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Abstract— Human kinetics, specifically joint moments and
ground reaction forces (GRFs) can provide important clinical infor-
mation and can be used to control assistive devices. Traditionally,
collection of kinetics is mostly limited to the lab environment
because it relies on data that are measured from a motion capture
system and floor-embedded force plates to calculate the dynamics
via musculoskeletal models. This spatially limited method makes
it extremely challenging to measure kinetics outside the laboratory
in a variety of walking conditions due to the expensive device setup
and large space required. Recently, employing machine learning
with IMU sensors are suggested as an alternative method for
biomechanical analyses. Although these methods enable estimat-
ing human kinetic data outside the laboratory by linking IMU sen-
sor data with kinetics dataset, they are limited to show inaccurate
kinetic estimates even in highly repeatable single walking condi-
tions due to the employment of generic deep learning algorithms.
Thus, this paper proposes a novel deep learning model, Kinetics-
FM-DLR-Ensemble-Net for single limb prediction of hip, knee, and
ankle joint moments and 3 dimensional Ground Reaction Forces
(GRFs) using three IMU sensors on the thigh, shank, and foot
under several representatives walking conditions in daily living,
such as treadmill, level-ground, stair, and ramp. This is the first
study that implements both joint moments and GRFs in multiple
walking conditions using IMU sensors via deep learning. Our deep
learning model is versatile and accurate for identifying human
kinetics across diverse subjects and walking conditions and our
model outperforms state-of-the-art deep learning model for kinet-
ics estimation by a large margin.

Index Terms— Kinetics Estimation; Wearable IMU
Sensor; Joint Moment; Ground Reaction Force; Deep
Learning; Machine Learning

I. INTRODUCTION

Estimation of human kinetics, specifically ground reaction
forces (GRFs) and joint moments, play an important role in
providing insights and fundamental information in clinical de-
cisions and controls of exoskeleton devices. For example, joint
moments can be used to understand the impact of different
joint arthritis in walking [1]–[3] and to provide assistive torque
to the powered exoskeleton to minimize muscle efforts [4].
Moreover, knee abduction moment (KAM) and knee flexion
moment (KFM) are critical biomechanical measurements for
assessing knee joint loading [5], which is considered to
contribute to knee osteoarthritis [6]. GRFs have also been used
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for the evaluation of pathological gait patterns [7]–[9] or for
analyzing the gait of amputees [10], [11].

Traditionally, joint moments are calculated using infrared-
based motion capture cameras and ground reaction force
plates. Collected joint kinematics from motion capture cam-
eras and GRFs from the floor-embedded force plates are
then implemented to computational musculoskeletal modeling
softwares such as OpenSim [12], Visual3D (C-Motion, MD),
Nexus (Vicon, UK), or Anybody (Anybody Technology, Den-
mark) to calculate joint moment. Although using experimen-
tal data and musculoskeletal modeling software can provide
reliable joint moment data, this method requires extensive
manual post data processing of motion and GRF data to
employ musculoskeletal modeling softwares, hindering prompt
evaluations. In addition to this, there are major technical
hurdles when collecting human kinetics in different walking
conditions outside the laboratory such as walking on ramps
and stairs due to the specific bulky and heavy equipment
setups. Thus, this method poses constraints on estimation
outside the lab, especially in different walking environments
that are mostly encountered in daily living.

To overcome these limitations imposed by traditional kinet-
ics estimation methods, there is a trend in adapting wearable
sensors with computational human dynamic models [13]–[23],
neuromusculoskeletal models [22], [24], or wearable force
plates [18]–[21]. However, wearable sensors along with human
dynamic models or neuromusculoskeletal model based kinetics
estimation requires a large number of sensors (e.g., 7 IMUs
in [14], 17 IMUs in [16], and 15 IMUs in [17]). Wearable
electromyography (EMG) sensors on specific muscle groups
can also be used with neuromusculoskeletal modeling to
calculate joint moment [22], [24]. However, EMG signals are
sensitive to skin impedance and the location of muscle belly,
making it challenging to acquire consistent and repeatable
signals. Also, EMG signals are prone to additional noise due to
the motion artifacts and electrical fields in environment. Thus,
neuromusculoskeletal model based estimation of kinetics with
wearable sensors and EMG sensors are subjected to multi-
ple limitations including a large number of sensors, subject
specific anthropometric information, and variability of EMG
signals. Moreover, all of these studies are limited to the level-
ground condition, which imposes the applicability to different
walking conditions such as stairs and ramps that are commonly
found in daily living. There is also widespread research to get
GRFs data with portable force plates. GRFs can be calculated
by using a strain gauge transducer [25], piezoelectric sensors
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[26], and fiber-optic force sensors [27]. However, these sensors
are vulnerable to hysteresis, sensitive to temperature, and
constrained by force ranges and deformation of the sensors’
materials [18]. Wearable GRF plates are also heavy and
stiff, which hinders the wearer’s control of natural dynamic
tasks. Moreover, these shoe-embedded force plates needs to
be custom fabricated to fit into a specific subject’s foot size
and shape.

Recently, researchers are focusing on acquiring kinetics
parameters through data-driven method [28]–[37], [37]–[40].
However, these studies are still relying on a large number
of sensors [29], reversely acquired simulated IMU data from
the retrospective motion capture data [28], [31], and highly
repetitive treadmill/level-ground walking [30]–[37], [37]–[40].
Since experimentally collected IMU data contains noise in-
duced from multi-frequency vibration during the impact of
the limb on the ground, the simulated IMU data that was
acquired from retrospectively captured motion capture data
may not provide a reliable kinetics estimation during real
application. All these limitations are further aggravated by
utilizing conventional deep learning models such as Tempo-
ral Convolutional Networks (TCN) [41], Feedforward Neural
Networks (FNN), and Long Short Term Memory (LSTM) [42]
for kinetics estimation.

To address the limitations imposed by musculoskeletal or
biomechanical modeling, shoe-embedded force plates, simu-
lated IMU data, multi-modal sensor systems, a large num-
ber of wearable sensors, conventional deep learning model,
proper validation method (leave-subject-out), and estimation
of kinetics in the simple repetitive level-ground / treadmill
motion, we aim to predict the single limb sagittal plane
joint moment of the hip, knee, and ankle, the frontal plane
joint moment of the hip and knee, and 3D GRFs (anterior-
posterior, vertical, and medio-lateral) using three IMU sensors
on the foot, shank, and thigh using a novel deep learning
model Kinetics-FM-DLR-Ensemble-Net in multiple walking
environments. To implement the algorithm, we utilize two
publicly available datasets– Dataset A [43] (sagittal plane
hip, knee, ankle moments, hip abduction moment, and 3D
GRFs) and Dataset B [44] (KAM, KFM, and 3D GRFs).
To the best of our knowledge, this is the first study that
implements both fundamental kinetics parameters– 3D GRFs
and lower extremity joint moments estimation in multiple
walking conditions using IMU sensors via deep learning.
Our contribution is seven-fold: (i) proposing an end-to-end
trained model Kinetics-Net leveraging different deep learning
layers to increase human kinetics prediction performance; (ii)
presenting a Fusion Module (FM) to integrate output from
three primary models in Kinetics-Net, creating Kinetics-FM-
Net to further improve human kinetics prediction performance;
(iii) introducing a novel technique to utilize two loss functions,
which outperforms conventional loss design in deep learning
models; (iv) further utilizing an existing ensemble technique,
bagging to improve human kinetics prediction accuracy; (v)
conducting extensive evaluation with ablation studies to show
the effectiveness of our deep learning model; (vi) conducting
experimental comparison with the state-of-the-art deep learn-
ing model for human kinetics estimation, and our proposed

method outperforms these models by a large margin; (vii)
demonstrating generalization capabilities of the model on two
publicly available datasets.

The rest of this paper is organized as follows: Section II
discusses the related work for IMU based kinetics estimation
using musculoskeletal modeling and data-driven methods. The
problem statement and the detailed structure of Kinetics-FM-
DLR-Ensemble-Net are discussed in Section III. Section IV
describes the protocol of the dataset, dataset pre-processing,
validation method, and implementation details of the deep
learning model. Section V demonstrates the results. In Section
VI, implications of these results, limitations and future works
are discussed. We conclude our paper in Section VII.

II. RELATED WORK

In this section, we will discuss related work to estimate
kinetics using IMU sensors with musculoskeletal modeling or
machine learning methods. First, we will discuss IMU and
musculoskeletal or analytical model-based kinetics estimation
methods. Later, we will discuss data-driven methods for ki-
netics estimation and their limitations.

