, current research for GNSS/IMU/Vision 

integration still has some issues to be solved. In most of the 

research, the quality assessment for GNSS is not accurate and 

reliable. In addition, the current fusion strategy is always 

based on the fixed fusion mode, which has the degraded 

performance on the complex changing environments. In this 

paper, we propose a GNSS quality assessment model with an 

adaptive weighting strategy for GNSS/IMU/Vision integrated 

navigation system. The main contributions of this paper are as 

follows: 

● A Geometrical Dilution of Precision (GDOP)-based 

GNSS measurement assessment model and a further 

chi-square test recheck model are proposed to assess 

the quality of GNSS measurement to support 

subsequent integrated navigation. Both GDOP value 

and chi-square test are used to ensure the accuracy of 

the assessment. 

● We propose a chi-square test statistic based 

respective scale factor model to obtain an adaptive 

weighting strategy for the GNSS, IMU and vision 

measurements in the fusion process. The proposed 

fusion model is able to improve the adaptability. 

II. PROPOSED INTEGRATION ARCHITECTURE 

The proposed fusion algorithm based on the loosely coupled 

EKF scheme is shown in Fig. 1. This algorithm includes three 

steps. In step 1, based on the satellite number and GDOP 

value, GNSS measurement is determined into three statuses: 

unavailable, acceptable and to be further rechecked. 

Meanwhile, the data from the IMU and camera are processed 

to output the position, velocity, and attitude. In step 2, 

according to the result of the GNSS status assessed in step 1, if 

 
Fig.1. Algorithm Scheme 

 

the GNSS measurement is unavailable, the vision 

measurement will be fused directly with IMU. If the GNSS 

measurement needs to be further rechecked, and then passes 

the GNSS quality recheck in step2, the GNSS measurement is 

considered as reliable and will be used directly as 

measurement to be fused with IMU. If the GNSS 

measurement does not pass the quality recheck, it is 

considered as acceptable. The adaptive weighting strategy will 

be used to fuse GNSS/IMU/Vision. In step 3, Non-Holonomic 

Constraint (NHC) is applied into the updating stage of EKF to 

obtain the state estimation of the vehicle, including position, 

velocity and attitude. 

 

A. Coordinate frames 

In this paper, the angular rate and specific force are 

generated in the body frame, whose origin is the center of the 

IMU, and the x, y, z axes are in the direction of front, right, 

down of the vehicle. The two coordinate frames for GNSS are 

the geodetic coordinate frame, including Latitude, Longitude, 

Height (BLH) frame and Earth Center Earth Fixed (ECEF) 

frame. The vision data is expressed in the camera frame 

originally, whose origin is the optical center and whose three 

axes are right, down, front of the camera. The data from all the 

sensors for further fusion are converted into the navigation 

frame (n-frame): North, East, Down (NED) frame. 

B. GNSS mode identification and data processing 

1) GDOP 

In step 1, our integration framework starts with assessing the 

status of GNSS measurement so as to be able to choose among 

different specific strategies. If there are fewer than four 

satellites, GNSS does not have positioning and velocity 
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solution, so we deem GNSS as unavailable. If there are more 

than four satellites, a GDOP based assessment is proposed 

with one threshold value because GDOP can reflect the 

geometric configuration of the satellite constellations which 

affects the accuracy of GNSS positioning [21]. If the GDOP 

value is small, the positioning accuracy is likely to be high, 

but if the GDOP value is large, the positioning quality is 

always poor. Following [22], GDOP depends on the design 

matrix. It can be defined as: 

 1trace ( )− =
 

TGDOP A A  (1) 

where, A can be used for indicating the receiver-satellite 

geometry, which is given by [23]: 
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where, s
i

p  is the position of satellite i ; rp  is the receiver 

approximate position in ECEF coordinate frame; N  is the 

number of visible satellites at current epoch.  

We set a threshold 1thr  to compare with the GDOP at each 

epoch to assess the GNSS quality. If the GDOP value is 

smaller than 1thr , we still cannot ensure its quality because a 

small GDOP value cannot guarantee a small positioning error. 

