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Abstract
This paper proposes a gait intention detection (GID) method based on motion information from a single leg. This method 
detects three gait states: stair ascending (SA), stair descending (SD), and level walking (LW). The GID is a highly important 
factor for the control of gait assistive devices. If the GID is limited to the motion information from a single leg, analyzing 
the gait motions becomes more challenging, owing to the absence of information regarding the phase difference between 
both legs. To address this challenging, previous GID methods have used fusion data from several sensors. In this paper, only 
three inertial measurement units are used for proposed single leg GID method. To analyze gait motions using these limited 
sensors, the divergent component of motion (DCM) of the user is computed. The DCM is a physical quantity incorporating 
the linear position and linear velocity of the center of mass; these can be computed from the kinematic data of a support leg. 
In each of the three gait states SA, SD, and LW, the DCM shows different patterns. To classify and detect these different 
patterns, a pattern recognition method based on an artificial neural network algorithm is used. The GID performance of the 
proposed method was experimentally evaluated, and it showed 99% success rate for the SA, SD, and LW states.

Keywords  Gait intention detection (GID) · Divergent component of motion (DCM) · Inertial measurement unit (IMU) · 
Artificial neural network · Pattern recognition

1  Introduction

Walking ability is often an important factor in determin-
ing quality of life. However, many people suffer from an 
impaired walking ability owing to aging or various injuries. 
Therefore, the development of gait assistive devices (such 
as robotic exoskeletons and orthoses) has received signifi-
cant attention as a field of study for more than four decades. 
When controlling these devices, one of the most critical 
factors is to ensure they do not take different motions from 
user’s intention. Therefore, a reliable gait intention detection 
(GID) method is required, and many corresponding studies 
have been performed.

Various types of data have been used for detecting gait 
intention. Some studies have introduced methods for manu-
ally inputting the intended walking state using a push-button 
interface [1–3]. These methods have the advantage of being 

simple to implement; however, they can lead to inconven-
ience for users, because they must be aware of and indi-
cate all their gait intention. Therefore, recent studies have 
adopted automatic GID methods using bio-signal sensors 
or physical sensors. Using bio-signal sensor has the advan-
tage of being able to quickly detect an intention of motion 
prior to actual movement [4–6]. However, different data can 
be obtained for the same gait motion owing to several fac-
tors (e.g., muscle fatigue, degree of muscle contraction, and 
different positions of electrode attachment [7]), and it may 
lead to GID failures. In contrast, physical sensors have an 
advantage in similar data can be obtained for the same gait 
motion in various situations. Therefore, to develop accurate 
GID methods, many studies have adopted physical sensors 
such as gyroscopes [8–10], force-sensitive resistors [8, 11, 
12], accelerometers [13, 14], and inertial measurement units 
(IMUs) [11, 15–19]. Among them, some straightforward 
GID methods only focus on detecting gait cycle phase (e.g., 
stance, swing, hill strike, and toe off) [8–14]. For more pre-
cise gait assistance in daily life, some other GID methods 
consider various gait states, including stair ascending (SA), 
stair descending (SD), and level walking (LW) [15–20].
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Most of the previous methods for detecting various gait 
states using physical sensors typically use information of 
both legs. However, some people suffer from weakness or 
paralysis in one leg, and they only require one-leg assistive 
devices. In this case, detecting accurate gait states becomes 
more challenging, because sensor data are limited to one-leg, 
and the information regarding the phase difference between 
both legs cannot be used. To address this limitation, some 
studies have used fusion data from several physical sensors 
[17, 18, 20]. However, they require bulky or complex hard-
ware designs for their sensor systems, which may disturb 
the user’s natural gait motion. Furthermore, from a com-
mercial standpoint, the higher number of used sensors, the 
more expensive and difficult to maintain.

In this paper, we propose a GID method using only 
motion information from a single leg. It can detect three 
gait states (SA, SD, and LW) with only three small and light 
IMUs, which do not affect the user’s natural gait motion. 
In addition, this method is applicable to various forms of 
assistive devices, as the IMUs only need to be attached to 
the user’s shin, thigh, and torso using Velcro fasteners (see 
Fig. 1). To analyze gait motions using these limited sen-
sors, the user’s 3-dimentional (3-D) divergent component 
of motion (DCM, also called Capture Point) [21, 22] was 
computed. The DCM is a physical quantity that incorporates 
the changes in the linear position and linear velocity for the 
center of mass (COM). Using this physical quantity, the gait 
motion can be analyzed for a three-dimensional (3-D) space 
with only one support leg’s data. Each of three gait states 

(SA, SD, and LW) shows different DCM patterns. There-
fore, the pattern recognition method of an artificial neural 
network (ANN) algorithm is used to classify and detect the 
current gait state.

