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Smartphone Inertial Measurement Unit Data
Features for Analyzing Driver Driving Behavior

Khadija Kanwal, Furqan Rustam, Rajeskhar Chaganti, Anca Delia Jurcut* and Imran Ashraf*

Abstract— Driving behavior is an important aspect of maintaining and sustaining safe transport on the roads. It also
directly affects fuel consumption, traffic flow, public health, and air pollution along with psychology and personal mental
health. For advanced driving assistance systems (ADAS) and autonomous vehicles, predicting driver behavior helps to
facilitate interaction between ADAS and the human driver. Consequently, driver behavior prediction has emerged as an
important research topic and has been investigated largely during the past few years. Often, the investigations are based
on simulators and controlled environments. Driving behavior can be inferred using control actions, visual monitoring,
and inertial measurement unit (IMU) data. This study leverages the IMU data recorded using a smartphone placed inside
the vehicle. The dataset contains the accelerometer and gyroscope data recorded from the real traffic environment.
Extensive experiments are performed regarding the use of a different set of features, the combination of original and
derived features, and binary vs multi-class classification problems; a total of six scenarios are considered. Results reveal
that ’timestamp’ is the most important feature and using it with accelerometer and gyroscope features can lead to a 100%
accuracy for driver behavior prediction. Without using the ’timestamp’ feature, the number of wrong predictions for ’slow’
and ’normal’ classes is high due to the feature space overlap. Although derived features can help elevate the performance
of the models, the models show inferior performance to that of using the ’timestamp’ feature. Deep learning models tend
to show poor performance than machine learning models where random forest and extreme gradient boosting machines
show a 100% accuracy for multi-class classification.

Index Terms— Driver behavior; autonomous vehicles; feature engineering; machine learning; inertial measurement unit

I. INTRODUCTION

DRIVING behavior plays a vital role to maintain and
sustain safe transport [1]. It directly affects fuel con-

sumption, traffic flow, public health, and air pollution along
with psychology and personal mental health. The ’driving
behavior’ or ‘driving style’ concepts have been defined by
many researchers differently [2]. [3] defines driving behavior
as, driving style concerns individual driving habits that are,
the way a driver chooses to drive. The existing research work
highlights the advantages to adopt safe and more environment-
friendly driver behaviors for traffic circumstances, stress relief,
emissions, and much more. Moreover, driving behavior has
significant importance since particular driving behaviors are
in considerable relation to traffic congestion, carbon emission,
etc. [4]. Driving style is varying in the way drivers select to
decelerate and accelerate the distance as drivers kept from the
leading vehicle whatever they drive more than the speed limit
[5].
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Asymmetric driving behavior means that the drivers are
much more attentive in deceleration than in Accelerometer
which is closely related to an eminent traffic hysteresis phe-
nomenon [6]. Recently, three characteristics of asymmetric
driving behavior are defined as

1) Hysteresis: the drivers are applied to keep a larger head-
way while Accelerometer than deceleration provided a
similar speed [7],

2) Discrete driving: the accelerating and decelerating in
car-following (CF) are not sequential [8],

3) Intensity difference: the positive and negative relative
speeds are different though driving at the same condition
for response intensity of the drivers such as the same
speed, the similar magnitudes for relative speeds, and
the same gap among the following and leading vehicles.

In addition, the driving behaviors in deceleration and ac-
celeration vary when analyzing the next-generation simulation
(NGSIM) data. In [9], experimental results of the presented
research have reported that the reaction time in acceleration is
different from that in deceleration. However, various driving
profiles have been acknowledged in existing research regarding
road traffic safety. In addition, aggressive driving has been
comprehensively studied in many research articles that have
focused to identify braking events and harsh acceleration [10].

Road transportation is commonly used to travel from one
location to another location. The emergence of technologies
such as the Internet of things (IoT), computer vision, wire-
less communication, and artificial intelligence enables smart
transportation with advanced capabilities for safe traveling.
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The wide adoption of advanced technology-enabled vehicles
for transportation is still in progress. On the other hand, road
accidents are not stopping soon. The World health organization
(WHO) reported that more than one million people are killed
and around fifty million people are injured by road accidents
every year [11]. The road accidents trend is predicted to be
increasing over the next few years and expected that road
accident-based deaths becomes the fifth leading cause of death
by 2030 [12]. The majority of road accidents are caused by
human driving behavior. Although autonomous driving and
advanced safety monitoring capabilities are incorporated into
the vehicles, there is no guarantee that the driver is safe unless
the driving behavior is normal. Driving behavior may have a
direct impact on public health, traffic flow, air pollution, and
environmental condition. So, there is a need to analyze driving
behavioral patterns and understand individual driving habits
so that safe driving recommendations can be provided to the
users.

This study leverages the data from the inertial measurement
unit of a smartphone that is placed in a car and predicts
driving behavior into several categories. In this regard, this
study makes the following key contributions

• Importance of feature selection from the inertial mea-
surement unit data is investigated for the driver’s driving
behavior. The influence of using different original fea-
tures derived features and the impact of binary vs multi-
class classification is investigated in this study. For driver
behavior prediction, six cases are considered including
binary classification, accelerometer features alone, gyro-
scope features alone, accelerometer and gyroscope fea-
tures combined, all features combined, and accelerometer
and gyroscope features plus derived features without
using the ’timestamp’ feature.

• Extensive analysis of prediction performance regarding
driver behavior is carried out using the data recorded in
a real traffic environment. The dataset is recorded using
a smartphone placed in the vehicle in a fixed position
and readings from the accelerometer and gyroscope are
recorded.

• Experiments involve using five well-known machine
learning models and two deep learning models. Such
models include random forest (RF), extreme gradient
boosting machine (XGBoost), support vector classifier
(SVC), extra tree classifier (ETC), logistic regression
(LR), long short-term memory (LSTM), and convolu-
tional neural network (CNN). Performance is analyzed
with several parameters like accuracy, precision, etc., in
addition to, standard deviation and the number of correct
and wrong predictions.

The rest of the paper is organized as follows: Section II dis-
cusses the state-of-the-art machine learning-based approaches
to address the driving behavior prediction problem. Section
III presents the proposed methodology to accurately predict
driving behavior. Also, a description of the datasets is provided
in the same section. Section IV includes the results from an
extensive set of experiments for driving behavior, as well as a
discussion of the results. Section V concludes the article.

II. LITERATURE REVIEW

Recent developments in driver assistance and autonomous
vehicles led to a great deal of research and development.
Consequently, a large body of literature can be found on
different aspects related to driving. For example, the role of
trajectory data and its critical applications for microscopic
modeling has been discussed in detail in [13].

In the last few years, experimentation has been performed
on openly-accessible trajectory datasets and reports have been
published related to several traffic flow phenomena. In ad-
dition, comprehensive empirical analysis has been reported
including traffic oscillations [14], traffic hysteresis [15], and
heterogeneity [16]. In addition, various models have been
presented for a better approximation of car lane-changing
behavior [17] and the following behavior.

Conventionally, the trajectory data is collected using an
image processing technique that is based on recorded videos
from either fixed drones or cameras. Currently, driving datasets
are getting attention due to the demand for autonomous vehicle
(AV) technology. The main purpose is to comprehend the
challenge of computer vision systems in a self-driving context.
In addition, the vehicle-based techniques detect the vehicle
operating parameters including changes in the steering, speed
of the vehicle, acceleration, lane tracking, braking, and many
more. On the other hand, driver-based techniques are based
on devices that directly monitor the condition of the driver.
Also, the driver-based techniques are the physical movements
parameters like blink ratios and eye closure ratios, and facial
expression tracking with video imaging methods. The most
famous trajectory dataset is possibly the NGSIM database [18]
which has a total duration of 150 minutes from fixed cameras
at four different sites. Also, another famous dataset is the
highD dataset which contains videos from camera-equipped
drones and has a total duration of 16.5 hours at six locations
on the highways of Germany [19]. The driving situations
presented in highD and NGSIM are quite limited. The NGSIM
dataset includes signalized intersection and highway driving
scenarios. However, traffic lights used to control signals and
interactions are slight and rare.