Yang et al. [14] used seven IMU sensors to estimate GRFs
and moments during walking with a three-dimensional analyt-
ical model. Karatsidis et al. [16] also estimated GRFs during
walking using kinematic data from 17 IMU sensors with a
biomechanical model. They have also predicted joint moments
along with GRFs with 17 IMU sensors with a musculoskeletal
model based inverse dynamics method for three level-ground
walking speeds. Aurbach et al. [17] used a musculoskeletal
model to compute GRFs using the kinematics data from 15
IMU sensors during level-ground gait. All these methods are
using a large number of wearable sensors for the estimation
of kinetics.

Due to the limitation imposed by musculoskeletal model
based kinetics estimation or shoe-embedded force plate, re-
searchers are focusing on estimating GRFs [37], [39], [40],
[45] and joint moments [28]–[35], [37], [38] using data-
driven methods with IMU sensors. Dorschky et al. [38] used 4
IMU sensors to estimate hip, knee, and ankle joint moments,
anterior-posterior GRF, and vertical GRF in the level-ground
and treadmill walking and running utilizing a 2D Convolu-
tional Neural Network (CNN) based deep learning model with
the data augmentation techniques with musculoskeletal model
simulation. Their approach is limited to the highly repeated
level-ground or treadmill walking condition only. Leporace et
al. [39] used a single accelerometer on the shank to predict
the 3D GRFs during walking using a Multilayer Perceptron
(MLP). However, the model was trained on limited samples
(only 4 gait cycles per participant), and data was collected in
level-ground walking condition only. Guo et al. [40] used only
acceleration data from a single waist-mounted IMU sensor to
predict the vertical GRF in self-selected walking speeds in
outdoor level-ground settings using Orthogonal Forward Re-
gression (OFR) algorithm. All these studies are implemented
in simple repetitive motion such as level-ground or treadmill
walking and the use of conventional machine learning models.

To utilize a dataset without the presence of experimen-
tally collected IMU sensors with motion capture and GRF
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data, Mundt et al. [31] placed virtual IMU sensors on the
retrospectively collected walking model to predict hip, knee,
and ankle joint moments using feedforward and LSTM based
models. Molinaro et al. [28] also used a musculoskeleletal
model to generate virtual IMU sensor signals on the trunk
and thigh to estimate hip joint moment using TCN [41]. As
these studies are implemented using virtual IMU data, it is
unclear how reliable the outcome of their methods is on real
IMU applications with noise introduced from skin surface
movements.

To verify which deep learning model has better estimates
on joint moments, there was a comparison between cur-
rent deep learning methods, LSTM, MLP, and pre-trained
convolutional neural network [34]. This study showed MLP
has better performance in joint moment prediction compared
with other models, and LSTM would be considered for real-
time estimation. More recently, Camargo et al. [29] estimated
hip, knee, and ankle joint moments in multiple locomotion
modes (treadmill, stair, ramp) using extracted features from
the cluster of electrogoniometer, EMG, and IMU sensors’
data, performed feature selection, and then used the selected
feature as input into the Artificial Neural Network (ANN)
and XGBoost. However, the total number of 18 sensors make
doubt on practicality in real-world deployment. In addition to
this, they used handcrafted feature engineering, which adds
complexity into their proposed method. To reduce the sensor
count, Lim et al. [30] proposed a single sacrum mounted IMU
to predict joint moments and GRFs with extracted features
(acceleration, velocity, displacement, and time) as the input
to ANN, but they are still limited to using conventional deep
learning models and predicting treadmill walking condition.

Most of these studies are implemented for simple repetitive
motion in level-ground and/or treadmill, simulated IMU data,
and multi-modal sensors system, and they are limited to a
specific kinetics component, either joint moment or GRFs.
These limitations of joint kinetics estimation are compounded
further with the use of conventional deep learning models
such as LSTM, CNN, TCN, and ANN, which limit more
accurate multi-variable human kinetics estimations. To address
the limitations imposed by these discussed works, we propose
a novel deep learning method to estimate kinetics during gait
using three IMU sensors in multiple walking conditions.

III. PROPOSED APPROACH

A. Problem Statement

This paper estimates three-dimensional GRFs and hip, knee,
and ankle joint moment using three IMU sensors on the
thigh, shank, and foot via a novel deep learning model
Kinetics-FM-DLR-Ensmeble-Net. If we have an IMU data
of I∆T =[I1,I2,..........,I∆T ] ∈ R∆T×DIMU×N for a specific
window length of ∆T , then the prediction from our model is
K∆T =[K1,K2,..........,K∆T ] ∈ R∆T×DK . Here, ∆T represents
the window length of data that will be input to the model,
N is the number of IMU sensors, DIMU is the dimension
of IMU sensors, and Dk is the dimension of total kinetics
parameters of the single limb (anterior-posterior GRF, vertical
GRF, mediolateral GRF, sagittal plane hip, knee, and ankle
joint moment, and frontal plane hip joint moment for Dataset

A and 3D GRFs, KAM, KFM for Dataset B). In this problem,
we use DIMU=6; N = 3; ∆T=100 (Dataset A), 50 (Dataset
B); Dk=7 (Dataset A), 5 (Dataset B). Mathematically, I∆T

→ K∆T .

B. Kinetics-FM-DLR-Ensemble-Net

Fig. 1. Entire structure of Kinetics-FM-DLR-Net

Kinetics-FM-DLR-Ensemble-Net is built mainly with the
model Kinetics-FM-DLR-Net (Fig. 1). We implement bag-
ging [46] techniques using Kinetics-FM-DLR-Net to cre-
ate Kinetics-FM-DLR-Ensemble-Net, which is our final pro-
posed model. Kinetics-FM-DLR-Net mainly consists of two
Kinetics-FM-Nets (Fig. 2), where each model will be trained
using two different loss functions and combined using a novel
technique, Double Loss Regression (DLR). Kinetics-FM-Net
is built with Kinetics-Net and a FM. We build Kinetics-Net
using different deep learning layers–GRU, Conv1D, Conv2D,
and fully connected dense layers. All the components of
Kinetics-FM-DLR-Ensemble-Net will be described in this
section.

Fig. 2. Entire structure of Kinetics-FM-Net

1) Kinetics-Net: Kinetics-Net mainly consists of three
primary models– GRU-Net, GRU-Conv1D-Net, and GRU-
Conv2D-Net. Predictions from these three models will be
different because of the difference in architecture. The com-
bination of these primary models may increase prediction
performance. In this paper, we combine the output of the
three primary models by taking the average of the predictions.
We train all three primary models simultaneously along with
the final prediction from the combined model to create an
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end-to-end trained model kinetics-Net. We minimize the loss
function for four output values of Kinetics-Net, which results
in good predictive performance of the final model Kinetics-
Net. If the predictions from GRU-Net, GRU-Conv2D-Net, and
GRU-Conv1D-Net are KOutput−1

∆T , KOutput−2
∆T , and KOutput−3

∆T

respectively, then output from Kinetics-Net

KOutput
∆T =

1

3
(KOutput−1

∆T + KOutput−2
∆T + KOutput−3

∆T ) (1)

a) Primary Models:
• GRU-Net. GRU-Net consists of an input layer followed

by a Batch Normalization (BN) layer, a GRU block, a
flatten layer, and an output layer. The BN layer is applied
after the input signal to perform an operation similar to
standard normalization of the input data [47]. After BN,
a GRU block is added, and then output from the GRU
block is flattened to add with the output layer.

• GRU-Conv2D-Net. In GRU-Conv2D-Net, we have two
branches using the features from the flatten layer of
GRU-Net and Conv2D-Net. For the second branch, we
use a Conv2D block followed by a Fully Connected
(FC) block. The output from the FC block is flattened
and then concatenated with the features from the flatten
layer of GRU-Net. The concatenated features are then
connected to the Output-2 layer to make the prediction.
The rationale for using two branches is to improve the
prediction by integrating more diversified features from
different types of deep learning layers.

• GRU-Conv1D-Net. In GRU-Conv1D-Net, we follow the
same architecture as GRU-Conv2D-Net, but only replace
the Conv2D block with Conv1D block.
b) Fundamental Blocks: All the fundamental blocks (Fig.