Therefore, the GNSS data needs to be further rechecked in 

step 2 to confirm whether it is accurate enough for 

GNSS/IMU fusion. When the GDOP value exceeds 1thr , due 

to the poor satellite geometry, GNSS is assessed as acceptable 

for further processing. The threshold is an empirical value. 
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 (3) 

2) GNSS position and velocity solution 

To calculate the position and velocity of GNSS measurement 

for further fusion, this paper chooses pseudorange single point 

positioning and Doppler velocimetry methods. The 

pseudorange observations between the satellites and the 

receiver can be obtained by multiplying the propagation time 

of the GNSS signal from the satellite to the receiver by the 

speed of light. The pseudorange observations   can be 

expressed as [24]: 

 s r ion trop(δ δ ) = + − + + +iL c t t V V  (4)  

where, L  represents the geometric range between the 

observed satellite i  and the receiver; c  is the speed of light in 

a vacuum; sδ
it  and rδt  are the clock error of satellite i  and 

the receiver, respectively; ionV  and tropV  are, respectively, the 

delays caused by the ionosphere and troposphere;   

represents the other errors, mainly caused by NLOS/multipath 

signals. 

 
2 2 2

s r s r s r( ) ( ) ( )= − + − + −i i iL x x y y z z  (5) 

where, ( rx , ry , rz ) and ( s
ix , s

iy , s
iz ) are the coordinates of the 

receiver and the satellite i  in an ECEF coordinate system. 

After correcting ionospheric and tropospheric delays, with 

Klobuchar model and Saastamoinen model respectively, and 

obtaining satellite clock offset corrections and satellite 

position from broadcast ephemeris, least square method is 

used for positioning. Ultimately, the position of the receiver 
GNSS
kp  and clock error of the receiver rt  is solved [25]. 

In raw Doppler velocimetry method, the measurement model 

is: 

 s r ion trop(δ )   = + − + + +iD c t t V V  (6) 

 r s
r s( )



−
=  −

i
iv v

p p
 (7) 

where,   is the wavelength; D  is the Doppler shift;   is the 

pseudorange rate; sδ
it  and rδt  are the satellite clock drift and 

receiver clock drift, respectively; ionV  and tropV  are the rates 

of change in the ionospheric and tropospheric delays, 

respectively;   is the rate of change in the other errors; rv  

and s
iv  are the velocity of the receiver and satellite i , 

respectively. 

Let r s( ) / = − iu p p , the observation equation as: 

 
r

s
r

[  1] [ ]
δ

  =  + +iv
u u v D

t
 (8) 

Then calculate the receiver velocity rv  in the ECEF frame 

through least squares method when observe more than four 

satellites. 

3) Vision data processing 

We use Zhang Zhengyou calibration method to calibrate our 

camera. We made a calibration target to measure the 

parameters of the stereo camera shown in Fig. 2. Each black 

and white square grid has a side length of 35 mm. We take a 

group of photos from different directions, totally 25 pictures 

for each camera. Through the one-to-one correspondence 

between multiple actual points in world coordinate and feature 

points on the picture in pixel coordinates, the correspondence 

between world coordinates and pixel coordinates can be 

obtained. Then, the intrinsic matrix and distortion parameters 

of each camera and the rotation and translation of the right 

camera to the left camera can be obtained.  

For each camera frame, corner features are detected, and 

previous frames are tracked via KLT optical flow. The current 

frame is tracked based on the previous frame. For the stereo 

camera, the tracker also matches the features of the left and 

right images. The stereo images information of key frames is 

recorded in a sliding window with size of 10 frames [13]. If 

the average parallax of the new image exceeds the threshold, 

this frame will be added into the slide window as a key frame. 
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Fig. 2. Camera calibration target 

Perspective-n-point (PnP) of 3D-2D is used for motion 

estimation. The rotation and translation are calculated based 

on minimize the reprojection error using least square method 

[26]. After solving the rotation and translation between two 

consecutive epochs, the rotation and translation with respect to 

the last epoch can be obtained. To tackle with the accumulated 

error of vision, we use the position of the integrated navigation 

result at the last epoch, and the velocity of vision at current 

epoch to calculate the position as vision position measurement. 