The remainder of this paper is organized as follows. In 
Section 2, the processes for the human body DCM computa-
tion and pattern recognition via ANN training are described. 
In Section  3, the experimental results are discussed to 
evaluate the performance of the proposed GID method. In 
Section 4, conclusions and possible future directions are 
presented.

2 � Gait Intention Detection Method

In this study, GID was performed during the right leg stance 
phase. Figure 1 shows a kinematic model for the proposed 
GID method, and the appearance of the user’s lower body. 
As shown in Fig. 1(a), the COM is at the center of the lower 
abdomen. This model has five degrees of freedom (DOFs) 
with five revolute joints (the pitch joints of the ankle, knee, 
and hip; and roll joints of the ankle and hip). Three IMUs 
are attached at the front of the right shin (IMU-a), right thigh 
(IMU-b), and torso (IMU-c), and measure the angles and 
angular velocities. In this study, the pitch angles of the shin, 
thigh, and torso are denoted as �aP , �bP , and �cP , respec-
tively, and the roll angles of the shin and torso are denoted 
as �aR and �cR , respectively.

The proposed GID method is divided into two parts: the 
DCM computation for the human body, and the pattern rec-
ognition by the ANN training. The former part is described 
in Section 2-1. As described in this section, the linear posi-
tion and linear velocity of COM are calculated using the 
IMU data. Using these COM data, the time-varying DCM 
of the human body is computed. The latter part is explained 
in Section 2-2. In this part, the shallow ANN is used to train 
a classification model, which accurately classifies the differ-
ent DCM patterns of the three gait states (LW, SA, and SD).

2.1 � Calculating the Time‑Varying DCM of Human 
Body

The DCM is the physical quantity normally used for human 
walking analysis [21], and walking control or motion plan-
ning for a bipedal robot [22]. It includes the linear position 
and linear velocity information of COM. In other words, 
if DCM of the user is computed during gait, the change of 
COM movement can be known in real time. The DCM is 
defined as follows [22]:

(a) (b) 

IMU-a

IMU-b

IMU-c

Fig. 1   a Appearance of user standing upright with attached IMUs and 
kinematic model for the proposed GID method, which has five revo-
lute joints and DOFs. b Appearance of user descending the stair; and 
point of the DCM
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where � = [�x �y �z]T is 3-D DCM, and � = [xcom ycom zcom]T 
and �̇ = [ẋcom ẏcom żcom]T are the 3-D linear position and lin-
ear velocity of COM, respectively. As shown in Fig. 1(b), 
DCM is defined as a point in front at a certain distance in the 
direction of COM movement from current COM position. 
In (1), b is a time constant of DCM dynamics. It is defined 
as b =

√

zmean∕g , where zmean is the mean value of zcom that 
is measured by a few footsteps for each of SA, SD, and LW 
states; and g is the gravitational acceleration.

In this study, to obtain � for the human body, the 
forward kinematics is computed from the right foot 
to COM. For this computation, coordinate frames ( Σi , 
i = 1 , 2 , … , 6 ) are attached as shown in Fig. 2. The base 
frame ( Σ

0
 ) is fixed to the right ankle during the right leg 

stance phase. Note that, therefore, acquired data during 
the right leg swing phase are not used for the proposed 
GID method. The joint angles � = [�

1
�
2
 ⋯ �

5
] are cal-

culated using the orientation of the links measured via 
IMUs, as follows:

The linear velocity of COM �̇ is computed using the Jaco-
bian matrix. The angular velocities of each joint are acquired 
via IMUs in the same manner as (2). Using these processes, 
DCM of the user can be computed during gait.

(1)� = � + b�̇

(2)
�
1
= �

aP
, �

2
= �

aR
, �

3
= �

bP
− �

aP
,

�
4
= �

cR
− �

aR
, �

5
= �

cP
− �

bP
.