Currently, many new datasets concerning the vehicles at
high-level automation are made available [20]. For example,
Argo [21], KITTI [22], BDD100K [23], Lyft Level 5 AV [24],
Waymo open [25] and nuScenes [22] contains the data for au-
tonomous vehicles and similar driver assistance systems. These
are related to Lyft Level 5 AV, AV, nuScenes, and Waymo open
datasets and combine trajectories for AV and the human-driven
from real-world traffic. Moreover, these datasets are mentioned
as AV-oriented empirical datasets. Therefore, these datasets are
mainly helpful for driving behavior research. In addition, these
AV-oriented empirical databases are sophisticated which helps
to understand complicated driving behaviors to understand
and use by traffic flow researchers. Firstly, these datasets are
combined using an array of sensors; For example, LiDAR,
a novel sensor to record traffic flow, is used. Secondly, the
dataset contains several sensors and is more sophisticated than
the conventional dataset. It collected not only comprehensive
information for the movement of autonomous vehicles but also
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a vast amount of information for all objects in the vicinity of
the vehicle. Lastly, the format and structure of these datasets
are not user-friendly. Moreover, BDD100K contains ten tasks
namely lane detection, image tagging, drivable area segmen-
tation, semantic segmentation, road object detection, instance
segmentation, multi-object segmentation tracking, multi-object
detection tracking, imitation learning, and domain adaptation.

The authors [26] performed a survey on driving behavior
improvement using ML and DL models. The study revealed
that the combination of sensors and intelligent methods im-
proves the performance of driving behavior classification.
The study [27] designed a driving behavior detection method
for identifying rash drivers. The contributions in the paper
mainly include the architectural aspects of a system to build
the driving behavior identification, including the monitoring
system. But, the authors did not evaluate the driving behavior
using the ML and DL models.

The authors in [28] presented a two-level hierarchy classi-
fication of driver activity while driving. Five input features
speed, longitudinal acceleration, lateral acceleration, pedal
position, and yaw rate, are considered for testing the driving
behavior classification. The driver’s secondary task while
driving is detected in the first level. Then, the different types of
secondary tasks are categorized in the second level. The ML-
based Decision tree achieved the best results with an accuracy
of 99.8% to classify the driver’s secondary tasks. The study
[29] proposed a lightbgm model to detect abnormal driving
behavior. The accelerometer and gyroscope sensor data are
input features to predict driving behavior. The authors reported
that lightbgm achieved 82% accuracy on the test dataset. The
classification accuracy still needs to improve for better driving
behavior detection.

The study [30] proposed a two-dimensional CNN tech-
nique to analyze the driving behavior. The sensor data such
as acceleration, gravity, revolutions per minute, speed, and
throttle are used as a feature to construct an input image. The
output is classified into five types such as normal, aggressive,
distracted, drowsy, and drunk driving using 2D CNN. The
authors reported that the proposed method obtained good
results in predicting driving behavior.

The study [31] explored multi-class gait classification
with machine learning approaches including KNN, extreme
learning machines (ELM), SVM, and multi-layer perceptron
(MLP), and evaluated the performance for multi-class gait
classification. The presented approach achieved the best re-
sults. The ELM is introduced to analyze the neuromuscular
mechanics that is associated with the brain of patients suffering
from multiple strokes and sclerosis. In addition, an artificial
neural network (ANN) is applied to classify the human gait
and its performance is compared with the ELM. A deep
learning ensemble technique is used for human lower activities
recognition to capture the learning process of bi-pedal robot
locomotion in [32]. The long short-term memory (LSTM)
and convolutional neural network (CNN) models are used to
classify these activities. In [33], a multi-branch CNN-BiLSTM
network is applied for automatic feature extraction from raw
sensor data with minimum data preprocessing.

Predominantly, existing literature on driver behavior pre-

diction is based on machine learning algorithms, however,
the use of no-machine learning architectures is also observed.
For example, [34] uses the hidden Markov model (HMM)
and coupled HMM (CHMM) for driver behavior prediction.
Combined with car and traffic data, promising results are
obtained regarding different driver actions. It is believed that
machine learning models are black boxes, and it is not clear
how predictions are made from such trained models. Conse-
quently, several studies prefer non-machine learning models.
The study [35] leverages rule-based models for driver behavior
prediction. These models maintain long-term coherence and
are easy to interpret.

The study [36] utilizes an auto-regressive input-output hid-
den Markov model (AIO-HMM) for driver behavior predic-
tion. The focus is especially placed on driver behavior at
intersections and driver gaze and traffic light recognition are
used for that purpose. Similarly, [37] determines aggressive
driver behavior by using multivariate-temporal features and
driver’s intention using HMM.

The above-discussed research studies have several short-
comings. First, the datasets containing smartphone sensor data
are not very well studied for analyzing driver-driving behavior.
Second, although several studies utilize these datasets for
driver behavior prediction, the impact of feature combination
and machine learning techniques is not well covered in the
literature. Third, the context of the dependency between the
features and the prediction output is not explored very well.
Last but most important, the driving behavior prediction ac-
curacy can be improved for existing works. Keeping in view
these research gaps, this study proposes a highly accurate, ma-
chine learning-based driving behavior solution with extensive
performance analysis for driver behavior.

III. PROPOSED METHODOLOGY

In this section, we discuss the proposed methodology for
driver behavior prediction. We used several machine learning
models to predict driver behavior as ’slow’, ’normal’, or
’aggressive’. Figure 1 shows the flow of the proposed method-
ology. This study leverages deep learning models for driver-
driving behavior prediction. The selection of deep learning
models is based on the results reported in the existing liter-
ature. For example, LSTM and CNN models are commonly
used on similar kinds of datasets as in [38] for human behavior
prediction, and in [39] for human activity detection. Similarly,
[40] used variants of CNN and LSTM for driver behavior
detection.

First, we acquire the dataset from the Kaggle repository.
The dataset consists of several samples related to three target
classes ’slow’, ’aggressive’, and ’normal’. After acquiring the
dataset, we find that dataset features are not correlated to target
classes which does not help the machine learning models to
achieve a significant accuracy. Feature engineering steps are
included in our proposed methodology to improve the per-
formance of machine learning models. In feature engineering,
we generate new (derived) features using old features to train
learning techniques. Data is split into training and testing
subsets for training several machine learning models. We split
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Fig. 1: Flow of the adopted methodology.

TABLE I: Dataset feature description.

Feature Measure Description Count
Input

Acceleration (X axis) (m/s2) Linear acceleration towards X-axis 3084
Acceleration (Y axis) (m/s2) Linear acceleration towards Y-axis 3084
Acceleration (Z axis) (m/s2) Linear acceleration towards Z-axis
Rotation (X axis) degrees per second (◦/s) Rate of rotation towards X-axis 3084
Rotation (Y axis) degrees per second (◦/s) Rate of rotation towards Y-axis 3084
Rotation (Z axis) degrees per second (◦/s) Rate of rotation towards Z-axis 3084
Timestamp seconds timestamp when the event captured 3084

Output
Class (SLOW) - Low risk driving 1273
Class ( NORMAL) - Normal driving behavior 997
Class (AGGRESSIVE) - Unusual speeding, lane changes and turns 814

TABLE II: Samples from the dataset.

AccX AccY AccZ GyroX GyroY GyroZ Class Timestamp
0 0 0 0.059407 -0.17471 0.101938 NORMAL 3581629
0.5503 -0.59792 -0.43771 0.03375 0.090408 0.006032 AGGRESSIVE 3582669
0.703766 -0.455 0.915689 -0.06582 0.089186 0.068341 SLOW 3583292

the dataset with an 80:20 ratio where 80% of the dataset is
used for the training of models and 20% of the dataset is
used for testing of models. In the end, testing and validation
are performed. We evaluate all models in terms of accuracy,
precision, recall, and F1 score.

A. Dataset Description
The mobile sensors generated driving behavior dataset is

obtained from Kaggle [41]. The ’Sensorrecords’ mobile appli-
cation was used to capture the sensor data observations. This
dataset is used by many recent studies [42]–[44]. The three di-
mensions of accelerometer and gyroscope sensor observations
are mainly considered dataset features. The combination of
accelerometer and gyroscope sensors helps to effectively track
movement behavior. The accelerometer captures the linear
acceleration along the axis, whereas the gyroscope captures the
rate of rotation along the axis. The timestamp is also included
as a feature in the dataset. The driving behavior dataset was
collected using mobile sensing technology with accelerometer
and gyroscope sensors enabled in the mobile when the user
is driving the vehicle. TABLE I displays the input and output
feature set along with measurement metrics and the dataset
count. The driving behavior output is designated as ’normal’,
’slow’, and ’aggressive’ driving. Normal driving behavior
denotes that the driver maintains a constant speed and is
aware of the surroundings. Slow driving may include low-
risk driving behavior and essentially driving with fear or over
conscious. The aggressive driving category includes unusual

driving behavior with sudden breaks and accelerating the
vehicles, unexpected lane-changing behavior, and unfocused
driving due to eating, texting, etc. The dataset consists of
3084 samples with a different number of samples for driving
behavior classes as slow with 1273 samples while normal and
aggressive classes with 997 and 814 samples, respectively. The
sample of the dataset is shown in TABLE II.