3) to create primary models are provided in this section:

Fig. 3. Fundamental Blocks of Kinetics-FM-DLR-Ensemble-Net

• GRU Block. GRU block uses two GRU layers. A dropout
layer is added after the GRU layer to avoid overfitting
during the training of the model.

• Conv2D Block. In Conv2D block, a conv2D layer is
used followed by a BN layer. BN layer helps to reduce
internal co-variance shift. Then, a max-pooling2D layer
is applied to reduce the feature space, which helps reduce
the model’s complexity and select dominant features.
A conv2D, batch normalization, and max-pooling layer
create the main unit of the Conv2D block. Four such
units are added sequentially to create the Conv2D block.

• Conv1D Block. In Conv1D block, a conv1D layer is used
followed by a BN layer. Then, a max-pooling1D layer is
applied. A conv1D, BN, and max-pooling layer create

the main unit of the Conv1D block. Four such units are
added sequentially to create the Conv1D block.

2) Fusion Module (FM): In Kinetics-Net, we initially take
the simple average of the output from three primary models.
However, this may not ensure optimal performance from
three models as we assign equal weights to all the mod-
els. Since the performance of each model will be different,
proper weight needs to be assigned to ensure best perfor-
mance gain from these three models. To do this, we de-
sign a FM creating Kinetics-FM-Net using two fully con-
nected layers. Suppose Output-1, Output-2, Output-3 (Fig.
1) from GRU-Net, GRU-Conv2D-Net, GRU-Conv1D-Net
are KGRU−Net

∆T ∈ R∆T×DK , KGRU−Conv2D−Net
∆T ∈ R∆T×DK ,

KGRU−Conv1D−Net
∆T ∈ R∆T×DK respectively. These three

outputs are passed to two Fully Connected (FC) layers.
All the FC layers are dense layers, where rectified lin-
ear unit activation is applied between the first two lay-
ers and a sigmoid activation is in the last layer to en-
force the output between 0 to 1. If output of each pri-
mary model after passing through the the dense layers
are FC(KGRU−Net

∆T )∈ R∆T×DK , FC(KGRU−Conv2D−Net
∆T )∈

R∆T×DK , and FC(KGRU−Conv1D−Net
∆T )∈ R∆T×DK respec-

tively, then output of the FM will be
KOutput

∆T = FC(KGRU−Net
∆T )�KGRU−Net

∆T +

FC(KGRU−Conv2D−Net
∆T )�KGRU−Conv2D−Net

∆T +

FC(KGRU−Conv1D−Net
∆T )�KGRU−Conv1D−Net

∆T

(2)

Where, � is element-wise multiplication.
3) Double Loss Regression (DLR): Previously for kinetics

estimation, the deep learning model was trained using Mean
Squared Error (MSE) and Root Mean Squared Error (RMSE)
as the loss function [35], [38]. While evaluating the perfor-
mance, both Normalized RMSE (NRMSE)– proportional to
RMSE and Pearson Correlation Coefficient (PCC) were used
[36]. Typically, when multiple loss functions are available,
a single loss function is derived from the weighted sum of
the loss functions. This approach of combining multiple loss
functions (RMSE and PCC for our case) may not ensure proper
performance for kinetics estimation as the optimizer is mini-
mizing the combined loss without understanding the proper
relationship between these loss functions. To use different
characteristics of loss functions properly, we devise a novel
strategy that employs two Kinetics-FM-Nets (Kinetics-FM-
Net(RMSE), Kinetics-FM-Net(PCC)), which are trained with
two loss functions (RMSE and PCC) separately (Fig. 1). In
Kinetics-FM-Net(RMSE), the optimizer will try to minimize
RMSE between ground truth and prediction, whereas, in
Kinetics-FM-Net(PCC), the optimizer will maximize the PCC
between experimentally collected ground truth and prediction.
As a result, from Kinetics-FM-Net(PCC), we will have similar
profiles of joint moments and GRFs with ground truth but
shifted and scaled (right Y-axis of Kinetic-FM-Net(PCC) in
Fig. 4).

As the Kinetics-FM-Net(PCC) is mainly focused on in-
creasing PCC, this will result in a higher PCC than the
Kinetics-FM-Net(RMSE). To maintain that high PCC while
correcting the shifting and the scaling of the Kinetics-FM-
Net(PCC) prediction, we need to acquire the actual offset and
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range. In Fig. 4, the prediction of Kinetics-FM-Net(RMSE)
has closely similar range and offset as the ground truth. As
a result, we can leverage that range and offset information
from the prediction of Kinetics-FM-Net(RMSE) to correct the
shifted and scaled prediction of Kinetics-FM-Net(PCC). If the
prediction from Kinetics-FM-Net(PCC) is KPCC

∆T ∈ R∆T×DK ,
gain and the offset correction are B0=[B00,B01,..........,B0Dk

]
∈ RDK ,B1=[B10,B11,..........,B1Dk

] ∈ RDK respectively, then
the corrected prediction from Kinetics-FM-Net(PCC) can be
considered as the element-wise multiplication of gain and
addition of offset corrected matrix.

KRMSE
∆T = B0 � KPCC

∆T + B1 (3)

In Equation 3, KRMSE
∆T ∈ R∆T×DK is the prediction from

Kinetics-FM-Net(RMSE), as it has a closely similar range
and offset of the ground truth. As we can estimate KRMSE

∆T

and KPCC
∆T from the two Kinetics-FM-Net models, we can

calculate the coefficient matrix of B0,B1 using DK number
of linear regression for each component. After calculating the
gain and offset correction matrix of B0,B1, the final prediction
after gain and offset correction:

KRMSE
∆T,Pred = B0 � KPCC

∆T + B1 (4)

In Fig. 4, we demonstrate the qualitative and quantitative
impact on our DLR loss design for performance improvement.

Fig. 4. A sample plot of joint moments and GRF to demonstrate how
DLR improves the performance from RMSE and PCC loss function.

4) Ensemble (Bagging): Finally, we apply bagging on
Kinetics-FM-DLR-Net to create Kinetics-FM-DLR-Ensemble-
Net. At first, from the training dataset, we create bootstrap
samples (random sampling with replacement) from our train-
ing dataset. Suppose, we create K number of bootstrap samples
from the whole training dataset. Each bootstrap sample will
be used to train Kinetics-FM-DLR-Net. The output from each
Kinetics-FM-DLR-Net will be KBag

∆T,1, KBag
∆T,2, ...., KBag

∆T,K .
Then, the final output of Kinetics-FM-DLR-Ensemble-Net:

KEnsemble
∆T,Pred =

1

K

K∑
k=1

KBag
∆T,k (5)

5) State-Of-The-Art (SOTA) model description: For compar-
ison with our proposed model Kinetics-FM-DLR-Ensemble-
Net, we adopt multiple deep learning models from the liter-
atures [28], [29], [31], [34], [38], [39]. Description of those
models are given below:

a) FFN (HF): In the FeedForward Neural network with
Handcrafted Features (FFN-HF) from input data, we extract
17 features for each of the axis (3D accelerometer and 3D
gyroscope) of IMU data. We extract those features for the
window length of 100 samples (0.5s) for Dataset A [43]
and 50 samples (0.5s) for Dataset B [44]. The extracted
features are mean, RMS, max, min, mean absolute value,
standard deviation, mean absolute difference, mean difference,
median difference, median absolute difference, interquartile
range, kurtosis, skewness, median, variance, median absolute
deviation, and mean absolute deviation. We extract a total of
102 features from each IMU. Then, we use those extracted
features as the input to an FFN neural network with multiple
dense layers. Each layer is followed by a dropout to avoid
overfitting during the training of the model. We flatten the
output of the last dropout layer and connect it to the last layer
for kinetics prediction.

b) TCN: For TCN, we use a single stack of the residual
block with weight normalization. The TCN layer is followed
by two dense layers and a dropout layer after each of them.
We flatten the features from the last dropout layer and then
connect it to the prediction layer.

c) FFN: For FeedForward Neural network(FFN), we use
raw IMU data as input. Two dense layers with a dropout after
each one is used. Features from the last dropout layer are
flattened and connected to the prediction layer.

d) Bi-LSTM: We use two bidirectional LSTM layers,
where each one is followed by a dropout layer. After the
dropout layer, two dense layers, each one followed by a
dropout, are used, flattened, and connected to the prediction
layer.

e) Conv2D: We derive Conv2D architecture from GRU-
Conv2D-Net by discarding the branch of GRU-Net (Fig. 2).