2.2 � Intention Detection by the Artificial Neural 
Network

An ANN is used to train a classification model that classifies 
the gait states SA, SD, and LW during gait. Figure 3 shows 
the structure of the ANN used in this study. Note that, shal-
low and basic ANN training with a feed-forward structure 
was used so that DCM could be analyzed solely on its own 
merits the physical quantity as the gait information for the 
GID method. The network has one hidden layer with twenty 
neurons. The sigmoid is used as the activation function of 
the hidden layer. In addition, as this ANN is used for multi-
class classification, the soft-max is used as an activation 
function of the output layer.

An input layer data set is defined as 
∑k

n=0
�(t − nTs) , where 

t is the current time, Ts is the sampling time of the system, 
and k is the total number of time series in � set constituting 
one input layer data set. The output layer includes twelve 
classes Ci(i = 1, 2, ⋯ , 12) assigned to the DCM patterns of 
three gait states (SA, SD, and LW) and nine exception (EXC) 
states. The C

1
 is a SA pattern class collected when the knee 

is extended for SA; The C
2
 is a SD pattern class collected 

when the knee is bent for SD; The C
3
 is a LW pattern class 

collected when the COM moves forward over the support 
foot, so that the weight is loaded on the right knee. The EXC 
classes are determined as follows: the DCM patterns of the 
C
4
 , C

7
 , and C

10
 classes are collected between moments of 

hill-strike and toe-strike, for SA, SD, and LW, respectively; 
the DCM patterns of the C

5
 , C

8
 , and C

11
 classes are collected 

between moments of the toe-strike and just before the gait 
intention initiation, for SA, SD, and LW, respectively; and 
the DCM patterns of the C

6
 , C

9
 , and C

12
 classes are collected 

between the moments right after the gait intention initia-
tion and the end moment of the right leg stance phase, for 
SA, SD, and LW, respectively. To train these output classes, 

(a) (b) 

, 

,     : 

Fig. 2   Definition of coordinate frames Σ
i
(i = 1 , 2 , … , 6 ) and param-

eters � and � in the (a) sagittal plane and (b) frontal plane. � denotes 
link orientation measured by IMUs and � denotes joint angle

..

..

%

%

%

.. %

Hidden Layer

20 hidden neurons

Output Layer

12 output classes

Input Layer

Fig. 3   Structure of the ANN classification model used for pattern rec-
ognition. An input layer data set consists of �(t) , ⋯,�(t − kT

s
) , which 

are the time series sets. The hidden layer has twenty hidden neurons. 
The output layer includes twelve output classes C

i
(i = 1, 2, ⋯ , 12) for 

the SA, SD, and LW states, and nine EXC states
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N input layer data sets are collected for each of three gait 
states, and M input layer data sets are collected for each of 
nine EXC states. Therefore, the total number of input layer 
data sets used for ANN training is 3N + 9M . To collect the 
input layer data sets for training the twelve output classes, 
the user walks N∕2 footsteps in each gait state (SA, SD, 
and LW). Then, the input layer data sets for each gait state 
are acquired twice per one footstep with a very short time 
difference to improve the robustness of the trained ANN 
classification model.

At every gait state, the magnitudes of the fluctuations 
of �x , �y , and �z are different. Therefore, �x , �y , and �z are 
normalized into [0, 1], so that every data value in the input 
data sets can affect the ANN training. For this normalization, 
the maximum and minimum values of the data are required. 
However, because humans cannot walk at completely iden-
tical velocities, the maximum and minimum values of the 
DCM are not fixed, even when acquire from the same per-
son. To address this problem, a data augmentation technique 
is used for the input data. Different maximum and minimum 
values of the DCM are used in normalization per one-third 
of the input layer data sets.

As the soft-max is used as an activation function of the 
output layer, ANN outputs probability distributions of the 
detected gait state classes. Therefore, to indicate the definite 
gait state, a state with more than 90% probability is deter-
mined as a current gait state. Also 100Ts delay is applied 
after a current gait state is determined to prevent any gait 
state being detected multiple times per one footstep.

3 � Experimental Results

The performance of the proposed GID model was evaluated 
and compared with that of other GID models in which the 
ANN classification models were trained only using partial 
components of DCM. The aims of this evaluation and com-
parison were to verify whether the proposed method can 
properly detect gait intentions, and to confirm whether all 
components of DCM are required for accurate GID.