The original dataset consists of three accelerometer features,
three gyroscope features, and a timestamp. These features are
not much correlated to the target classes so to improve the
accuracy of models we generate more features that are more
correlated to the target classes. Figure 2 shows the sample
values for accelerometer and gyroscope data for each of the
three classes. We find that several values from the ’normal’ and
’slow’ target classes are similar which can create complexity
for learning models to distinguish these targets based on
sample values.

Along with the x, y, and z axes values for both the
accelerometer and gyroscope, the dataset also contains a
timestamp attribute. The histogram distribution of all these
attributes is presented in Figure 3.

To analyze the feature correlation of these features, RF is
used and the results are shown in Figure 4. It can be observed
that features have different levels of correlation.

B. Feature Selection
We have seven features in the used dataset for driver

behavior prediction. All features are not important for machine
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Fig. 2: Sample data from the data for three classes, (a) Accelerometer data, and (b) Gyroscope data.
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Fig. 3: Histogram distribution of all attributes of the data.

learning models. So we make several scenarios/cases with
feature selection.

• Case 1: Experiment with gyroscope features. In this case,
we used only the gyroscope x, y, and z axes feature for
model training.

• Case 2: Experiment with accelerometer features. This
case considers only the accelerometer x, y, and z axes
feature for model training.

• Case 3: Experiment without the ’timestamp’ feature
and binary target classes. In this case, we used both
the gyroscope and accelerometer features and excluded
the ’timestamp’ feature. We also converted three target
classes into two target classes for performance analysis
and the feasibility of using the features to obtain higher
accuracy. We find that several values for normal and
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Fig. 4: Feature correlation using RF model.

slow classes are similar which creates complexity for
the models. So we combined both target classes as one
(SLOW + NORMAL= SLOW). In this way, we convert
the multi-class problem into a binary class problem
(SLOW, AGGRESSIVE).

• Case 4: Experiment without timestamp feature and three
target classes. In this case, we used both the gyroscope
and accelerometer features and excluded the timestamp
feature. We used three target classes in this case (SLOW,
NORMAL, AGGRESSIVE).

• Case 5: Experiment with the timestamp feature plus
three target classes. In this case, we used all features
(three features from the gyroscope, three features from
the accelerometer, and the timestamp feature) for model
training with three target classes (SLOW, NORMAL,
AGGRESSIVE).

• Case 6: Experiment with new (derived) features and
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without the ‘timestamp’ feature for three classes. In this
case, we used three gyroscope features, three accelerom-
eter features, and four newly generated features including
mean, median, ProbRF, and ProbXGBoost. The mean
feature is obtained by taking means of the gyroscope and
accelerometer features. Similarly, we take the median of
the gyroscope and accelerometer features. Two additional
features of ProbRF and ProbXGBoost are generated us-
ing the tree-based ensemble models including RF and
XGBoost. We train three models on the whole dataset
and then pass the whole dataset to make prediction
probabilities. These prediction probabilities are used as
features.

– ProbRF: To drive the new features we use machine
learning models. The derived features are closer to
the target which guides the learning models toward
more accurate predictions. We trained random forest
(RF) on original features and find the prediction
probability for the target classes against each sample.
That prediction probability we included in the feature
set. We can define it mathematically as:

trainedrf = RFtraining(D) (1)

ProbRF = trainedrf

M∑
i=1

(Di) (2)

where M is the size of the dataset and D is the
dataset.

– ProbXGBoost: We used XGBoost also used to drive
the features and similarly to RF we also pass original
features to the model and find the prediction proba-
bility for the target classes against each sample. We
can define ProbXGBoost mathematically as:

trainedxgboost = XGBoosttraining(D) (3)

ProbXGBoost = trainedxgboost

M∑
i=1

(Di) (4)

TABLE III shows the details regarding the use of different
features for experiments. Each case considers different fea-
tures including features from the accelerometer, gyroscope,
timestamp, and derived features.

C. Machine Learning Models
We used several machine learning algorithms for driver

behavior prediction. We used RF, XGBoost, SVC, ETC, and
LR with their best hyperparameters settings. We find the best
hyperparameters by tuning each model between a specific
range.

1) Random Forest: RF is applied for both regression and
classification problems. It is an ensemble model that uses the
decision tree concept for classification. The bagging technique
is applied to train a large number of decision trees with
several samples of bootstrap [45]. In addition, a random forest
is used to reduce the over-fitting problems with a bootstrap
technique for sampling. Sampling for the training dataset using

replacement is applied to attain a bootstrap sample where the
training dataset and sample size are similar [46]. All classifiers
that use the decision trees for the process of prediction apply
the same methods to construct the decision trees. For this,
attribute selection of root nodes at every level is challenging
during tree construction in random forest [47]. In ensemble
classification, different classifiers are trained and all classi-
fier results are integrated through the voting process. Many
contributors have described multifarious ensemble approaches;
boosting and bagging are very famous ensemble techniques
[48]. Several classifiers are trained on bootstrapped samples
that lead to a drop-in for classification in the bagging method.
As shown in TABLE IV, we choose m estimtr = 300 to obtain
the best accuracy when using the voting method for combining
the individual predictions. The maximum depth, mx dpth is
set to be 300 to reduce the probability and complexity of
overfitting. The random forest class prediction is represented
as

ĈBrf (x) = majorityvote{Ĉb(x)}B1 (5)

where B represents the number of decision trees.
2) Extra tree classifier: ETC uses the process of random-

ization as a base concept to construct trees [49]. For every
node, the split conditions are decided randomly at every node
for an extra tree, and the prime performing rule is selected to
associate with that node which is based on a score calculation.
This is helpful when reducing the complexity significantly of
the induction process and increasing the training speed. To do
so, the correlation among the decision tree is reduced. The
process of node splitting is easy and the computational load
for the algorithm is dropped as the Extra tree classifier is not
included in locally optimal cut-points. The bagging process
is not used as the whole available learning set is provided to
every decision tree [50]. As described in TABLE IV, the three
parameters rndm state, mx dpth, and m estimtr are chosen to
be 27, 300, and 300 respectively.

3) Logistic Regression: Logistic regression (LR) is a pure
statistical technique that is applied for data analysis and
contains one or more variables for outcome prediction. LR is
applied to evaluate the class member’s probability because it
is the best classifier when it comes to a definite target variable.
To estimate the probabilities, a logistic function (LF) is used
to evaluate the behavior among dependent variables and inde-
pendent variables [45]. The ’slvr’ parameter is set as ’newton-
cg’ due to solving the multi-class classification problem. In
addition, the ’multi-class parameter is set as ’multi-nomial’
because of multi-class classification. The ’D’ is set to 1. ’D’
value is inversely proportional to regularization strength and
helps to reduce the overfitting probability eventually [51]. The
probability of predicting the class k, given the input sample
Xi

Pr(Yi = k) =
eβk.Xi

Σ0≤c≤keβc.Xi
(6)

4) Support Vector Classifier: SVC is a linear support vec-
tor classifier and used for regression, classification, and has
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TABLE III: Description of data attributes.

Case AccX AccY AccZ GyroX GyroY GyroZ Timestamp Mean Median RF Prob XGBoost Prob
Case 1: Experiment with gyro-
scope features

x x x X X X x x x x x

Case 2: Experiment with ac-
celorometer features

X X X x x x x x x x x

Case 3 : Experiment without
’timestamp’ feature + binary
target classes

X X X X X X x x x x x

Case 4 : Experiment without
’timestamp’ feature + three tar-
get classes

X X X X X X x x x x x

Case 5 : Experiment with
’timestamp’ feature + three tar-
get classes

X X X X X X X x x x x

Case 6: Experiment with
new features and without the
’timestamp’ feature + three
classes

X X X X X X x X X X X

many applications. SVC divides the sample data into differ-
ent classes with a hyperplane or set of hyper-planes in m-
dimensional space, where m is used for the number of features
[52], [53]. SVC performs classification to find the “best fit”
hyperplane that is differentiated among classes. To deal with
the nonlinear issues, this research uses a ’linear’ kernel for
the support vector machine which is frequently used when
the dataset has many features. The linear kernel training is
faster due to the requirement of D regularization parameter
optimization. In TABLE IV, D regularization parameter value
is set to three, and rndm state value is 500. The hyperplane
function is denoted as

H(x) =

{
+1, if w.x + b ≥ 1

−1, if w.x + b ≤ 1
(7)

The objective function needs to be minimized such that
yi(w.xi+)b ≥1 satisfy all the time.