IV. EXPERIMENTS

A. Dataset Description

This paper uses two publicly available datasets [43], [44] to
build Kinetics-FM-DLR-Ensemble-Net for the joint moment
and GRFs estimation.

1) Dataset A [43]: Twenty subjects’ data (8 females and
12 males, age: 21.7 ± 3.65 years, height: 1.70 ± 0.07 m,
weight: 68.21 ± 11.52 Kg) are used for model training,
discarding two subjects (AB06, AB20) because of the absence
of GRFs for level-ground condition (AB20) and IMU data
mismatch (AB06) comparing to rest of the subjects. This
dataset is comprised with four locomotion modes, i.e., tread-
mill walking, level-ground walking, ramp ascent/descent, and
stair ascent/descent. Treadmill walking was collected for 28
different speeds ranging from 0.5 to 1.85 m/s in 0.05 m/s
increments across seven trials (four speeds per trial). Level-
ground walking data was collected for 30 circuits–5 clockwise
and 5 counterclockwise for self-selected slow, normal, and fast
speed, which includes both straight walking and turning. In
stair walking, the subject was walking on a six-step stair-case
with four different stair heights. All the subjects completed a
total of 40 trials with a set of five trials starting with their
instrumented leg (right leg). Four IMU sensors (thigh, shank,
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TABLE I
HYPERPARAMETERS OF DIFFERENT LAYERS FOR DATASET A, DATASET

B SEPARATED BY A COMMA.

Unit GRU-Net
GRU-

Conv2D-
Net

GRU-
Conv1D-

Net
Fusion
Module

Unit: 512,
512

Unit: 512,
512

Unit: 512,
512

GRU-1
Dropout:
0.1 (0.5),
0.3 (0.25)

Dropout:
0.1 (0.5),
0.3 (0.3)

Dropout:
0.1 (0.5),
0.3 (0.3)

NA

Unit: 256,
256

Unit: 256,
256

Unit: 256,
256

GRU-2
Dropout:
0.1 (0.5),
0.3 (0.25)

Dropout:
0.1 (0.5),
0.3 (0.3)

Dropout:
0.1 (0.5),
0.3 (0.3)

NA

Filter: 256,
256

Filter: 256,
256

Conv-
olutional-1 NA Kernel: 5X3,

5X3
Kernel: 3,

3 NA
Pool: 2X2,

2X2
Pool: 2,

2
Strides: 1X1,

1X1
Strides: 1,

1
Filter: 256,

256
Filter: 256,

256
Conv-

olutional-2 NA Kernel: 5X3,
5X3

Kernel: 3,
3 NA

Pool: 2X2,
2X2

Pool: 2,
2

Strides: 1X1,
1X1

Strides: 1,
1

Filter: 512,
512

Filter: 512,
512

Conv-
olutional-3 NA Kernel: 5X3,

5X3
Kernel: 3,

3 NA
Pool: 2X1,

2X1
Pool: 2,

2
Strides: 1X1,

1X1
Strides: 1,

1
Filter: 512,

512
Filter: 512,

512
Conv-

olutional-4 NA Kernel: 5X3,
5X3

Kernel: 3,
3 NA

Pool: 2X1,
2X1

Pool: 2,
2

Strides: 1X1,
1X1

Strides: 1,
1

Unit: 64,
64

Unit: 64,
64

Unit: 128,
128

FC-1 NA
Dropout:

0.25,
0.05 (NA)

Dropout:
0.25,

NA(NA)

Dropout:
NA (0.4),
NA (0.4)

Unit: 32, 32 Unit: 32, 32 Unit: 7, 5

FC-2 NA
Dropout:

0.25,
0.05 (NA)

Dropout:
0.25,

NA (NA)

Dropout:
NA (0.4),
NA (0.4)

The value of dropout in the first Parentheses is for the model trained with PCC as a
loss function. Other parameters are same for all three loss designs (RMSE, JL, DLR).

and foot), three electronic goniometers (hip, knee, and ankle
joint), and 11 EMG sensors were attached on the instrumented
leg. A set of five trials starting with their non-instrumented leg
for each stair height (4 in, 5 in, 6 in, and 7 in). Sixty ramp trials
were performed with six different inclination angles (5.2°,
7.8°, 9.2°, 11°, 12.4°, and 18°) with a set of five trials for each
starting leg (left and right) on each inclination. Other detailed
information on the protocol of the experiment is described in
[43].

Dataset Pre-processing: IMU data and marker trajectory
data from the motion capture system are collected at 200 Hz.
GRFs data are measured at 1000 Hz, then they are re-sampled
to 200 Hz to synchronize with IMU and motion capture data.
Joint moment is calculated using the Opensim [12] inverse
dynamics tool with motion capture and GRFs data. For level-
ground, stair, and ramp walking, IMUs, joint moments, and
GRFs data are segmented for a full gait cycle based on the
availability of GRFs from the installed force plates on the
instrumented right leg. On the other hand, data segmentation
is not performed for the treadmill walking as GRFs are present

for entire gait cycles. We normalize joint moment data with the
body weight and height of the participants. We also normalize
GRF data with the body weight of the participants. IMU data
are collected from the foot, shank, thigh, and torso. IMU
data from the foot, shank, and thigh are taken to build the
deep learning model while discarding torso data, as we are
primarily focused on predicting lower body joint kinetics. We
use 100 samples (0.5 s) for feature extraction of the deep
learning model, as it provides satisfactory results for kinetics
estimation.

Details of the segmentation of force plates for level-ground,
ramp, and stair conditions are given below. Force plate number
and their position in the laboratory can be found in [43].

a) level-ground: For clockwise level-ground walking, we
segment FP2, Combined, and FP5 force plate data, and for
anti-clockwise level-ground walking, we segment FP5 data.

b) Stair: For stair trials starting with the instrumented leg
(right leg), we segment force plate data of FP1 and FP5 for
the right leg. For the trials starting with the non-instrumented
leg (left leg), we segment FP2, FP3, and FP4.

c) Ramp: For ramp trials starting with the non-
instrumented leg (left leg), we segment force plate data of
FP2 and FP4 for the right leg. For the trials starting with the
instrumented leg (right leg), we segment FP1, FP3, and FP5.

2) Dataset B [44]: Seventeen subjects (all male; age: 23.2
± 1.1 years; height: 1.76 ± 0.06 m; mass: 67.3 ± 8.3 Kg)
participated in that study. Different walking speeds, foot
progression angles, step widths, and trunk sway angles were
used as testing conditions. Subjects initially performed a 2-
minute normal walking trial with a self-selected speed (1.16
± 0.04 m/s), which was used as a baseline to determine
foot progression angle and step width. Three foot progression
angles (baseline–15°, baseline, and baseline+15°) with three
different speeds (self-selected–0.2 m/s, self-selected, and self-
selected+0.2 m/s) were used in combinations to perform nine
trials. In the same way, three step widths (baseline–0.054 m,
baseline, and baseline+0.070 m) and trunk sway angles (4°, 8°,
and 12°) trials with three different speeds were also performed.

Dataset Pre-processing: Infrared-based optical motion cap-
ture data was recorded at 100 Hz with synchronized ground
reaction force data at 1000 Hz. Eight IMU data were collected
with a sampling rate of 100 Hz. In their pre-processed dataset,
they have provided 3D GRFs with the same number of samples
as IMU and joint moments. As they have only provided KAM,
KFM, and 3D GRFs, we use these variables to build our
algorithm. In the dataset, zeros are appended at the end of
shorter steps to synchronize with the longest steps with a
length of 152. We remove those extra zeros from the shorter
steps and use the rest of the dataset to build our algorithm.

B. Implementation Details
We train all of our models in Keras with a TITAN Xp

GPU (NVIDIA, CA). The Kinetics-FM-DLR-Ensemble-Net is
trained with a run time of 20 hours (two hours per bootstrap
sample) for Dataset A and of 4 hours (24 minutes per bootstrap
sample) for Dataset B. Adam [48] is used as the optimizer.
All the models with RMSE loss are run for 40 epochs, and
models with PCC loss are run for 55 epochs with early
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TABLE II
MEAN AND STANDARD DEVIATION OF NRMSE AND PCC VALUES OF JOINT MOMENTS AND 3D GRFS FOR DIFFERENT MODELS WITH THREE

DIFFERENT LOSS DESIGN APPROACHES (RMSE, JL, DLR) IN ENTIRE WALKING CONDITIONS FOR DATASET A.