The DCM can be divided into several components based 
on three-axis information ( �x, �y , and �z ), or based on the 
linear position and linear velocity information of the COM 
( � and �̇ ). By using these components alone or in combina-
tion, other GID models were trained. In this study, these 
GID models were trained using �x only (MX), �y only (MY), 
�z only (MZ), � only (MP), and �̇ only (MV); and by com-
bining �x and �y (MXY), �x and �z (MXZ), �y and �z (MYZ), 
and � and �̇ (MPV). The proposed GID model, which used 
every component of the DCM, is indicated as MXYZ. The 
difference between MXYZ and MPV is that MXYZ has a 
total of three input components: �x , �y , and �z ; in contrast, 

MPV has a total of six input components: xcom , ycom , zcom , 
ẋcom , ẏcom , and żcom.

3.1 � Experimental Setup

The experiments were conducted with one healthy female 
user who does not suffer any impairment of ambulatory 
abilities. Each sensor system for data acquisition is divided 
into two wireless units: the IMUs and one receiver unit. 
For the experiment, three IMUs were attached to the right 
shin, right thigh, and torso of the user, respectively. The 
receiver unit was connected to a microcontroller unit board 
for transmitting the data to a personal computer. Using the 
MATLAB, the computation for DCM, ANN training, and 
GID were carried out. The sampling time was set as 4 ms. 
The parameters for the ANN training, k , N , and M , were 
decided heuristically to 60, 60, 120, respectively to require 
minimal input data.

3.2 � Gait Intention Detection Experimental Results

To collect the test data for evaluating the success rates, the 
user walked 200 footsteps per each gait states SA, SD, and 
LW during the right leg swing phase. The data were col-
lected over two days to consider the diversity of the gait 
motions from the same person.

The GID success rates of MXYZ, MXZ, MYZ, MP, MV, and 
MPV are presented in Table 1. Every GID model trained with 
different partial component configurations was tested; however, 
some GID models having too low average success rates (less 
than 10%) are not discussed in this section. As shown in Table 1, 
MXYZ properly detected all three gait states with an average suc-
cess rate of 99%. In contrast, the average success rates of the other 
GID models, in which trained with only partial components of 
DCM, are below 90%. In most cases, this is owing to the LW state 
or both the SD and LW states. From the analysis of the probability 
distribution of the ANN output, the most frequent cause of GID 
error was the classification confusion due to the similar DCM pat-
terns of the LW and SD states. Among the GID models in Table 1, 
MYZ had the lowest average success rate owing to this reason.

Table 1   GID success rate. In the brackets, the numbers of GID suc-
cesses for two hundred footsteps are shown. Among ANN models, 
the first one is the proposed method’s model

ANN Model SA [%] SD [%] LW [%] Average [%]

MXYZ 99 (198) 99 (198) 99 (198) 99
MXZ 98 (196) 98 (196) 71 (142) 89
MYZ 96 (192) 46 (92) 10.5 (21) 51
MP 74.5 (149) 49 (98) 63 (126) 62
MV 90 (180) 95.5 (191) 85.5 (171) 90
MPV 96 (192) 94.5 (189) 63 (126) 85
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Fig. 4   The GID experimental 
results of SA gait motion. a 
DCM data, ANN probability 
results, and current state of 
MXYZ and MYZ. b Linear 
position and linear velocity data 
of the COM, ANN probability 
results, and current state of 
MPV
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Fig. 5   The GID experimental 
results of SD gait motion. a 
DCM data, ANN probability 
results, and current state of 
MXYZ and MYZ. b Linear 
position and linear velocity data 
of the COM, ANN probability 
results, and current state of 
MPV
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Fig. 6   The GID experimental 
results of LW gait motion. a 
DCM data, ANN probability 
results, and current state of 
MXYZ and MYZ. b Linear 
position and linear velocity data 
of the COM, ANN probability 
results, and current state of 
MPV
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Figures 4, 5 and 6 present the GID experimental results of 
MXYZ, MYZ, and MPV. Note that, since the proposed GID 
method was only conducted during the right leg stance phase, 
the measured data during the right leg swing phase are not 
used for the method, and they do not represent the DCM either. 
Therefore, the acquired data during the right leg swing phase 
were covered with the gray box to not distract from meaning-
ful data. The divisions for right leg stance and swing phases 
were measured roughly by using a switch sensor while walk-
ing. The figures show that MXYZ, the GID model of the pro-
posed method, can successfully detect gait intentions. In each 
graph, the ANN probability of MXYZ increases to over 90% 
for the pertinent gait state at the moment the user initiates tak-
ing an intended gait state. As seen in Figs. 5 and 6, the DCM 
and COM linear position and velocity patterns for the SD and 
LW states are very similar. At the moment the user initiates 
gait state SD or LW; �x , xcom , and ẋcom are increased; �y , ycom , 
and ẏcom are maintained or increased; and �z , zcom , and żcom are 
decreased. Therefore, if only some components of the DCM are 
used for GID, the information for distinguishing between the 
SD and LW states is insufficient, and the classification prob-
abilities for both states increase simultaneously and collide. 
Eventually, neither state is detected as a current state (see the 
ANN probability and current state of MYZ in Figs. 5(a) and 
6(a), and MPV in Fig. 6(b)).