5) Extreme Gradient Boosting: XGBoost model works in
a way similar to the gradient boosting model. However, an
additional feature is needed for assigning weights to every
sample like in the Adaboost model [54], [55]. The eXtreme
Gradient Boosting is a tree-based classifier and it has received
much attention recently. XGBoost fits several distinct decision
trees parallel which ensures the sequence. For this, XGBoost
provides a speed boost. The eXtreme Gradient Boosting has
standardized methods to control over-fittings like L1 and
L2 and these methods are not available in Adaboost and
GBoost models. Here, Alpha and Lambda are the L1 and
L2 regularization terms, respectively. In addition, an extra
key feature of Gradient Boosting is scalability. It helps to
better perform on distributed systems and process large-scale
datasets. Moreover, it uses a Log-Loss function, which is
very helpful for loss minimization and increasing accuracy.
The Log-Loss function estimates the probability of false
categorizations. The loss function is defined as

Logloss =
1

M
ΣMj=1xj .log(q(xj)) + (1− xj).log(1− q(xj))

(8)
In TABLE IV, values of four parameters are set for

eXtreme Gradient Boosting. The m estimtr = 300 implies

eXtreme Gradient Boosting that is used 300 decision trees
for the base-learner which takes part in the process of
prediction. The parameter mx dpth = 300 restricts the growth
of the trees to a maximum of 300. The lerning ratio = 0.2
is used to control the overfitting [55]. The rndm state = 27
restricts the random seed specified to every Tree estimator
at every boosting repetition. Additionally, it controls random
permutations for features at every split.

TABLE IV: Hyperparameters used for machine learning mod-
els.

Model Parameters
RF m estimtr = 300, mx dpth = 300, rndm state = 27
XGBoost m estimtr = 300, lerning ratio = 0.2, mx dpth = 300,

rndm state = 27
SVC kernel = sigmoid, D = 3.0, rndm state = 27
ETC m estimtr = 300, mx dpth = 300, rndm state = 27
LR slvr=’ newton-cg’, multi- class=’multinomial’, D =1.0

IV. RESULTS AND DISCUSSION

In this section, a detailed description of the experimental
results obtained using machine learning techniques and
analysis is presented. The experiments were run on a
standalone Linux machine with a system configuration of 8
GB RAM and 8-core processors. A notebook web application
runs locally on the machine to perform the experiments. The
software packages scikit-learn1 were installed and the python
programming language was used to write the code.

The performance metrics accuracy, precision, recall, and F1
score are used to compare the experimental results. Accuracy
is defined as the sum of the true positives (TP) and true
negatives (TN) divided by the sum of the TP, TN, false positive
(FP), and false negative (FN). The precision is measured as
the TP divided by the sum of the TP and FP. The recall is
defined as the TP divided by the TP and FN. The F1 score is
the harmonic mean of precision and recall.

1https://scikit-learn.org/stable/
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Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1− Score =
2 ∗Recall ∗ Precision

Recall + Precision
(12)

A. Driving Behavior Prediction using Gyroscope
Features (Case: 1)

In this subsection, the driving behavior performance results
when the acceleration feature is ignored are discussed.TABLE
V displays the performance metrics for all five models when
the acceleration feature is excluded.

TABLE V: Driving behavior prediction results using only
gyroscope features.

Model Accuracy Target Precision Recall F1 Score

RF 0.35

Aggressive 0.35 0.30 0.32
Normal 0.31 0.29 0.30
Slow 0.38 0.45 0.42
Macro Avg 0.38 0.38 0.38

LR 0.38

Aggressive 0.43 0. 03 0.05
Normal 0.00 0.00 0.00
Slow 0.38 0.99 0.66
Macro Avg 0.27 0.34 0.20

ETC 0.34

Aggressive 0.31 0.29 0.30
Normal 0.32 0.31 0.31
Slow 0.37 0.41 0.39
Macro Avg 0.33 0.33 0.33

SVC 0.38

Aggressive 0.40 0.03 0.05
Normal 0.00 0.00 0.00
Slow 0.38 0.99 0.54
Macro Avg 0.36 0.38 0.31

XGBoost 0.35

Aggressive 0.33 0.35 0.34
Normal 0.34 0.30 0.32
Slow 0.38 0.41 0.39
Macro Avg 0.35 0.35 0.35

The prediction accuracy of the selected ML models varied
between 35% to 38%. It is evident that driving behavior
prediction using only the gyroscope data performed poorly.
The SVC and LR models performed slightly better than
decision tree-based models. In particular, the ’slow’ target class
prediction shows promising results with 99% recall for both
LR and SVC models. These results also show that the ’normal’
class target is misclassified as a ’slow’ class target in both
SVC and LR models. The distinction between normal and slow
targets is challenging using mathematical models to separate
the classes. The precision and recall metrics follow a similar
trend as accuracy in decision tree-based models. Overall,
the performance metrics indicate that acceleration features
are valuable for driving behavior classification and should
be included for multi-class evaluation as the performance of
models using the gyroscope data alone is not satisfactory.

TABLE VI displays the accuracy of consistency analysis
by measuring the standard deviation. The accuracy-based
standard deviation for all the models is varying between 0.02
to 0.04. These results indicate that we can rely on the obtained

accuracy values and not see significant variations even while
repeating the experiments. Here, CP is the number of correct
predictions and WP is the number of wrong predictions.

TABLE VI: K-fold results and confusion matrix values for
driving behavior prediction using gyroscope features.

Model Accuracy SD CP WP
RF 0.35 +/-0.03 257 472
LR 0.38 +/-0.02 275 454
ETC 0.34 +/-0.02 247 482
SVC 0.38 +/-0.02 274 455
XGBoost 0.35 +/-0.04 258 471

TABLE VI shows the driving behavior target class correct
and wrong prediction sample count for each model. The LR
model correctly classifies more test samples with 275 correct
classifications which are higher compared to other models. On
the other hand, the ETC model least correctly predicts the test
samples with 247 correct predictions. We can construe that
the decision tree-based models least performed to correctly
classify the driving behavior compared to the LR and SVC
models.

B. Driving Behavior Prediction using Acceleration
Features (Case: 2)

In order to evaluate the performance of the driving behavior
under different feature combinations, we start with a feature
set of 4 by excluding the gyroscope attributes and using
only the accelerometer features. TABLE VII describes the
performance of the driving behavior with the accelerometer
features case. The five machine learning models RF, LR,
ETC, SVC, and XGBoost are considered for our evaluation.
TABLE VII clearly shows that none of the machine learning
techniques performed well when the gyroscope features are
excluded from the trained dataset. All five models achieved
similar prediction accuracy on the test datasets. The SVC and
LR obtained 40% accuracy, whereas RF, ETC, and XGBoost
achieved approximately 39% accuracy. A similar trend appears
in precision and recall metrics for all five models except the
recall for the ’slow’ class case when LR and SVC are used.
The LR and SVC report 84% recall for the ’slow’ target
case. The ’normal’ target case is greatly impacted by recall
performance when the ’slow’ target case is predicted using
LR and SVC. The macro average obtained for both precision
and recall metrics is almost the same for all five machine-
learning models. Overall, these results show that gyro features
are essential for predicting driving behavior and should not be
ignored.

The accuracy of the machine learning models is verified
using the standard deviation measurement. TABLE VIII de-
picts that the accuracy standard deviation in all five models
is minimal and near zero. So, the accuracy results are consis-
tent when the standard deviation is considered regarding the
machine learning models.

The test dataset samples’ correct and wrong predictions for
all the five machine learning models are shown in TABLE
VIII. The SVC model correctly predicts the highest number
of test samples with 291 correct predicts, which is higher than
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TABLE VII: Driving behavior prediction results using only
accelerometer features.