NRMSE PCC
Models RMSE JL DLR RMSE JL DLR

GRU-Net 5.18 ± 0.97∗ 5.26 ± 0.78∗ 4.78 ± 1.08∗ 0.897 ± 0.039∗ 0.896 ± 0.030∗ 0.916 ± 0.043∗

Conv2D-Net 5.74 ± 0.95∗ 5.75 ± 0.92∗ 5.46 ± 0.97∗ 0.860 ± 0.027∗ 0.861 ± 0.029∗ 0.890 ± 0.028∗

Conv1D-Net 5.72 ± 0.85∗ 5.70± 0.89∗ 5.37 ± 1.04∗ 0.856 ± 0.027∗ 0.859 ± 0.028∗ 0.890 ± 0.027∗

GRU-Conv2D-Net 5.29 ± 1.08∗ 5.32 ± 0.79∗ 4.72 ± 1.08∗ 0.891 ± 0.040∗ 0.892 ± 0.029∗ 0.918 ± 0.043∗

GRU-Conv1D-Net 5.18 ± 0.93∗ 5.16 ± 0.84∗ 4.78 ± 0.99∗ 0.898 ± 0.036∗ 0.895 ± 0.028∗ 0.917 ± 0.040∗

Conv2D-Conv1D-Net 5.67 ± 0.91∗ 5.28 ± 0.88∗ 5.19 ± 0.88∗ 0.864 ± 0.028∗ 0.895 ± 0.028∗ 0.906 ± 0.040∗

Kinetics-Sub-Net-1 4.91 ± 0.86∗ 5.31 ± 0.84∗ 4.68 ± 1.40∗ 0.909 ± 0.032∗ 0.893 ± 0.030∗ 0.919 ± 0.052∗

Kinetics-Sub-Net-2 4.99 ± 0.87∗ 4.98 ± 0.76∗ 4.71 ± 0.81∗ 0.905 ± 0.040∗ 0.905 ± 0.029∗ 0.919 ± 0.034∗

Kinetics-Sub-Net-3 5.02 ± 0.94∗ 4.99 ± 0.83∗ 4.68 ± 0.93∗ 0.906 ± 0.036∗ 0.904 ± 0.029∗ 0.921 ± 0.036∗

Kinetics-Net 4.88 ± 0.90∗ 4.96 ± 0.82∗ 4.64 ± 1.07∗ 0.910 ± 0.034∗ 0.906 ± 0.029∗ 0.922 ± 0.041
Kinetics-FM-Net 4.72 ± 0.92∗ 4.70 ± 0.92∗ 4.49 ± 0.82 0.915 ± 0.033∗ 0.915 ± 0.031∗ 0.923 ± 0.030

Bold numbers represent the result of Kinetics-FM-Net which has the best performance in NRMSE and PCC. * denotes a significant difference of NRMSE and PCC
between Kinetic-FM-DLR-Net with the rest of the models.

TABLE III
HYPERPARAMETERS OF DIFFERENT LAYERS OF SOTA MODELS

Model Hyperparameters Dataset A Dataset B
Number of

Layers 5 3

FFN-HF Units 1024, 512,
256, 128, 64 512, 256, 128

Dropout
rate

0.05, 0.05,
0.05, 0.05, 0.05 0.05, 0.05, 0.05

Kernel Size 3 3
Filter 128 64

Dilations 1, 2, 4, 8, 16 1, 2, 4, 8
Dropout

rate 0.05 0.05

TCN Number
of stacks 1 1

Number of
Dense layer 2 2

Unit 64, 32 64, 32
Dropout

rate 0.10, 0.10 0.05, 0.05

Number
of Layers 2 2

FFN Units 128, 64 128, 64
Dropout

rate 0.10, 0.10 0.05, 0.05

Number of
Bi-LSTM

layers
2 2

Units 128, 64 128, 64

Bi-LSTM Dropout
rate 0.50, 0.50 0.50, 0.50

Number of
Dense layer 2 2

Unit 128, 64 128, 64
Dropout

rate 0.25, 0.25 0.10, 0.10

stopping callbacks (patience of 15 epochs). The best model’s
weights are restored based on the best values (minimum loss)
of patience epochs (15) on validation data. All the models
are trained with a batch size of 64. We mainly use two loss
functions, i.e. LRMSE , LPCC for training. Joint Loss (LJL)
is derived using these two loss functions with the following
equation.

LJL = LRMSE + W × LPCC (6)

In Table I, III, we present all the hyperparameters of different
layers of Kinetics-FM-DLR-Net and SOTA models respec-
tively.
C. Evaluation Procedures

Leave-one-subject out cross validation is implemented to
assess the performance of all the models. Excluding the test
subject from the training data ensures proper validation as

including test subject data in the training set can yield better
model performance as the model can understand the relation
between IMU and kinetics for that specific subject. For the
performance measurement, we use two metrics– Normalized
RMSE (NRMSE) and PCC. To get NRMSE, we normalize
RMSE by the range (difference between maximum and min-
imum value) of corresponding experimentally measured GRF
and directly calculated joint moments. We conduct Repeated-
Measures Analysis of Variance (ANOVA) with a least signifi-
cant difference correction post hoc test for NRMSE and PCC
separately with a p-value less than 0.05 to determine if our
proposed method significantly improves the kinetics estimation
compared to other methods.

V. RESULTSA. Model Ablation
In Table II and IV, we show the ablation study on our model

and report the NRMSE and PCC values for kinetics estimation
with different loss designs. 11 models trained with three loss
designs result in a total of 33 models. We perform statistical
analysis to validate whether our final proposed model Kinetics-
FM-DLR-Net (Kinetics-FM-Net with DLR loss design) sig-
nificantly improves kinetics estimation accuracy compared to
the rest of the 32 models (Table II and IV). For both datasets
and evaluation metrics (NRMSE, PCC), overall Kinetics-FM-
DLR-Net significantly outperforms rest of the models.
B. Fusion Module (FM)

Our designed fusion model that assigns proper weight to
the prediction of primary models (GRU-Net, GRU-Conv2D-
Net, and GRU-Conv1D-Net) increases joint moments and
GRFs prediction in all walking conditions. Table II and IV
demonstrates that integrating the FM in Kinetics-Net decreases
the mean NRMSE and PCC for both datasets.
C. Double Loss Regression (DLR)

We find that our proposed DLR has the superiority in
performance over RMSE and JL design for all the models
(Table II and IV). Although we initially design DLR to
increase PCC of kinetics prediction, we have ’Double Reward’
with DLR as it improves both NRMSE and PCC.

D. Sensor Combination
We use different combinations of sensors and apply

Kinetics-FM-DLR-Net to see how performance changes due to
different sensor locations. We implement statistical analysis to
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TABLE IV
MEAN AND STANDARD DEVIATION OF NRMSE AND PCC VALUES OF JOINT MOMENTS AND 3D GRFS FOR DIFFERENT MODELS WITH THREE

DIFFERENT LOSS DESIGN APPROACHES (RMSE, JL, DLR) IN ENTIRE WALKING CONDITIONS FOR DATASET B.

NRMSE PCC
Models RMSE JL DLR RMSE JL DLR

GRU-Net 8.14 ± 0.75∗ 8.08 ± 0.71∗ 8.05 ± 0.71∗ 0.864 ± 0.031∗ 0.865 ± 0.029∗ 0.866 ± 0.032∗

Conv2D-Net 8.16 ± 0.64∗ 8.20 ± 0.72∗ 8.09 ± 0.61∗ 0.862 ± 0.031∗ 0.861 ± 0.031∗ 0.865 ± 0.033∗

Conv1D-Net 7.98 ± 0.66∗ 8.02 ± 0.72∗ 7.96 ± 0.66∗ 0.868 ± 0.029∗ 0.869 ± 0.029∗ 0.869 ± 0.031∗

GRU-Conv2D-Net 7.88 ± 0.70∗ 7.84 ± 0.62∗ 7.80 ± 0.68∗ 0.869 ± 0.031∗ 0.869 ± 0.030∗ 0.872 ± 0.030∗

GRU-Conv1D-Net 7.92 ± 0.75∗ 7.87 ± 0.70∗ 7.87 ± 0.69∗ 0.871 ± 0.030∗ 0.870 ± 0.030∗ 0.874 ± 0.029∗

Conv2D-Conv1D-Net 8.01 ± 0.75∗ 7.93 ± 0.74∗ 7.94 ± 0.73∗ 0.869 ± 0.030∗ 0.870 ± 0.029∗ 0.871 ± 0.029∗