C. GNSS quality recheck and fusion strategy 

The navigation information from GNSS, IMU and vision is 

input into an adaptive EKF to obtain the state estimation. The 

loosely coupled system involves the position, velocity, and 

attitude of the vehicle, the three-axis bias of the accelerometer 

and the gyroscope, and the errors of the scale factor, modelled 

as a first-order Gauss-Markov process [27]. The 21-

dimensional state vector built on the IMU estimation errors is 

described in (9)： 

 n n n T
g a g a[δ  δ  δ     ]=kX p v γ b b s s  (9) 

where, nδp , 
nδv , and nδγ  represent the three-dimensional 

position, velocity and attitude error vectors in the navigation 

frame; gb and ab , respectively, represent the three-axis bias 

error vectors of the gyroscope and accelerometer in the body 

frame. gs and as , respectively, represent the three-axis scale 

factor error vector of the gyroscope and accelerometer in the 

body frame.  

Considering the high sampling rate of inertial navigation, the 

time interval t is very small. Therefore, the discretized 

Kalman filter is used in integrated navigation. For the linear 

discrete-time stochastic system, the error state transition 

equation is [28]: 

 1 1,+ += +k k k k kX Φ X W  (10) 

 ~ (0, )k kNW Q  (11) 

1,+k kΦ  can be approximated as: 

  1, exp+ =  = + k k t tΦ F I F  (12) 

 1+ = −k kt t t  (13) 

where, 1+kX  and kX  are state vectors at 1+k  and k  epochs, 

respectively; 1,+k kΦ  is the state transition matrix from k  to 

1+k , set based on the error propagation of the IMU, derived 

from the IMU mechanization; F is the dynamic matrix; kW  is 

the system noise, and kQ  is the system noise covariance 

matrix [29]. 

The measurement equation is as follows: 

 = +k k k kZ H X η  (14) 

 ~ (0, )k kNη R  (15) 

where, kZ  is the measurement vector; kH  is the 

measurement matrix, composed of units 1 and 0, where 1 

corresponds to the mapping of the position error and velocity 

error from the first six units in the state vector to the 

measurement vector; kη  is the measurement noise; kR  is the 

measurement noise covariance matrix. 

During the process of Kalman filter, the first phase is 

prediction. The IMU errors are predicted according to the error 

propagation principle of IMU sensors, which is later fed back 

to correct the parameters in IMU mechanization. 

Prediction phase [30]: 

 1 1,
ˆ

+ +=k k k kX Φ X  (16) 

 1 1,
ˆ

+ += +k k k k kP Φ P Q  (17) 

where, kP  is the state covariance matrix; The hats’ − ’ and’ ^ ’ 

indicate predicted and updated vector, respectively. 

The measurement update scheme according to the three 

determined modes is introduced next. If the status of GNSS 

data is identified as unavailable, the fusion strategy is mode1, 

which is Vision/IMU integration. The data from vision is input 

into the measurement vector. The measurement vector has six 

dimensions composed of IMU and vision position and velocity: 

 

IMU Vis

M1

IMU Vis

 −
=  

−  

k k
k

k k

p p
Z

v v
 (18) 

where, M1
kZ  is the measurement vector when GNSS is in 

mode 1 at epoch k ; 
IMU
kp  and 

Vis
kp are position vectors of 

IMU and vision, respectively, at epoch k ; 
IMU
kv  and 

Vis
kv  are 

velocity vectors of IMU and vision, respectively, at epoch k .  

If the GNSS data is identified to be further rechecked, we 

propose a GNSS recheck model to confirm whether GNSS 

measurement can be assessed as accurate. Firstly, we construct 

the measurement vector with six dimensions composed of the 

position and velocity of IMU and GNSS: 

 

IMU GNSS
GNSS

IMU GNSS
k

 −
=  

−  

k k
k

k

p p
Z

v v
 (19) 

We use GNSS chi-square test here to perform the quality 

recheck. The innovation 
GNSS
kr  is defined as the difference 

between the measurement vector and the prediction of the 

measurement. It can be calculated as: 

 
GNSS GNSS= −k k k kr Z H X  (20) 

In the case of optimal estimation by filtering, when the 

measurement is not disturbed by the faults, the innovation 

should be a white noise sequence with zero mean and standard 

Gaussian distribution, namely: 