Model Accuracy Target Precision Recall F1 Score

RF 0.39

Aggressive 0.39 0.37 0.38
Normal 0.34 0.28 0.31
Slow 0.41 0.49 0.44
Macro Avg 0.38 0.38 0.38

LR 0.40

Aggressive 0.48 0. 27 0.34
Normal 0.21 0.02 0.04
Slow 0.39 0.84 0.53
Macro Avg 0.36 0.38 0.31

ETC 0.39

Aggressive 0.38 0.39 0.39
Normal 0.38 0.35 0.36
Slow 0.39 0.42 0.40
Macro Avg 0.38 0.38 0.38

SVC 0.40

Aggressive 0.48 0.27 0.34
Normal 0.21 0.02 0.04
Slow 0.39 0.84 0.53
Macro Avg 0.36 0.38 0.31

XGBoost 0.38

Aggressive 0.35 0.38 0.36
Normal 0.38 0.33 0.35
Slow 0.41 0.43 0.42
Macro Avg 0.38 0.38 0.38

TABLE VIII: K-fold results and confusion matrix values for
driving behavior using accelerometer features.

Model Accuracy SD CP WP
RF 0.39 +/-0.02 281 448
LR 0.40 +/-0.02 278 451
ETC 0.39 +/-0.02 281 448
SVC 0.40 +/-0.02 291 438
XGBoost 0.38 +/-0.03 278 451

all other models. On the other hand, the XGBoost and LR
models show the least correctly predicted test-driving behavior
samples, each with 278 correct predictions.

C. Driving Behavior Prediction Without Timestamp
Features and With Two Targets Classes (Case : 3)

In the above test case, we have seen that it is difficult to
discriminate between the ’slow’ and ’normal’ target classes
which reduces the prediction accuracy of models. So, we
evaluate the performance of the models by combining the
’normal’ and ’slow’ target classes as one target class and
excluding the timestamp feature from the input dataset. So,
the number of input features is 6, and the output classes are
2 in this scenario.

TABLE IX presents the performance metrics of the models
when two output classes are considered, and the timestamp
is excluded from the input dataset. The results indicate that
all five models achieve 100% accuracy, prediction, recall, and
F1 score. So, for binary classification, the decision tree-based
models, SVC and LR are able to classify the target classes even
if the timestamp is not present in the input datasets. When
the gyroscope and accelerometer features are used to train
the models, the models classify the ’aggressive’ and ’normal’
driving with 100% accuracy. However, the ’normal’ and ’slow’
driving behavior classifications require additional features to
capture the driving behavior.

TABLE X supports the fact that accuracy is 100% for
this dataset when the output classes are categorized into two
classes and no standard deviation is observed for this case.

TABLE IX: Driving behavior prediction results without times-
tamp feature and for binary classification problem.

Model Accuracy Target Precision Recall F1 Score

RF 1.00
Aggressive 1.00 1.00 1.00
Slow 1.00 1.00 1.00
Macro Avg 1.00 1.00 1.00

LR 1.00
1.00 1.00 1.00 1.00
Slow 1.00 1.00 1.00
Macro Avg 1.00 1.00 1.00

ETC 1.00
Aggressive 1.00 1.00 1.00
Slow 1.00 1.00 1.00
Macro Avg 1.00 1.00 1.00

SVC 1.00
Aggressive 1.00 1.00 1.00
Slow 1.00 1.00 1.00
Macro Avg 1.00 1.00 1.00

XGBoost 1.00
Aggressive 1.00 1.00 1.00
Slow 1.00 1.00 1.00
Macro Avg 1.00 1.00 1.00

TABLE X: k-fold results and confusion matrix values for
driving behavior prediction without timestamp feature and
using binary classification problem.

Model Accuracy SD CP WP
RF 1.00 +/-0.00 446 0
LR 1.00 +/-0.00 446 0
ETC 1.00 +/-0.00 446 0
SVC 1.00 +/-0.00 446 0
XGBoost 1.00 +/-0.00 446 0

TABLE X shows the number of samples that are correctly
classified for all five models when the classification categories
are two. All the 446 testing samples are correctly classified as
either ’normal’ or ’aggressive’ driving.

D. Driving Behavior Prediction Without Timestamp
Feature and Three Target Classes (Case: 4 )

In general, the timestamp feature may add little value to
accurately predict the detection or classification using machine
learning models. We excluded the timestamp from the input
features to test the case and trained the models with 6 features,
3 features each from the accelerometer and gyroscope. TABLE
XI shows the performance metric values for the selected five
models when the timestamp feature is excluded from the
input feature. The prediction accuracy for all five models is
slightly better than in the previous two cases. However, the
overall performance follows a similar trend as the last two
cases. Except for the ’slow’ target classification using LR
and SVC, the performance is nominal. The ’aggressive’ target
classification precision for RF, LR, ETC, and SVC has been
slightly improved as well compared to the gyroscope and Ac-
celerometer feature alone. Overall, based on the performance
metrics obtained when one of the features is excluded from
the input feature set suffers a performance loss. This can be
the fact that target classification is multiclass and the input
features are not enough to distinguish the multi classes, in
particular, the ’normal’ versus ’slow’ target classes.

TABLE XII indicates that the accuracy is consistent for
all the models, even if machine learning training and testing
experiments are repeated with a slight standard deviation
between 0.03 to 0.04. So, we can confirm that the timestamp
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TABLE XI: Driving behavior performance results without
timestamp feature and for three classes.

Model Accuracy Target Precision Recall F1 Score

RF 0.43

Aggressive 0.55 0.39 0.46
Normal 0.36 0.30 0.31
Slow 0.42 0.59 0.49
Macro Avg 0.44 0.43 0.42

LR 0.38

Aggressive 0.51 0.20 0.29
Normal 0.25 0.06 0.09
Slow 0.38 0.85 0.52
Macro Avg 0.38 0.37 0.30

ETC 0.42

Aggressive 0.51 0.39 0.44
Normal 0.35 0.31 0.33
Slow 0.41 0.55 0.47
Macro Avg 0.42 0.41 0.41

SVC 0.38

Aggressive 0.49 0.21 0.29
Normal 0.27 0.06 0.10
Slow 0.37 0.84 0.52
Macro Avg 0.38 0.37 0.30

XGBoost 0.38

Aggressive 0.40 0.36 0.38
Normal 0.35 0.32 0.34
Slow 0.40 0.46 0.43
Macro Avg 0.38 0.38 0.38

exclusion also has a consistent performance loss impact on the
classification results.

TABLE XII: K-fold results and confusion matrix values for
driving behavior prediction without timestamp feature and for
three classes.

Model Accuracy SD CP WP
RF 0.43 +/-0.04 314 415
LR 0.38 +/-0.03 279 450
ETC 0.42 +/-0.04 304 425
SVC 0.38 +/-0.03 278 451
XGBoost 0.38 +/-0.03 280 449

Interestingly, the RF performed slightly better than other
models when the timestamp feature is excluded from the input
feature dataset. TABLE XII shows the correct and wrong
predicted test classification sample count for the models. RF
can correctly classify 314 samples, whereas the SVC correctly
classified the least number of data samples, i.e. 278.

E. Driving Behavior With Timestamp Feature and Three
Target classes (Case: 5)

Although we obtained 100% accuracy for driving behavior
using binary classification, the best accuracy still needs to
be achieved for multiclass classification. So, we use all the
dataset input features and keep the target classes as 3 (normal,
slow, and aggressive) for performance evaluation. TABLE XIII
depicts the performance metrics of the models when all the
input features are included to train and test the models. We
can see that decision tree-based models obtain 100% accuracy
for multiclass target classification. The precision and recall
are also 100% for decision tree models such as RF, ETC,
and XGBoost. However, the LR and SVC models did not
perform well for multiclass classification and only obtained
37% accuracy. These models cannot distinguish between the
’normal’ and ’aggressive’ target classes. Overall, the RF, ETC,
and XGBoost techniques suit well for driving behavior target

TABLE XIII: Driving behavior performance results with all
features and for three classes.

Model Accuracy Target Precision Recall F1 Score

RF 1.00

Aggressive 1.00 1.00 1.00
Normal 1.00 1.00 1.00
Slow 1.00 1.00 1.00
Macro Avg 1.00 1.00 1.00

LR 0.37

Aggressive 0.00 0.00 0.00
Normal 0.00 0.00 0.00
Slow 0.37 1.00 0.54
Macro Avg 0.12 0.33 0.18

ETC 0.67

Aggressive 1.00 1.00 1.00
Normal 0.49 0.43 0.46
Slow 0.54 0.60 0.57
Macro Avg 0.68 0.68 0.67

SVC 0.37

Aggressive 0.00 0.00 0.00
Normal 0.00 0.00 0.00
Slow 0.37 1.00 0.54
Macro Avg 0.12 0.33 0.18

XGBoost 1.00

Aggressive 1.00 1.00 1.00
Normal 1.00 1.00 1.00
Slow 1.00 1.00 1.00
Macro Avg 1.00 1.00 1.00

classification, in which the classes are not easily separated
with mathematical computations.