Kinetics-Sub-Net-1 7.75 ± 0.68∗ 7.74 ± 0.70∗ 7.70 ± 0.72∗ 0.874 ± 0.029∗ 0.875 ± 0.029∗ 0.876 ± 0.031∗

Kinetics-Sub-Net-2 7.80 ± 0.65∗ 7.79 ± 0.69∗ 7.75 ± 0.67∗ 0.874 ± 0.029∗ 0.875 ± 0.028∗ 0.877 ± 0.029
Kinetics-Sub-Net-3 7.71 ± 0.67∗ 7.71 ± 0.74∗ 7.69 ± 0.64∗ 0.877 ± 0.028∗ 0.876 ± 0.029∗ 0.878 ± 0.029∗

Kinetics-Net 7.69 ± 0.65∗ 7.79 ± 0.72∗ 7.62 ± 0.67 0.877 ± 0.029∗ 0.877 ± 0.028∗ 0.881 ± 0.029∗

Kinetics-FM-Net 7.60 ± 0.73∗ 7.64 ± 0.71 7.54 ± 0.70 0.881 ± 0.029∗ 0.881 ± 0.029∗ 0.884 ± 0.029
Bold numbers represent the result of Kinetics-FM-Net that has the best performance in NRMSE and PCC. * denotes a significant difference of NRMSE and PCC

between Kinetic-FM-DLR-Net with the rest of the models.

TABLE V
EFFECT OF VARYING NUMBER OF BOOTSTRAP SAMPLE ON THE MEAN

AND STANDARD DEVIATION OF NRMSE FOR KINETICS ESTIMATION.

Dataset A Dataset B
No NRMSE PCC NRMSE PCC
1 4.55 ± 0.84 0.922 ± 0.032 7.54 ± 0.70 0.882 ± 0.029
2 4.42 ± 0.82 0.925 ± 0.031 7.50 ± 0.71 0.884 ± 0.030
3 4.38 ± 0.82 0.927 ± 0.030∗ 7.49 ± 0.72 0.885 ± 0.030∗

4 4.35 ± 0.82∗ 0.927 ± 0.030∗ 7.46 ± 0.72∗ 0.886 ± 0.030∗

5 4.33 ± 0.82∗ 0.928 ± 0.029∗ 7.45 ± 0.71∗ 0.886 ± 0.030∗

6 4.32 ± 0.82∗ 0.928 ± 0.029∗ 7.44 ± 0.71∗ 0.886 ± 0.030∗

7 4.32 ± 0.81∗ 0.928 ± 0.029∗ 7.44 ± 0.71∗ 0.886 ± 0.030∗

8 4.32 ± 0.81∗ 0.928 ± 0.029∗ 7.44 ± 0.71∗ 0.886 ± 0.030∗

9 4.32 ± 0.82∗ 0.928 ± 0.029∗ 7.43 ± 0.71∗ 0.886 ± 0.030∗

10 4.32 ± 0.81∗ 0.929 ± 0.029∗ 7.43 ± 0.71∗ 0.886 ± 0.030∗
Bold numbers represent the result of Kinetics-FM-Net which has the best performance
in NRMSE and PCC. * denotes a significant difference of NRMSE and PCC between

Kinetic-FM-DLR-Net with rest of the models.

see if the combination of all three sensors (Shank-Foot-Thigh)
can significantly improve the result compared to other sensor
combinations. Compared to a single sensor, the Shank-Foot-
Thigh sensor significantly improves the kinetics prediction. We
have a marginal improvement compared to the combination of
the two sensors, which is statistically insignificant. However,
as Shank-Foot-Thigh sensors have the lowest NRMSE and
highest PCC, we proceed with the combination of the Shank-
Foot-Thigh sensors for the implementation of bagging.
E. Bagging (Ensemble Learning)

Kinetics-FM-DLR-Ensemble-Net, created from Kinetics-
FM-DLR-Net with the application of bagging techniques,
reduces mean NRMSE from 4.49 to 4.32 for Dataset A,
from 7.54 to 7.43 for Dataset B and increases mean PCC
from 0.923 to 0.929 for Dataset A, from 0.884 to 0.886
for Dataset B compared with Kinetics-FM-DLR-Net. Table
V demonstrates the performance of adding different numbers
of bagging samples to the Kinetics-FM-DLR-Net. Statistical
analysis is performed to validate in which bootstrap sample
number we achieve significant performance improvement over
Kinetic-FM-DLR-Net. After adding four bootstrap samples in
bagging techniques, there are significant improvements in both
datasets. We continue to add samples of up to ten and eventu-
ally stopped the experiment due to increasing complexity and
saturation in performance.
F. Parameter Sweep (W)

Typically, when we combine two loss functions to create
joint loss, the weight of the loss is varied to ensure the best

TABLE VI
EFFECT OF VARYING NUMBER OF SENSORS ON THE MEAN AND

STANDARD DEVIATION OF NRMSE FOR KINETICS ESTIMATION.

Dataset A Dataset B
Sensor NRMSE PCC NRMSE PCC
Foot 5.06 ± 1.06∗ 0.904 ± 0.036∗ 7.93 ± 0.59∗ 0.867 ± 0.034∗

Shank 4.65 ± 0.82∗ 0.920 ± 0.029 7.66 ± 0.63 0.876 ± 0.033∗

Thigh 4.86 ± 0.92∗ 0.913 ± 0.028∗ 7.82 ± 0.78∗ 0.872 ± 0.032∗
Foot-
Shank 4.56 ± 0.78 0.922 ± 0.029 7.55 ± 0.71 0.880 ± 0.030∗

Shank-
Thigh 4.50 ± 0.85 0.922 ± 0.027 7.59 ± 0.73 0.880 ± 0.031∗

Foot-
Thigh 4.61 ± 0.93 0.919 ± 0.030∗ 7.65 ± 0.83 0.880 ± 0.030∗

Shank-
Foot-
Thigh

4.49 ± 0.82 0.923 ± 0.030 7.54 ± 0.70 0.884 ± 0.029

Bold numbers represent the result of Kinetics-FM-Net which has the best performance
in NRMSE and PCC. * denotes a significant difference of NRMSE and PCC between

Shank-Foot-Thigh with the rest of the sensor combinations.

performance gain. In Table II and IV, we only show the results
of JL with W = 1 (Equation 6), which may not give the
best performance from the JL. To demonstrate how varying
W impacts performance compared with our DLR loss design,
we change the W in LJL (Equation 6) and summarize the
results in Table VII. The rationale of choosing the specific
value of W is to make the actual value of LPCC to be one-
fifth, one-fourth, one-third, half, equal, two-times, three-times,
four-times, and five times of LRMSE , which will ensure a
wide range of weight on LPCC to make sure valid comparison
of joint loss. We perform statistical analysis to determine if
our model Kinetics-FM-DLR-Net significantly performs better
than Kinetics-FM-Net with weighted joint loss. For Dataset
A, we do not achieve significant improvement when W = 8
and W = 4 for PCC. For the rest of the cases of Dataset A
including Dataset B, our model significantly outperforms the
model with different joint losses.

G. Comparison with State-Of-The-Art
In Table VIII, we show the comparison of our results

with the state-of-the-art deep learning algorithm for kinetics
estimation. For Dataset A, we have an improvement of up to
24.74% in NRMSE and 8% in PCC, and for Dataset B, an
improvement of up to 11.54% in NRMSE and 3.38% in PCC
are observed.

Table IX and X show the prediction outcomes of Kinetics-
FM-DLR-Ensemble-Net in each walking condition for Dataset
A and Dataset B respectively. As an example, we plot one gait
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TABLE VII
MEAN AND STANDARD DEVIATION OF ENTIRE WALKING NRMSE

RESULTS FOR PARAMETER SWEEP (W ) OF LJL FOR

KINETICS-FM-DLR-NET.