 
GNSS ~ (0, )k kNr C  (21) 

where, the corresponding covariance matrix kC  is as follows: 
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TGNSS GNSS T[ ]= = +k k k k k k kEC r r H P H R  (22) 

When there are abnormal faults in the measurement, the 

original properties of the innovation will be destroyed, 

resulting in the loss of its zero-mean characteristic and a 

certain offset in its probability distribution. The innovation 

will be affected by the faults, and the change will be reflected 

in the value of GNSS
kS . Therefore, the faults can be detected by 

chi-square 2  test statistic. The innovation chi-square test 

statistic of GNSS is defined as [31]: 

 GNSS GNSS T 1 GNSS( ) −=k k k kS r C r  (23) 

where, GNSS
kS  follows a chi-square distribution with d  

degrees of freedom, d  is the dimension of the measurement. 

There are two binary hypotheses： 

 

GNSS 2
0

GNSS 2
1

H ~ ( ,0)

H ~ ( , ), 0



  






：

：

k

k

S d

S d
 (24) 

where, 0H  is the null hypothesis, indicating that the entire 

model has no fault; 1H  is the alternative hypothesis, 

indicating that the entire model has fault; 
2( ,0) d  represents 

the central chi-square distribution with d  degrees of freedom; 

  is the decentralization parameter.  

For a given significance level  , the rejection domain of the 

test is: 

  GNSS 2RD ( )= kS d  (25) 

where, 
2 ( ) d  is the   quantile of a chi-square distribution 

with d  degrees of freedom. Let the maximum allowable value 

be the threshold 2thr , 
2

2 ( )=thr d . When 
GNSS
kS  exceeds the 

threshold 2thr , we reject the 0H  hypothesis and accept the 

1H  hypothesis. This indicates that the GNSS measurement 

still has some faults. Otherwise, we accept the 0H  hypothesis. 

It is considered that the innovation maintains the original zero-

mean characteristic, and the measurement is not disturbed by 

faults. Therefore, the GNSS data is reliable and fusion mode 2 

is used. The threshold 2thr is an empirical value. 

 

GNSS
2 

GNSS
2

   acceptable

    reliable

 




k

k

S thr

S thr
 (26) 

As mentioned above, if GNSS data is rechecked as reliable, 

we use fusion mode 2, integrating GNSS and IMU directly. In 

this condition, the environment is more like open sky, GNSS 

is in high accuracy but less feature points can be obtained in 

vision. This limits the accuracy of vision. There, to avoid 

deteriorate the integrated solution, vision is not used here. 

When GNSS is not reliable, always in challenging 

environments, abundant feature points enable to use vision but 

can’t ensure the vision accuracy. Therefore, we use vision to 

aid positioning when GNSS has faults and errors in mode3.  

For fusion mode 2, after the calculation of the GNSS 

position and velocity, we can obtain the measurement vector 

in mode 2: 

 

IMU GNSS

M2 GNSS

IMU GNSS

 −
= =  

−  

k k
k k

k k

p p
Z Z

v v
 (27) 

where, M2
kZ  is the measurement vector when GNSS is in 

mode 2 at k  epoch. 

When GNSS data is rechecked as acceptable, we use fusion 

mode3 GNSS/IMU/Vision integration. A weighting strategy is 

proposed to fuse the position and velocity of GNSS and vision 

for the adaptive construction of the measurement vector: 

 

IMU GNSS/Vis

M3

IMU GNSS/Vis

 −
=  

−  

k k
k

k k

p p
Z

v v
 (28) 

where, M3
kZ  is the measurement vector when GNSS is 

acceptable at k  epoch, GNSS/Vis
kp  and GNSS/Vis

kv  are the 

weighted position and velocity from GNSS and vision 

measurements. The weights are calculated with the chi-square 

statistic as follows. 

We put the GNSS and vision measurements into the 

measurement vector, like M1
kZ  and M2

kZ , to calculate two 

innovations GNSS
kr  and Vis

kr  respectively. GNSS
kr  is calculated 

in (20) and Vis
kr  can be calculated as: 

 
Vis M1= −k k k kr Z H X  (29) 

Considering that the possible errors in three-dimensional 

position and velocity are different, we cannot assign the same 

weights to each component of the measurement. We calculate 

separate statistic for each component of 3M
kZ  and take single-

dimension weighting strategy. 