TABLE XIV reveals that the decision tree-based model’s
accuracy is consistent when performing the experiments mul-
tiple times. On the other hand, the LR and SVC obtained low
accuracy when repeating the experiments.

TABLE XIV: K-fold results and confusion matrix values for
driving behavior prediction using all features

Model Accuracy SD CP WP
RF 1.00 +/-0.00 729 0
LR 0.37 +/-0.00 271 458
ETC 1.00 +/-0.01 728 01
SVC 0.37 +/-0.02 271 458
XGBoost 1.00 +/-0.00 729 0

As we can see in TABLE XIV, the RF, ETC, and XGBoost
are able to correctly classify all the driving behavior samples
of 729 into three classes. On the other hand, LR and SVC
perform poorly and each has 458 wrong predictions.

F. Driving Behavior Prediction Without Timestamp
Feature and New (Derived) Features (Case: 6 )

As the number of features in the dataset is less, additional
features are included to test the machine learning models’
performances. The mean of the Accelerometer in the x, y,
and z-axis is included as another feature. Similarly, another
feature is the mean of gyroscope values in the x, y, and
z-axis. Overall, nine features are used to train the models.
TABLE XV presents the performance evaluation metric values
when testing the dataset with models. The prediction accuracy
is improved in all five models, and the accuracy range is
between 65% to 67%. The ’aggressive’ target class obtained
100% precision and recall for all five models. It shows that
distinguishing the ’slow’ and ’normal’ classes hampers the
overall accuracy of driving behavior multiclass classification.
The ’normal’ target class characteristics should be captured
in training to accurately classify all the classes in the driving
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behavior dataset. As the previous cases show, the SVC and
LR model achieved ’slow’ target classification with a recall of
86%. Overall, the mean of the sensor values is essential and
can obtain significant performances in the multiclass category.

TABLE XV: Driving behavior performance results using de-
rived features and without timestamp feature.

Model Accuracy Target Precision Recall F1 Score

RF 0.67

Aggressive 1.00 1.00 1.00
Normal 0.48 0.40 0.44
Slow 0.53 0.61 0.57
Macro Avg 0.67 0.67 0.67

LR 0.66

Aggressive 1.00 1.00 1.00
Normal 0.44 0.14 0.21
Slow 0.52 0.84 0.64
Macro Avg 0.65 0.66 0.62

ETC 0.67

Aggressive 1.00 1.00 1.00
Normal 0.49 0.43 0.46
Slow 0.54 0.60 0.57
Macro Avg 0.68 0.68 0.67

SVC 0.65

Aggressive 1.00 1.00 1.00
Normal 0.36 0.08 0.14
Slow 0.51 0.86 0.64
Macro Avg 0.62 0.65 0.59

XGBoost 0.65

Aggressive 1.00 1.00 1.00
Normal 0.46 0.43 0.44
Slow 0.51 0.53 0.54
Macro Avg 0.66 0.66 0.66

TABLE XVI shows the consistency of model accuracy val-
ues by measuring the standard deviation. The results indicate
that accuracy for all the models lies between 0.62 to 0.69.

TABLE XVI: K-fold results and confusion matrix values for
driving behavior prediction using derived features and without
timestamp feature.

Model Accuracy SD CP WP
RF 0.67 +/-0.02 485 244
LR 0.66 +/-0.02 484 245
ETC 0.67 +/-0.02 489 240
SVC 0.65 +/-0.02 477 252
XGBoost 0.65 +/-0.03 474 255

The ETC model can correctly predict more driving behavior
samples (485) than other models. XGBoost shows the least
performance model with a correct classification of 474 sam-
ples. The results in TABLE XVI show that most of those
correct predictions belong to the aggressive target class.

Figure 5 shows the comparison between all cases. Accord-
ing to the results, models show superb performance when the
’timestamp’ feature is included in the dataset for training and
testing the models. Although, not as successful as the ’times-
tamp’ case, when using the additional features the performance
of the models is better than using the original features without
’timestamp’. Similarly, when the problem is transformed into
a binary problem (slow vs aggressive), models show superior
performance.

G. Computation Complexity of Machine Learning Models
TABLE XVII shows the time taken to predict the classes

in all five models. XGBoost took a minimum amount of time
of 0.3sec to accurately classify the driving behavior, whereas
RF took 0.7056 sec to correctly classify all driving behavior

samples. Overall, based on the extensive study of the feature
selection and output class selection and the corresponding
model performances, we propose the XGBoost techniques
achieve the best performance with minimum computation time
for driving behavior sample multiclass classification. This
variation is because of the number of target classes and a
number of features for the experiments. Case 6 consists of
original features as well as new features. So the increase in
feature set size also increases the computational time.

TABLE XVII: Driving behavior computational time in each
case.

Model Execution time (sec)
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

RF 0.7550 0.8365 0.3079 1.3159 0.7056 0.8892
LR 0.0399 0.0400 0.0461 0.0385 0.0614 0.0776
ETC 0.6408 0.6436 0.2016 0.7661 0.3788 0.5020
SVC 0.0437 0.2225 0.0150 0.3237 0.4411 0.1141
XGBoost 1.9132 2.9634 0.0438 2.2100 0.3006 1.1936

H. Results Using Additional Datasets
To prove the significance of the proposed approach, we

utilized two additional datasets for case 6 where additional
features are generated. Additionally used datasets include the
’driving behavior dataset’ (DBD) [56] and the ’Carla driver
behaviour dataset’ (CDBD) [57]. DBD consists of 60 features
combining accelerometer and gyroscopes features and four
classes. The dataset collection includes the use of Ford Fiesta
1.25, Ford Fiesta 1.4, Hyundai i20, and three different drivers
with the ages of 27, 28, and 37. The collection involves an
MPU6050 sensor and Raspberry Pi 3 Model B. While the
CDBD dataset consists of 6 features; three from the gyroscope
and three from the accelerometer. Seven drivers contribute to
this dataset and for each instance, the dataset is categorized
on the driver names mehdi, selin, onder, apo, berk, hurcan
and gonca. For experiments, the best-performing models RF
and GBM are used and results are shown in TABLE XVIII.
RF and GBM both show better results for the DBD dataset
as they achieve a 1.00 accuracy score while for the CDBD
they could not perform well as only RF can achieve a 0.72
accuracy score. The model’s poor performance on the CDBD
is because of the poor relationship between the target classes
and the feature set.

Figure 6 shows the confusion matrices for RF and GBM
for both datasets. For the CDBD dataset, confusion matrix
values 1 to 7 indicate the apo, berk, gonca, hurcan, mehdi,
wonder, and selin classes, respectively. For the DBD dataset,
RF gives 0 wrong predictions and GBM gives only 1 wrong
prediction. RF gives 14285 correct predictions out of 19872
predictions and GBM gives 12848 correct predictions out of
19872 predictions.

I. Performance of Deep Learning Models
This study also performs experiments using the deep learn-

ing approach. We deployed two state-of-the-art models LSTM
and CNN for driver behavior predictions. This study uses
two models LSTM and CNN for driver behavior prediction
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Fig. 5: Performance of all machine learning models for all cases.

TABLE XVIII: Case 6 scenario results on other datasets.

DBD
RF GBM

Class Precision Recall F1 Score Class Precision Recall F1 Score
1 1.00 1.00 1.00 1 1.00 1.00 1.00
2 1.00 1.00 1.00 2 1.00 1.00 1.00
3 1.00 1.00 1.00 3 1.00 1.00 1.00
4 1.00 1.00 1.00 4 1.00 1.00 1.00

macro avg 1.00 1.00 1.00 macro avg 1.00 0.99 1.00
weighted avg 1.00 1.00 1.00 weighted avg 1.00 1.00 1.00

Accuracy 1.00 Accuracy 1.00
CDBD

RF GBM
Class Precision Recall F1 Score Class Precision Recall F1 Score
apo 0.99 1.00 1.00 apo 0.99 0.99 0.99
berk 0.68 0.60 0.64 berk 0.58 0.54 0.56

gonca 0.70 0.67 0.68 gonca 0.62 0.58 0.60
hurcan 0.65 0.61 0.63 hurcan 0.57 0.54 0.56
mehdi 0.65 0.62 0.63 mehdi 0.57 0.54 0.55
onder 0.65 0.64 0.65 onder 0.56 0.58 0.57
selin 0.69 0.83 0.76 selin 0.62 0.70 0.66

macro avg 0.72 0.71 0.71 macro avg 0.65 0.64 0.64
weighted avg 0.72 0.72 0.72 weighted avg 0.65 0.65 0.65

Accuracy 0.72 Accuracy 0.65

as these are commonly used models for similar kinds of
datasets. For example, the study [38] used CNN for human
behavior prediction, and [39] used LSTM and CNN for human
activity detection. The authors utilized variants of CNN and
LSTM in [40] for driver behavior detection. The wide use
of these models motivated us to choose these models in the
current study for driver behavior prediction. We used these
models with their state-of-the-art parameters settings as shown
in Table XIX. The embedding layer is an input layer that
defines the vocabulary size, output dimension, and length of
the feature set. We used these models with 100 epochs and
categorical cross-entropy loss function because of multi-class
data. We also used the ’Adam’ optimizer to compile these
models.