Dataset A Dataset B
W NRMSE PCC W NRMSE PCC
4/5 4.71 ± 0.86∗ 0.914 ± 0.032∗ 3 8.40 ± 0.80∗ 0.858 ± 0.034∗

1 4.72 ± 0.82∗ 0.915 ± 0.032∗ 15/4 8.34 ± 0.79∗ 0.857 ± 0.030∗

4/3 4.72 ± 0.78∗ 0.914 ± 0.031∗ 5 8.30 ± 0.66∗ 0.858 ± 0.030∗

2 4.67 ± 0.75∗ 0.916 ± 0.031∗ 15/2 8.21 ± 0.77∗ 0.861 ± 0.033∗

4 4.68 ± 0.83 0.916 ± 0.033∗ 15 8.20 ± 0.72∗ 0.862 ± 0.035∗

8 4.65 ± 0.90 0.916 ± 0.031 30 8.24 ± 0.88∗ 0.863 ± 0.033∗

12 4.67 ± 0.84∗ 0.917 ± 0.031∗ 45 8.27 ± 0.73∗ 0.864 ± 0.029∗

16 4.74 ± 0.86∗ 0.915 ± 0.032∗ 60 8.21 ± 0.85∗ 0.866 ± 0.031∗

20 4.72 ± 0.81∗ 0.917 ± 0.031∗ 75 8.16 ± 0.79∗ 0.867 ± 0.032∗
Bold numbers represent the result of Kinetics-FM-Net which has the best performance
in NRMSE and PCC. * denotes a significant difference of NRMSE and PCC between

Kinetic-FM-DLR-Net with the rest of the models.

TABLE VIII
COMPARISON OF THE KINETICS ESTIMATION PERFORMANCE OF OUR

ALGORITHM WITH STATE-OF-THE-ART DEEP LEARNING METHOD OF

KINETICS ESTIMATION.

Dataset A Dataset B
Model NRMSE PCC NRMSE PCC

FFN (HF) [29] 5.59 ± 0.85∗ 0.873 ± 0.029∗ 8.40 ± 0.80∗ 0.858 ± 0.034∗

TCN [28] 5.29 ± 0.98∗ 0.892 ± 0.032∗ 8.34 ± 0.79∗ 0.857 ± 0.030∗

FFN [39], [31] 5.38 ± 0.89∗ 0.888 ± 0.034∗ 8.30 ± 0.66∗ 0.858 ± 0.030∗

Bi-LSTM [31], [34] 5.05 ± 0.94∗ 0.901 ± 0.033∗ 8.21 ± 0.77∗ 0.861 ± 0.033∗

Conv2D [38] 5.74 ± 0.95∗ 0.860 ± 0.027∗ 8.20 ± 0.72∗ 0.862 ± 0.035∗

Kinetics-FM-DLR
Ensemble-Net 4.32 ± 0.81 0.929 ± 0.029 7.43 ± 0.71 0.886 ± 0.03

Bold numbers represent the result of Kinetics-FM-Net which has the best performance
in NRMSE and PCC. * denotes a significant difference of NRMSE and PCC between

Kinetic-FM-DLR-Ensemble-Net with the rest of the models.

cycle of each kinetics component for Dataset A and stance
phase of each kinetics component of Dataset B in each walking
condition to demonstrate a sample qualitative comparison of
ground truth and prediction from the model (Fig. 5).

VI. DISCUSSION

This study estimates lower extremity joint moments as
well as anterior-posterior, vertical, and mediolateral GRFs in
treadmill, level-ground, stairs, and ramp walking conditions
using three IMU sensors on the thigh, shank, and foot using
our Kinetics-FM-DLR-Ensemble-Net. This is the first study
to implement GRFs and joint moments estimation on multiple
walking conditions using IMU sensors via deep learning. We
apply our algorithm to two datasets; Dataset A [43] with
a good number of subjects, multiple walking environments,
multiple walking speeds, multi-variable ramp angles, and stair
heights, and Dataset B [44] with different treadmill conditions.
We also perform validation of our model on an unseen
subject (leave-one-subject out cross-validation), which also
makes sure that our model is not just memorizing a specific
subject’s IMU and kinetics relation. The extensive training
sets, generalized and versatile capacity of our novel algorithm,
and rigorous validations enable the most accurate estimates of
joint moments and GRFs for new testing subjects compared
with the other state-of-the-art deep learning algorithms. In
addition to this, as we establish and evaluate our model on
the public datasets, other researchers can validate our model
with their algorithm and also have the potential to improve
our contribution in this field further.

By leveraging different conventional deep learning layers,
(i.e., 1D, 2D convolutional, GRU, and dense layers) this paper

proposes an end-to-end model Kinetics-Net. In Table II and
IV, we demonstrate extensive model ablation with different
loss function designs to validate the use of different layers in
our model in two publicly available datasets. Firstly, we build
three simple models GRU-Net, Conv1D-Net, and Conv2D-Net
by utilizing convolutional, GRU, and dense layers. Then, we
concatenate features of two models from the combination of
these three models to build GRU-Conv2D-Net, GRU-Conv1D-
Net, and Conv2D-Conv1D-Net. From the results, we have
an improvement in kinetics estimation performance when a
combination of features of two models is used. This vali-
dates our approach of adding features from two models to
improve the prediction. From the first six models in Table II
and IV, we dismiss Conv1D-Net, Conv2D-Net, and Conv2D-
Conv1D-Net for further model development due to their poor
performance. Later, we use GRU-Net, GRU-Conv2D-Net, and
GRU-Conv1D-Net to build three Kinetics-Sub-Nets using the
average prediction of two models from these three models in
an end-to-end manner. We see a further improvement in results
by creating those Sub-Nets. Finally, we use GRU-Net, GRU-
Conv2D-Net, and GRU-Conv1D-Net and take the average of
these three models to create an end-to-end model Kinetics-
Net, which outperforms all the previous models. We further
add FM and DLR modules, which significantly improve the
kinetics estimation compared to other models. This validates
our approach of adding different layers to create a more
complex model for performance improvement.

Although many studies have applied deep learning al-
gorithms to estimate kinetics [28]–[37], [37]–[40], a direct
comparison of their results with ours cannot be valid due to
the different sensor modalities, number of sensors, walking en-
vironments, and number of subjects. Moreover, those datasets
are not publicly available, which makes it challenging to apply
our algorithm to make the comparisons. To address this issue,
we adopt their machine-learning algorithms and applied them
to the Dataset A and Dataset B. However, directly applying
their specific machine learning architecture to this dataset may
not be a valid method, as those models are specifically built
for their dataset and inputs (variable number and multi-modal
sensors). For this reason, we use the same types of layers
such as LSTM, TCN, Conv2D, FFN, etc, and optimize the
hyperparameters of those models manually for our dataset
to achieve high performance to ensure valid comparison. In
Table VIII, we show the comparison of the performance of the
state-of-the-art deep learning algorithm for kinetics with ours.
Our algorithm Kinetics-FM-DLR-Ensemble-Net significantly
outperforms those algorithms by a large margin, which proves
the effectiveness of our model over the conventional deep
learning method for kinetics estimation.

From Table IX, the performance of the level-ground con-
dition is inferior to the other walking condition. The main
reason for this is the lack of training data for the level-
ground condition. As we segment the dataset of level-ground
conditions, we have limited numbers of right leg strikes from
the walking circuit, which results in fewer data (4% of the total
dataset) compared to other walking environments. Prediction
from the treadmill trials is highly correlated with the ground
truth with a mean PCC of 0.945 compared to trials of other
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TABLE IX
MEAN AND STANDARD DEVIATION OF NRMSE AND PCC VALUES OF JOINT MOMENTS AND 3D GRFS OF DIFFERENT WALKING ENVIRONMENTS

FOR FINAL PROPOSED MODEL KINETICS-FM-DLR-ENSEMBLE-NET FOR DATASET A.