 GNSS GNSS T GNSS( ) ( ) ( ) ( )=k k k kj j jS r C r  (30) 

 
Vis Vis T Vis( ) ( ) ( ) ( )=k k k kj j jS r C r  (31) 

where, j  represents the −j th  component of six dimensional 

innovations, 1,2 6=j ; 
GNSS
kS  and 

Vis
kS  represent the test 

statistic of the GNSS and vision data at epoch k , respectively. 

They can evaluate the difference between the predicted data 

and the actual measurement data [32]. The larger its value, the 

smaller the corresponding weight should be. The weights for 

GNSS and vision are then calculated as follows: 

 
Vis

GNSS GNSS Vis

( )
( , )

( ) ( )
=

+

k

k k

S j
j j

S j S j
w  (32) 

 
GNSS

Vis GNSS Vis

( )
( , )

( ) ( )
=

+

k

k k

S j
j j

S j S j
w  (33) 

where, GNSSw  and Visw  are the weight matrices of GNSS and 

vision. The weighted position 
GNSS/Vis
kp  and velocity 

GNSS/Vis
kv  are calculated as: 

 

GNSS/Vis GNSS Vis

GNSS VisGNSS/Vis GNSS Vis

     
= +     

          

k k k

k k k

p p p
w w

v v v
 (34) 

The process of the adaptive weighting strategy and related  
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TABLE I 

PSEUDO-CODE OF THE ADAPTIVE WEIGHTING STRATEGY 

Algorithm: Adaptive weighting strategy. 

Input: N , Vis
kr , GNSS

kr , GDOP  

Output: the measurement vector kZ  

1: if 4N  

2:   M1=k kZ Z  

3: else if 1GDOP thr  

4:         calculate
GNSS
kS and Vis

kS based on (30)(31) 

5:         if GNSS
2kS thr  

6:             M2=k kZ Z  

7:         else calculate the weights, M3=k kZ Z  

8:         end 

9:     end 

10: end 
 

navigation mode switching is illustrated in pseudo-code in Table I. 

D. EKF-based Final Vehicle State Estimation 

Considering the vehicle will not exhibit lateral sliding, nor 

will it move along the road surface in the vertical direction, 

the following NHC can be applied to vehicles to improve the 

state estimation accuracy. For the final velocity measurement 

for fusion obtained from three modes, the component in the 

right (y) and down (z) directions in the body frame are zero. 

The velocity measurements in different modes are: 

 kv =

Vis

GNSS

GNSS/Vis

           Mode1

        Mode2     

   Mode3







k

k

k

v

v

v

 (35) 

 b b_  0  0 =
 

T
x

k kv v  (36) 

where, kv is the velocity in the NED frame, and where b
kv  

represents the velocity in the body frame, and _b x
kv  represents 

the velocity component of axis x in the body frame. We 

convert the velocity from the navigation coordinate frame to 

the body frame in order to implement NHC and then be 

reverted to the NED frame for Kalman filtering. 

Then, the update phase only executes at the epochs having 

GNSS and vision observations and thus to correct the 

divergence of inertial navigation errors [33]. 

 
T T 1

1 1 1 1 1 1 1( )−+ + + + + + += +k k k k k k kK P H H P H R  (37) 

 1 1 1 1 1 1
ˆ ( )+ + + + + += + −k k k k k kX X K Z H X  (38) 

 1 1 1 1
ˆ ( )+ + + += −k k k kP I K H P  (39) 

where, 1
ˆ

+kX  and 1
ˆ
+kP  represents the estimated state vector 

and covariance matrix at epoch 1+k ; I  is the identity matrix 

and 1+kK  is the gain matrix at epoch 1+k . The positioning, 

velocity and attitude errors in the 1
ˆ

+kX  are the output at 

current epoch to correct IMU accumulated errors to obtain the 

estimated vehicle 3D states. 