TABLE XX shows the results of deep learning models
which indicates that both models perform well when we
used the ‘timestamp’ feature. LSTM outperforms with a 0.84
accuracy score for case 5 when we used timestamp. Overall the
performance of deep learning models is not significant in terms

TABLE XIX: Architecture of deep learning models.

Model Hyperparameters
LSTM Embedding(500,50,input length=..) {loss=

Dropout(0.5) ’categorical crossentropy,
LSTM(64) binary crossentropy}
Dense(16) optimizer=’adam’
Dense({3,2}, activation=’softmax’) ,epochs=100,

CNN Embedding(500,50, in-
put length=..)

batch size=8}

Conv1D(64,2,activation=’relu’)
MaxPooling1D(pool size=2)
Activation(’relu’)
Dropout(rate=0.5)
Flatten()
Dense({3,2},activation=’softmax’)

of accuracy as compared to machine learning models because
of the small feature set. Deep learning models required a large
feature set for a good fit.
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Fig. 6: Confusion matrices for RF and GBM on CDBD and
DBD datasets.

TABLE XX: Results for deep learning models for all scenarios.

Case LSTM CNN
Case 1: Experiment with gyroscope features 0.43 0.42
Case 2: Experiment with accelerometer features 0.42 0.42
Case 3 : Experiment without ‘timestamp’ feature
+ binary target classes

0.79 0.75

Case 4 : Experiment without ‘timestamp’ feature
+ three target classes

0.45 0.42

Case 5 : Experiment with ‘timestamp’ feature +
three target classes

0.84 0.77

Case 6 : Experiment with derived features, with-
out ‘timestamp’ feature + three classes

0.59 0.58

J. Comparison With Other Approaches
To show the significance of the proposed approach, we

performed a comparative analysis with other studies as well.
We deployed approaches from other studies on the dataset
used in the current study to perform a fair comparison. We
selected recent studies which have done work on similar
types of datasets. The study [58] worked on human activity
detection using a multi-layer perceptron (MLP) model. The
authors utilized gyroscope and accelerometer features for
human activity detection. Similarly, studies [59] and [60] used
smartphone accelerometers and gyroscope features using SVM
and KNN models, respectively. The study [61] worked on
sign classification using a machine learning approach. The
authors deployed SVM using the accelerometer and gyroscope
features dataset. Similarly, smartphone IMU data is used by
[62] with an ensemble model for the same purpose. We
deployed all these studies on our used dataset with all cases
to carry out a performance comparison. TABLE XXI shows
the comparison with other approaches which indicates that
the proposed approach outperforms existing state-of-the-art
approaches.

K. Discussions
This study performs experiments using a total of six dif-

ferent cases where the influence of using a different set

TABLE XXI: Comparison with other approaches.

Ref. Year Model Cases
1 2 3 4 5 6

[58] 2020 MLP 0.31 0.34 0.94 0.33 0.97 0.58
[59] 2021 SVM 0.37 0.40 0.96 0.35 0.36 0.65
[60] 2022 KNN 0.37 0.38 0.93 0.34 0.36 0.67
[61] 2022 SVM 0.37 0.40 0.95 0.35 0.37 0.65
[62] 2022 EM 0.30 0.33 0.91 0.28 0.35 0.54
Our 2022 RF 0.35 0.39 1.00 0.43 1.00 0.67

of features is extensively investigated for driver behavior
prediction. Similarly, the impact of multiclass and binary
classification is also analyzed. It is found that ’timestamp’
is the most important feature regarding the performance of
machine learning models. Adding this feature to the training
dataset dramatically increased the classification accuracy for
multiclass classification. Although using additional (derived)
features can show better performance even without using
the ’timestamp’ feature than using individual features from
accelerometer and gyroscope features alone, this performance
is inferior to that of using the ’timestamp’ feature. Primarily,
the ’slow’ and ’normal’ classes seem to have similar feature
space, as shown in Figure 7f which leads to a higher number
of wrong predictions for these classes when the ’timestamp’
feature is not used. Using accelerometer features or gyroscope
features alone is not sufficient to produce high performance, as
shown in Figures 7a and 7b. However, when the ’timestamp’
features are combined with either accelerometer or gyroscope
features, the performance of the models is enhanced, as shown
in Figures 7c and 7d. The deliverable things of this research
are a software-based approach for driver behavior prediction
which is more accurate and efficient. Linked with a data
source, this approach provides driver behavior prediction.

V. CONCLUSION

Driver behavior prediction is an important part of designing
the interaction between advanced driver assistance systems
(ADAS) and human drivers for future transportation sys-
tems. Consequently, driver behavior prediction has emerged
as an important research topic and has been investigated
largely during the past few years. Often, the investigations
are based on simulators and controlled environments. This
study investigates the use of a different set of features,
feature combinations, use of original plus derived features for
driver behavior prediction using the dataset recorded in a real
traffic environment. The data recorded using the smartphone
accelerometer and gyroscope is used for experiments using
several machine learning and deep learning models. This study
designs six cases to investigate the impact of feature selection
and binary vs multi-class classification problems. Results
indicate that using accelerometer or gyroscope data alone
is not sufficient to obtain high performance. Combining the
features, though increases the performance, yet, the accuracy
is still low. Primarily, the ’slow’ and ’normal’ class feature
spaces tend to overlap which reduces the performance of the
models. Adding derived features would further improve the
performance, however, the best performance of 100% accuracy
is achieved by RF and XGBoost models when accelerometer
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(b) Gyroscope feature space.
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(c) Accelorometer + timestamp feature
space.
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(d) Gyroscope + timestamp feature
space.
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Fig. 7: Feature space using different features.

and gyroscope features are combined with the ’timestamp’
features. Deep learning models tend to show lower accuracy
than machine learning models. This study uses a small dataset
which can be seen as a limitation. The small size of the dataset
may not be enough for the training of models, especially deep
learning models. The second limitation is the small feature
set because deep learning models require a large feature
set to get a good fit. In future work, we intend to collect
our own dataset and perform experiments. Besides that use
of non-machine learning architectures including probabilistic
methods or statistical directed acyclic graphs would be a good
dimension to explore.
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[8] E. Tenenboim, A. Lucas-Alba, Ó. M. Melchor, T. Toledo, and S. Bekhor,
“Car following with an inertia-oriented driving technique: A driving sim-
ulator experiment,” Transportation Research Part F: Traffic Psychology
and Behaviour, vol. 89, pp. 72–83, 2022.

[9] Y. Peng, L. Cheng, Y. Jiang, and S. Zhu, “Examining bayesian network
modeling in identification of dangerous driving behavior,” PLoS one,
vol. 16, no. 8, p. e0252484, 2021.

[10] A. Kontaxi, A. Ziakopoulos, and G. Yannis, “Trip characteristics impact
on the frequency of harsh events recorded via smartphone sensors,”
IATSS research, vol. 45, no. 4, pp. 574–583, 2021.

[11] W. H. Organization, Global action plan on physical activity 2018-2030:
more active people for a healthier world. World Health Organization,
2019.

[12] M. Sangare, S. Gupta, S. Bouzefrane, S. Banerjee, and P. Muhlethaler,
“Exploring the forecasting approach for road accidents: Analytical mea-
sures with hybrid machine learning,” Expert Systems with Applications,
vol. 167, p. 113855, 2021.

[13] H. Yu, R. Jiang, Z. He, Z. Zheng, L. Li, R. Liu, and X. Chen, “Au-
tomated vehicle-involved traffic flow studies: A survey of assumptions,
models, speculations, and perspectives,” Transportation research part C:
emerging technologies, vol. 127, p. 103101, 2021.