Mertric Scene
Hip

Flexion
Moment

Hip
Abduction
Moment

Knee
Moment

Ankle
Moment

Medio-
lateral
GRF

Vertical
GRF

Anterior-
Posterior

GRF
Mean

Treadmill 3.67 ± 1.40 6.03 ± 2.28 3.25 ± 1.31 3.20 ± 2.01 4.12 ± 1.94 4.42 ± 2.91 2.86 ± 1.01 6.23 ± 1.08
NRMSE Level-ground 6.06 ± 2.27 8.16 ± 2.70 5.48 ± 1.97 5.59 ± 2.49 8.65 ± 1.34 5.49 ± 4.36 3.77 ± 1.30 8.52 ± 1.57

Ramp 5.64 ± 1.86 5.69 ± 2.09 5.05 ± 2.05 4.35 ± 2.46 3.12 ± 0.99 4.34 ± 2.81 3.46 ± 0.94 5.69 ± 1.22
Stair 4.06 ± 1.43 4.51 ± 1.55 4.35 ± 1.86 3.96 ± 2.70 3.07 ± 0.88 4.05 ± 1.88 2.56 ± 0.43 6.95 ± 1.03

Treadmill 0.948 ± 0.031 0.925 ± 0.046 0.917 ± 0.040 0.966 ± 0.038 0.917 ± 0.044 0.977 ± 0.037 0.967 ± 0.031 0.945 ± 0.032
PCC Level-ground 0.765 ± 0.177 0.810 ± 0.131 0.718 ± 0.191 0.868 ± 0.117 0.826 ± 0.095 0.957 ± 0.088 0.922 ± 0.078 0.838 ± 0.110

Ramp 0.895 ± 0.051 0.899 ± 0.061 0.912 ± 0.054 0.930 ± 0.061 0.856 ± 0.061 0.979 ± 0.042 0.952 ± 0.040 0.918 ± 0.043
Stair 0.870 ± 0.075 0.922 ± 0.038 0.928 ± 0.046 0.944 ± 0.042 0.884 ± 0.043 0.984 ± 0.024 0.927 ± 0.029 0.923 ± 0.032

TABLE X
MEAN AND STANDARD DEVIATION OF NRMSE AND PCC VALUES OF JOINT MOMENTS AND 3D GRFS OF TREADMILL WALKING FOR FINAL

PROPOSED MODEL KINETICS-FM-DLR-ENSEMBLE-NET FOR DATASET B.

Mertric KFM KAM
Medio-
lateral
GRF

Vertical
GRF

Anterior-
Posterior

GRF
Mean

NRMSE 7.11 ± 1.47 8.27 ± 1.72 7.49 ± 1.09 7.86 ± 1.1 6.42 ± 0.5 7.43 ± 0.71
PCC 0.865 ± 0.09 0.805 ± 0.055 0.885 ± 0.02 0.959 ± 0.011 0.917 ± 0.014 0.886 ± 0.03

scenes, which is due to the collection of data in a repetitive
manner with strictly controlled walking speeds for each of the
participants.

We use different configurations of sensor placement in our
model to identify how kinetics estimation performance varies.
We find that IMU on the shank has a better performance com-
pared to the sensor on thigh and foot location on both datasets
when a single sensor is used for algorithm construction. One
plausible explanation for inaccuracy while using only the foot
sensor is due to the lack of movement of the foot (resulting in
a lack of IMU signal) during the stance phase when the foot
is firmly constrained to the ground. In addition to this, the
thigh segment may have greater IMU signal noise due to the
compliant surface and movement of muscle whereas the frontal
area of shank may have less noise due to the tibia’s boney
surface. Moreover, we achieve more accurate results when
the IMU sensor on the shank is combined with the thigh and
foot sensors for both datasets, which implies that our model is
able to perform effectively with multiple sensor configurations.
Overall, there are no significant differences between Shank-
Foot-Thigh and Foot-Shank, Shank-Thigh. This will help us to
reduce the number of sensors without sacrificing performance
for kinetics estimation.

Although we provide the most accurate prediction of joint
moments and GRFs with extensive walking conditions, speeds,
good number of subjects, and two independent public datasets,
there are several limitations on this study. We use a relatively
large number of IMU sensors (three) to estimate single limb
kinetics. However, to ensure practicality and users’ comfort,
we need to minimize the number of IMU sensors. More
specifically, if we can implement only shoe or foot mounted
sensors similar to kinematics estimation in [49] or using
insoles such as in [50], it would be more helpful to maintain
those sensors. Since single limb joint moments and GRFs are
affected by the contralateral limb during the early stance phase
and terminal stance phase, incorporating IMU information
on both limbs would gather more meaningful knowledge
of walking dynamics, and this can improve the prediction

further. Additionally, adding six sensors on both feet would
help to acquire both limbs’ kinetics information. Ensemble
learning–bagging is added to improve the prediction. However,
it increases the computational complexity as the model is
repeated ten times. If we want to make a trade-off between
accuracy and computation complexity, we can avoid using
bagging techniques in our model.

As the level-ground condition has the highest error com-
pared to other conditions, a direction for future improvement
may be to augment the level-ground dataset by repetition
and make it roughly equal to other walking environments.
Although we have decent accuracy for healthy individuals,
patients with musculoskeletal issues may not have an accurate
outcome from the algorithm due to the absence of patients’
training data. Moreover, our proposed approach relies only on
IMU data while ignoring static and anthropometric properties
of the individual. As this can provide essential information
for representing the dynamic model of human kinetics, fusing
this information into the model has the potential to improve
the performance of the prediction. Thus, a probable future
direction to address the limitation is to fuse deep learning-
based features of static variables such as segment length,
mass matrix of the segments, etc. to the model using any
dense fully connected layers. IMU placement errors such as
orientation and position errors can affect the accuracy of
moment estimation [44] or significantly reduce GRF accuracy
[51] when machine learning based data-driven methods are
used. Our model may suffer the same performance degradation
due to sensor placement errors. A future research direction
to tackle the problem is to train the model with a simulated
dataset of different placement and orientations of the IMU data
with corresponding kinetics information.

As we use extensive datasets with our novel algorithm,
our outcome provides reliable estimates of joint moment
and ground reaction forces compared with state-of-the-art
studies. Thus, our algorithm can be used to measure the
joint kinetics and 3D ground reaction forces in the clinic or
other research lab where they cannot accommodate prohibitive
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Fig. 5. A sample plot for a single gait cycle for different walking conditions along with the corresponding NRMSE and PCC of subject AB25 in
Dataset A and sample plot of stance phase for kinetics components in Dataset B. Blue lines represent experimentally collected and normalized joint
moments and GRFs. Red lines present estimated results using Kinetic-FM-DLR-Ensemble-Net.

measurement modalities such as motion capture cameras, and
overground force plates. To guarantee reliable performance,
users need to set up the IMU with the protocol mentioned
in [43], [44]. Our model also has the potential to serve as a
platform that enables updates or modifications via retraining
of the model to accommodate kinetics estimation of different
subject populations who have deviated kinetics due to mus-
culoskeletal issues or aging in the future. Our model can be
found at Github (https://github.com/Sanzid-Priam/Estimation-
of-Kinetics-using-Kinetics-FM-DLR-Ensemble-Net).

VII. CONCLUSION

This study proposes a novel deep learning model to estimate
kinetics in multiple walking conditions and speeds. From our
extensive evaluation of our developed model, we justify our
design choices. This accurate estimation will enable tracking
of kinetics parameters outside the lab, removing the limitation
of traditional motion capture cameras and floor-embedded
force plate based kinetics estimation.

REFERENCES

[1] L. Woolnough, A. Pomputius, and H. K. Vincent, “Juvenile idiopathic
arthritis, gait characteristics and relation to function,” Gait & Posture,
vol. 85, pp. 38–54, 2021.

[2] M. Hall, S. Chabra, N. Shakoor, S. E. Leurgans, H. Demirtas, and K. C.
Foucher, “Hip joint moments in symptomatic vs. asymptomatic people
with mild radiographic hip osteoarthritis,” Journal of Biomechanics,
vol. 96, p. 109347, 2019.

[3] A. Chang, K. Hayes, D. Dunlop, J. Song, D. Hurwitz, S. Cahue,
and L. Sharma, “Hip abduction moment and protection against medial
tibiofemoral osteoarthritis progression,” Arthritis & Rheumatism, vol. 52,
no. 11, pp. 3515–3519, 2005.

[4] T. Lenzi, M. C. Carrozza, and S. K. Agrawal, “Powered hip exoskeletons
can reduce the user’s hip and ankle muscle activations during walking,”
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 21, no. 6, pp. 938–948, 2013.

[5] J. P. Walter, D. D. D’Lima, C. W. Colwell Jr, and B. J. Fregly, “De-
creased knee adduction moment does not guarantee decreased medial
contact force during gait,” Journal of orthopaedic research, vol. 28,
no. 10, pp. 1348–1354, 2010.

[6] T. P. Andriacchi and A. Mündermann, “The role of ambulatory me-
chanics in the initiation and progression of knee osteoarthritis,” Current
opinion in rheumatology, vol. 18, no. 5, pp. 514–518, 2006.

[7] M. Alaqtash, T. Sarkodie-Gyan, H. Yu, O. Fuentes, R. Brower, and
A. Abdelgawad, “Automatic classification of pathological gait patterns
using ground reaction forces and machine learning algorithms,” in 2011
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society. IEEE, 2011, pp. 453–457.
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