TABLE II 

SENSOR PARAMETERS OF STIM-300 

Accelerometer 
Bias instability 0.05 mg 

Random walk noise 0.06 m/s/sqrt(hr) 

Gyroscope 
Bias instability 0.5 deg/hr 

Random walk noise 0.15 deg/sqrt(hr) 

 

TABLE III 

SENSOR PARAMETERS OF D455 

Resolution 848×480 pixel 

Sampling rate 30Hz 

Baseline 95mm 

 

TABLE IV 

SENSOR PARAMETERS OF HG4930 

Accelerometer 
Bias instability 0.025 mg 

Random walk noise 0.03 m/s/sqrt(hr) 

Gyroscope 
Bias instability 0.25 deg/hr 

Random walk noise 0.04 deg/sqrt(hr) 

III. RESULTS AND DISCUSSION 

A. Experimental process 

Two vehicle field tests were executed to evaluate the 

performance of the proposed algorithm in urban areas, in 

Nanjing, Jiangsu, China. The single frequency GNSS raw 

measurement data, including pseudorange as well as Doppler 

measurement, was collected at a sampling rate of 10 Hz using a 

BDStar Navigation C520-AT receiver with board card NovAtel 

OEM 7500. The IMU raw data was collected using a MEMS 

IMU, STIM-300, at a sampling rate of 125 Hz, including the 

measurement of specific force and angular rate. Its corresponding 

parameters are given in Table II. The vision data was collected 

from an Intel Real-sense D455 camera at a sampling rate of 30 

Hz. The parameters are shown in Table III. The reference of the 

trajectory used in the experiment was determined by integration 

of a high grade HGuide N580inertial sensor with RTK GNSS 

integration by Inertial Explore software in the post-processing 

mode. It can achieve accuracy of cm level. The IMU of N580 is 

Honeywell HG4930. Its parameters are given in Table IV. N580 

was connected to antenna 1, and BDStar Navigation C520-AT 

GNSS receiver was connected to antenna 2, both being ZYACF-

S806 antennas of Zhejiang ZhongYu Communication 

Technology Co., Ltd. The equipment layout is shown in Fig. 3.  

Test case 1 was single constellation using GPS and test case 

2 was multi-constellation using BDS and GPS. Test case 1 

was in a deep urban environment, depicted in Fig. 4. There are 

many tall buildings and viaducts in this environment, resulting 

in severe GNSS outages and multipath error. Test case2 was in 

a relatively mild urban environment with narrow alley and 

buildings as shown in Fig. 5. Fig. 6 and Fig. 7 shows the 

GDOP and number of satellites in test case 1 and case 2.  

To verify the effectiveness and performance of the proposed 

GNSS/IMU/Vision algorithm, the proposed algorithm is 

compared with two other algorithms. The description of the 

candidate algorithms are as follows: 

1) Traditional GNSS/IMU algorithm: The traditional EKF 

based GNSS/IMU loosely-coupled integration 

navigation. 
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Fig. 3. The vehicle for test with equipment 

 
Fig. 4. Test case 1 environment 

 
Fig. 5. Test case 2 environment 

 
Fig. 6. Number of GPS satellites (left) and GDOP (right) 

 
Fig. 7. Number of GNSS satellites (left) and GDOP (right) 

 
Fig. 8. Trajectories of the algorithms in the test case 1 

2) GNSS/IMU/Vision algorithm: Like [17-18], this only 

uses the GDOP value, compared with 1thr  to identify 

the GNSS status to choose GNSS or vision data as 

measurement to be integrated with IMU.  

3) Proposed algorithm: Adaptive weighting strategy-based 

GNSS/IMU/Vision integrated navigation. In test case 1, 

1 7=thr , 2 200=thr ; In test case2, 1 4=thr , 2 50=thr ;  

B. Experimental results evaluation 

In test case 1, the field test was executed in a typical dense 

urban environment, where the GPS signals were frequently 

blocked and had several outages. The navigation trajectories 

of three algorithms are shown in Fig. 8. In the part (a) and (b), 

due to the viaducts, GPS have no positioning solution or huge 

multipath error. Algorithm 1 has unacceptable errors for a 

long time, while in the red trajectory, our proposed algorithm 

effectively reduces the errors at these epochs because the 

vision measurement corrects the IMU accumulated error in the 

GPS outages and huge GPS positioning errors. Besides, in 

Fig.8(c), when the GPS signal is normal, the accuracy of the 

proposed algorithm is still higher than other two algorithms.   