The probability collision between the SD and LW states 
in MYZ also can be seen in the confusion matrix in Fig. 7. 
The confusion matrix is used to verify the performance of 

Fig. 8   GID experimental results 
of LW → SA → LW gait motions 
with different gait speed; DCM 
data, ANN probability results, 
and current state of MXYZ

Fig. 7   Confusion matrix of MYZ. Each number in the circle and dia-
mond indicates the error percentage of the ANN model detecting the 
SD state as the LW state, and detecting the LW state as the SD state, 
respectively
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a classification model. The numbers in the figure indicate 
the percentage of the predicted output class for each target 
class (nine EXC classes are grouped into three EXC classes 
corresponding to each gait state) during the ANN training 
of MYZ. The percentage for MYZ classifying the SD state 
as the LW state is 26.6% (in the circle), and the percentage 
for detecting the LW state as the SD state is 16.7% (in the 
diamond). These two values are the highest values among 
the classification errors of the SD and LW classes. There-
fore, Fig. 7 shows numerically that the reason for the low 
GID success rate of the SD and LW classes is the collision 
between the two gait states. Accordingly, although each 
DCM component ( �x,�y , �z , � , and �̇ ) contains information 
regarding gait motions, all components of the DCM are 
required to successfully classify and detect the various gait 
states.

Additional GID experiments were conducted in different 
environments to demonstrate the robustness of the proposed 
GID method. The experimental results are shown in Figs. 8 
and 9. The user performed the GID experiments including 
gait state transitions between level walking and stair walking 
(LW → SA → LW, and LW → SD → LW) and walked with 
a faster gait speed than in the prior experiments (in other 
words, faster than when user had walked to collect the input 
layer data sets for the ANN training). As seen in these fig-
ures, the proposed GID method successfully detected each 
gait intention, even just after the gait state transition.

Consequently, the above experimental results demonstrate 
that the proposed GID method using DCM can detect gait 
intentions for several gait states (SA, SD, and LW) with high 
accuracy and robustness. Moreover, we verified that every 
component of DCM ( �x , �y , and �z ) is required for success-
ful GID using motion information from a single leg. If only 
partial components of DCM are used, the GID success rate 
decreases, owing to the similarity of the DCM patterns for 
the SD and LW states.

4 � Conclusion

In this paper, we proposed a DCM-based GID method for 
detecting SA, SD, and LW states using single leg infor-
mation. When the collectible information is limited from 
the one leg, accurate GID becomes more challenging. In 
this study, the challenge was addressed using DCM, which 
includes the linear position and linear velocity information 
of COM. The 3-D DCM of the user was computed during 
the gait using data of three IMUs attached to the right leg 
and torso. In each of the three gait states SA, SD, and LW, 
the DCM showed different patterns, and these were classi-
fied and detected via ANN training. The experimental results 
showed that the proposed GID method can detect each gait 
state (SA, SD, and LW) with 99% success rate; and every 
component of DCM are necessary for a more accurate GID.

Fig. 9   GID experimental 
results of LW → SD → LW 
gait motions with different gait 
speed; DCM data, ANN prob-
ability results, and current state 
of MXYZ
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In future work, we will examine the generality of the 
proposed method with multiple users with various heights 
and gait motions. Furthermore, we will conduct experiments 
while wearing gait assistive devices, so that the GID envi-
ronment is more similar to the actual usage environment.
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