[14] M. Li, Z. Cao, and Z. Li, “A reinforcement learning-based vehicle
platoon control strategy for reducing energy consumption in traffic
oscillations,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 32, no. 12, pp. 5309–5322, 2021.

[15] G. Albano, K. Mattas, and B. Ciuffo, “The relationship between hystere-

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3256000

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



KHADIJA et al.: SMARTPHONE INERTIAL MEASUREMENT UNIT DATA FEATURES FOR ANALYZING DRIVER DRIVING BEHAVIOR 15

sis and string stability in traffic flow. a simulation-based investigation,”
Tech. Rep., 2021.

[16] J. Yarlagadda and D. S. Pawar, “Heterogeneity in the driver behavior:
An exploratory study using real-time driving data,” Journal of Advanced
Transportation, vol. 2022, 2022.

[17] Y. Ali, Z. Zheng, M. M. Haque, M. Yildirimoglu, and S. Washington,
“Clacd: A complete lane-changing decision modeling framework for the
connected and traditional environments,” Transportation Research Part
C: Emerging Technologies, vol. 128, p. 103162, 2021.

[18] N. Raju, S. Arkatkar, S. Easa, and G. Joshi, “Developing extended
trajectory database for heterogeneous traffic like ngsim database,” Trans-
portation Letters, vol. 14, no. 5, pp. 555–564, 2022.

[19] R. Izquierdo, A. Quintanar, I. Parra, D. Fernández-Llorca, and M. Sotelo,
“Experimental validation of lane-change intention prediction methodolo-
gies based on cnn and lstm,” in 2019 IEEE Intelligent Transportation
Systems Conference (ITSC). IEEE, 2019, pp. 3657–3662.

[20] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highd dataset:
A drone dataset of naturalistic vehicle trajectories on german highways
for validation of highly automated driving systems,” in 2018 21st
International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2018, pp. 2118–2125.

[21] D. Roemmich and J. Gilson, “The 2004–2008 mean and annual cycle
of temperature, salinity, and steric height in the global ocean from the
argo program,” Progress in oceanography, vol. 82, no. 2, pp. 81–100,
2009.

[22] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 11 621–11 631.

[23] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan,
and T. Darrell, “Bdd100k: A diverse driving dataset for heterogeneous
multitask learning,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 2636–2645.

[24] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, L. Chen, A. Jain,
S. Omari, V. Iglovikov, and P. Ondruska, “One thousand and one hours:
Self-driving motion prediction dataset,” 2020. [Online]. Available:
https://arxiv.org/abs/2006.14480

[25] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine et al., “Scalability in perception
for autonomous driving: Waymo open dataset,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 2446–2454.

[26] J. Ferreira, E. Carvalho, B. V. Ferreira, C. de Souza, Y. Suhara,
A. Pentland, and G. Pessin, “Driver behavior profiling: An investigation
with different smartphone sensors and machine learning,” PLoS one,
vol. 12, no. 4, p. e0174959, 2017.

[27] A. Kashevnik, A. Fedotov, and I. Lashkov, “Dangerous situation pre-
diction and driving statistics accumulation using smartphone,” in 2018
International Conference on Intelligent Systems (IS). IEEE, 2018, pp.
521–527.

[28] O. A. Osman, M. Hajij, S. Karbalaieali, and S. Ishak, “A hierarchical ma-
chine learning classification approach for secondary task identification
from observed driving behavior data,” Accident Analysis & Prevention,
vol. 123, pp. 274–281, 2019.

[29] R. R. Rachmadi, A. Sudarsono, and T. B. Santoso, “Application of light-
gbm method for abnormal driving behavior classification on motorcycle
driver based on smartphone sensor,” Jurnal Komputer Terapan, vol. 7,
no. 2, p. 472581.

[30] M. Shahverdy, M. Fathy, R. Berangi, and M. Sabokrou, “Driver behavior
detection and classification using deep convolutional neural networks,”
Expert Systems with Applications, vol. 149, p. 113240, 2020.

[31] P. Patil, K. S. Kumar, N. Gaud, and V. B. Semwal, “Clinical human gait
classification: extreme learning machine approach,” in 2019 1st inter-
national conference on advances in science, engineering and robotics
technology (ICASERT). IEEE, 2019, pp. 1–6.

[32] R. Jain, V. B. Semwal, and P. Kaushik, “Deep ensemble learning
approach for lower extremity activities recognition using wearable
sensors,” Expert Systems, vol. 39, no. 6, p. e12743, 2022.

[33] S. K. Challa, A. Kumar, and V. B. Semwal, “A multibranch cnn-bilstm
model for human activity recognition using wearable sensor data,” The
Visual Computer, pp. 1–15, 2021.

[34] N. Oliver and A. P. Pentland, “Driver behavior recognition and prediction
in a smartcar,” in Enhanced and Synthetic Vision 2000, vol. 4023. SPIE,
2000, pp. 280–290.

[35] S. Arbabi, D. Tavernini, S. Fallah, and R. Bowden, “Learning an
interpretable model for driver behavior prediction with inductive biases,”
arXiv preprint arXiv:2208.00516, 2022.

[36] M. J. Rahman, S. S. Beauchemin, and M. A. Bauer, “Predicting
driver behaviour at intersections based on driver gaze and traffic light
recognition,” IET Intelligent Transport Systems, vol. 14, no. 14, pp.
2083–2091, 2020.

[37] W. Xu, J. Wang, T. Fu, H. Gong, and A. Sobhani, “Aggressive driving
behavior prediction considering driver’s intention based on multivariate-
temporal feature data,” Accident Analysis & Prevention, vol. 164, p.
106477, 2022.

[38] M. Sajjad, S. Zahir, A. Ullah, Z. Akhtar, and K. Muhammad, “Human
behavior understanding in big multimedia data using cnn based facial
expression recognition,” Mobile networks and applications, vol. 25,
no. 4, pp. 1611–1621, 2020.

[39] C. Shiranthika, N. Premakumara, H.-L. Chiu, H. Samani, C. Shyalika,
and C.-Y. Yang, “Human activity recognition using cnn & lstm,” in
2020 5th International Conference on Information Technology Research
(ICITR). IEEE, 2020, pp. 1–6.

[40] H. Zhang, Z. Nan, T. Yang, Y. Liu, and N. Zheng, “A driving behavior
recognition model with bi-lstm and multi-scale cnn,” in 2020 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2020, pp. 284–289.

[41] “Driving behavior,” https://www.kaggle.com/datasets/outofskills/driving-
behavior,2022, note = Accessed: 2022-07-15.

[42] J. Hu, X. Zhang, and S. Maybank, “Abnormal driving detection with
normalized driving behavior data: a deep learning approach,” IEEE
transactions on vehicular technology, vol. 69, no. 7, pp. 6943–6951,
2020.

[43] I. Cojocaru, P.-S. Popescu, and C. Mihaescu, “Driver behaviour analysis
based on deep learning algorithms,” 202.

[44] M. N. Azadani and A. Boukerche, “Performance evaluation of driving
behavior identification models through can-bus data,” in 2020 IEEE
Wireless Communications and Networking Conference (WCNC). IEEE,
2020, pp. 1–6.

[45] F. Rustam, A. Mehmood, M. Ahmad, S. Ullah, D. M. Khan, and G. S.
Choi, “Classification of shopify app user reviews using novel multi text
features,” IEEE Access, vol. 8, pp. 30 234–30 244, 2020.

[46] J. Fitzgerald, R. M. A. Azad, and C. Ryan, “A bootstrapping approach to
reduce over-fitting in genetic programming,” in Proceedings of the 15th
annual conference companion on Genetic and evolutionary computation,
2013, pp. 1113–1120.

[47] A. Lahouar and J. B. H. Slama, “Day-ahead load forecast using random
forest and expert input selection,” Energy Conversion and Management,
vol. 103, pp. 1040–1051, 2015.

[48] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera,
“A review on ensembles for the class imbalance problem: bagging-,
boosting-, and hybrid-based approaches,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 4,
pp. 463–484, 2011.

[49] X. Chang, Y.-L. Yu, Y. Yang, and E. P. Xing, “Semantic pooling for
complex event analysis in untrimmed videos,” IEEE transactions on
pattern analysis and machine intelligence, vol. 39, no. 8, pp. 1617–
1632, 2016.

[50] C. Désir, C. Petitjean, L. Heutte, M. Salaun, and L. Thiberville,
“Classification of endomicroscopic images of the lung based on random
subwindows and extra-trees,” IEEE transactions on biomedical engi-
neering, vol. 59, no. 9, pp. 2677–2683, 2012.
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