The performance comparison is shown in Table V in terms 

of RMSEs. The result shows that our proposed algorithm is 

superior to the other two algorithms. The RMSEs of the 

proposed algorithm in horizontal and 3D positioning are 11.92 

m and 13.58 m, with 7.84 m, 8.97 m, and 6.51 m in the NED 

frame. It thus improves the accuracy by 78.57% and 77.23% 

over algorithm 1, 21.53% and 42.48% over algorithm2 in 

horizontal and 3D, respectively. Velocity of the proposed 

algorithm reaches the accuracy of 0.83 m/s and 0.87 m/s in the 

horizontal and 3D velocity respectively, with improvement of 

78.33% and 77.86% over algorithm 1, 26.55% and 36.96% 

over algorithm 2. The roll and pitch of the proposed algorithm 

are 0.36 degree and 0.32 degree, having improvement of 55.56% 

and 51.52% over algorithm 1, and 16.28% and 3.03% over 

algorithm 2. The RMSE of heading is 2.14 degrees, slightly 

larger than roll and pitch, but still attains improvement 85.73% 

algorithm 1 and 38.51% over algorithm 2. 

The comparison among the position, velocity and attitude 

errors of these three algorithms is shown in Fig. 9-11. The 

vehicle was stationary initially. In the stationary period, we 

can find that the results of algorithms 1 and 2 are very similar. 

This means that the quality of GPS measurement passes the 

assessment of algorithm 2, and vision is not used here. 

However, during this period, the accuracy of GPS positioning 

is frequently affected by multipath errors. These errors are 

mitigated by the proposed strategies in algorithm 3. In the 

dynamic test, in Fig. 9, the performance of the proposed 

algorithm also provides great improvements over the 

comparison methods. There are several outages during about 

200~250s, 320~370s. In these two periods, only few epochs 

GPS can solve position and velocity. Nevertheless, there are 

huge errors at these epochs due to challenging environments. 

In algorithm 1, due to the lack of GPS measurement 

assessment, huge errors in velocity deteriorate the attitudes 

rapidly. While in algorithms 2 and 3, these bad GPS

Antenna1

Antenna2

Camera

STIM300

N580

BDStar 

Navigation 

receiver

(a)

(b)

(c)

Start

out1

out2

Reference

GPS

Algorithm1

Algorithm2

Proposed
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Fig. 9. Comparison of position error in test case 1 

 
Fig. 10. Comparison of velocity error in test case 1 

 
Fig. 11. Comparison of attitude error in test case 1 

 
Fig. 12. Comparison of Chi-square statistics in test case 1 

 

TABLE V 

PERFORMANCE ANALYSIS OF THE THREE ALGORITHMS IN TEST CASE1 

RMSE Algorithm1 Algorithm2 Proposed Improvement over Algorithm1(%) Improvement over Algorithm2(%) 

Position (m) 

North 50.81 10.06 7.84 84.57% 22.07% 

East 22.62 11.39 8.97 60.34% 21.25% 
Down 21.57 18.07 6.51 69.82% 63.97% 

Horizontal 55.62 15.19 11.92 78.57% 21.53% 

3D 59.65 23.61 13.58 77.23% 42.48% 

Velocity (m) 

North  3.37 0.68 0.58 82.79% 14.71% 

East 1.81 0.91 0.59 67.40% 35.16% 

Down 0.90 0.79 0.24 73.33% 69.62% 
Horizontal 3.83 1.13 0.83 78.33% 26.55% 

3D 3.93 1.38 0.87 77.86% 36.96% 

Attitude (degree) 

Roll 0.81 0.43 0.36 55.56% 16.28% 

Pitch 0.66 0.33 0.32 51.52% 3.03% 
Heading 15.00 3.48 2.14 85.73% 38.51% 

  

measurements are excluded or weighted mostly, they can 

significantly and accurately bridge these outages using Vision 

or weighted measurements. The result of proposed algorithm 

is a little better than that of algorithm 2 due to more accurate 

assessment and flexible strategies. Besides these outages, the 

proposed algorithm still performs better than the other two 

algorithms. The accurate GPS status assessment can make 

better use of both vision data and GPS measurements. The 

proposed weighting strategy take both accuracy and 

robustness into account, fusing the two measurements 

according to their statistic. In Fig. 11, similar to the position 

error figure, attitude estimation can also be improved by the 

position and velocity correction. 

To further investigate the effectiveness of the proposed 

algorithm, the chi-square statistic is shown in Fig. 12. We 

zoom in one part of the statistic at 300~350s. In the enlarged 

part, the chi-square test statistic of our proposed algorithm is 

the smallest among the three sets of statistic. Specifically, 

some test statistic of proposed algorithm is equal to the vision 

statistic(blue) because at these epochs, GPS is unavailable and 

we only use vision as observation. This picture demonstrates 

that our algorithm can offer more accurate measurement 

compared with single GNSS or vision measurement. 

In test case 2, a mild urban environment, the number of 

available satellites, including GPS and BDS, are much more 

than that in case 1. The trajectories are shown in Fig. 13. In 

the three enlarged parts, our proposed algorithm has the 

highest positioning accuracy when GNSS is disturbed by 

various degree multipath effect.  In Table VI，the horizontal 

positioning accuracy of the proposed algorithm is 3.61m. with 

an improvement of 43.9% and 23.49% over algorithms 1 and 

2, respectively. Our algorithm also has improvements in 

velocity and attitude.  

stationary out1 out2

stationary out1 out2

stationary out1 out2
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TABLE VI 

PERFORMANCE ANALYSIS OF THE THREE ALGORITHMS IN TEST CASE2 

RMSE Algorithm1 Algorithm2 Proposed Improvement over Algorithm1(%) Improvement over Algorithm2(%) 

Position (m) 

North 4.17 3.95 2.79 33.09% 29.37% 

East 4.88 2.58 2.29 53.07% 11.24% 
Down 9.48 8.91 4.44 53.16% 50.17% 

Horizontal 6.43 4.72 3.61 43.90% 23.49% 

3D 11.46 10.08 5.72 50.06% 43.25% 

Velocity (m) 

North  0.23 0.22 0.18 21.74% 18.18% 
East 0.31 0.17 0.15 51.61% 11.76% 

Down 0.40 0.38 0.16 60.0% 57.89% 

Horizontal 0.39 0.28 0.23 39.30% 15.73% 
3D 0.56 0.47 0.28 48.96% 39.74 

Attitude (degree) 

Roll 0.16 0.14 0.13 18.75% 7.14% 

Pitch 0.11 0.09 0.09 18,18% 0.00% 
Heading 2.53 2.59 2.49 1.58% 3.86% 

 

 
Fig. 13. Trajectories of the algorithms in test case 2 

 

 
Fig. 14. Comparison of position error in the test case 2 

 
Fig. 15. Comparison of velocity error in test case 2 

 

The comparison among the position, velocity and attitude 

error of these three algorithms is shown in Fig. 14-16. In 

regard to position and velocity accuracy, the proposed 

algorithm is the best one in the whole test. Although at some 

epochs, the attitude errors of the proposed algorithm get worse, 

on the whole, the accuracy of the proposed algorithm performs 

better than algorithm1 and 2. 

 
Fig. 16. Comparison of attitude error in the test case 2 

 

IV. CONCLUSION 

This paper has developed a GNSS status assessment model 

and an adaptive weighting strategy based Kalman filter 

algorithm for loosely coupled GNSS/IMU/Vision integration 

in urban areas. The result shows that the proposed algorithm 

can improve the performance of position, velocity and attitude 

estimation, achieving horizontal positioning RMSEs of 

11.92m and 3.61m in deep and mild urban environments. The 

accuracy has an improvement of 78.57% and 43.9% over 

traditional EKF-based GNSS/IMU fusion, and 21.53% and 

23.49% over compared EKF-based GNSS/IMU/Vision fusion, 

respectively. The proposed algorithm is suitable for vehicles 

with low-cost onboard GNSS, IMU and camera sensors for 

IoT applications. In the future, the algorithm performance 

could be further improved by modelling and correcting vision 

sensor error, as well as regional GNSS correction services.  
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