
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

An Object Deformation-Agnostic Framework for
Human–Robot Collaborative Transportation

Doganay Sirintuna , Member, IEEE, Alberto Giammarino , Member, IEEE,
and Arash Ajoudani , Member, IEEE

Abstract— In this study, an adaptive object deformability-
agnostic human-robot collaborative transportation framework
is presented. The proposed framework enables to combine the
haptic information transferred through the object with the
human kinematic information obtained from a motion capture
system to generate reactive whole-body motions on a mobile
collaborative robot. Furthermore, it allows rotating the objects in
an intuitive and accurate way during co-transportation based on
an algorithm that detects the human rotation intention using the
torso and hand movements. First, we validate the framework with
the two extremities of the object deformability range (i.e., purely
rigid aluminum rod and highly deformable rope) by utilizing a
mobile manipulator which consists of an Omni-directional mobile
base and a collaborative robotic arm. Next, its performance is
compared with an admittance controller during a co-carry task
of a partially deformable object in a 12-subjects user study.
Quantitative and qualitative results of this experiment show that
the proposed framework can effectively handle the transportation
of objects regardless of their deformability and provides intuitive
assistance to human partners. Finally, we have demonstrated the
potential of our framework in a different scenario, where the
human and the robot co-transport a manikin using a deformable
sheet.

Note to Practitioners—Transportation of objects which requires
the cooperation of multiple partners, is a common task in
industrial settings such as factories and warehouses. The existing
human-robot collaboration solutions for this task have focused
only on purely rigid objects, although deformable objects need
to be carried frequently in real-world applications. In this
paper, we introduce a human-robot collaborative transportation
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framework that can handle objects with different deformability
ranging from purely rigid to highly deformable. In particu-
lar, the proposed framework generates whole-body movements
on a mobile collaborative robot by combining of the haptic
information transmitted through the object and the human
motion information obtained from a motion capture system.
Moreover, the framework includes an intuitive way to rotate
the object during the execution based on human hand and torso
motion. The results of the experiments where objects with various
deformability characteristics were transported in collaboration
with a mobile manipulator demonstrated the high potential of
the proposed approach in a laboratory setting. In the future,
we plan to employ a less expensive vision-based human motion
tracking system instead of the IMU-based system used in this
study. With this change, we will be able to eliminate the need for
wearable sensors from the framework presented, which would
enhance its usability in real-world scenarios.

Index Terms— Physical human–robot interaction, collaborative
object transportation, deformable materials, mobile manipula-
tion, whole-body control.

I. INTRODUCTION

INDUSTRIAL automation is a crucial enabler for improv-
ing productivity and quality, while reducing errors and

waste, and for preparing a response to the rapidly aging
workforce [1]. In this direction, robotic technologies have
been increasingly adopted to replace the human workforce in
several repetitive and simple operations. Nevertheless, robots
of today still lack operational flexibility and intelligence,
typical of humans, which limits their applicability in industrial
environments where high flexibility is also required (e.g.,
logistics). Consequently, workers are still involved in phys-
ically demanding tasks, that might jeopardize their health
and productivity [2]. Building robotic technologies that can
effectively collaborate with humans represents one viable way
to tackle these issues [3].

One frequently encountered task in industrial settings such
as factories, warehouses, and construction sites is the trans-
portation of objects. In some cases, this task can be physically
demanding while requiring a certain level of adaptability to
the surroundings. Moreover, it often requires the cooperation
of multiple partners. Instead of an automated solution to this
problem, collaborative robots can be used to work together
with humans to exploit their cognitive skills in unstructured
environments [4], [5].

Three main challenges can be identified in the literature
on human-robot co-transportation of objects. First, the robot
should effectively share the load without hindering human
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intention [6]. Since humans can easily lead the motion during
collaboration, the robot should be capable of effectively fol-
lowing them. The second one is the well-known translation/
rotation ambiguity [7]. Especially, when long objects are
carried, humans can hardly control both rotations and
translations independently while grasping only one side of
the object. This is due to the coupling between different
degrees of freedom (DoFs) in the object dynamics [8].
Thirdly, the co-transportation of deformable objects repre-
sents a major challenge in this research field. Due to the
incomplete wrenches transmitted through the object, most
haptic-based conventional techniques fall short in this con-
dition. On the other hand, alternative control methods that
exploit other sources of information to enable co-manipulation
of deformable objects are either limited to the type of object
(cloth-type) or oversimplified movements.

In this article, we present a framework for human-robot
co-transportation aiming at tackling the aforementioned three
challenges. Although many studies on co-manipulation have
been proposed in the physical human-robot interaction (pHRI)
literature, to the best of our knowledge, none of them allow
co-carrying objects regardless of their deformability (ranging
from highly deformable to purely rigid) for the tasks involv-
ing both 3D translational movements and rotations. In order
to validate our framework, we use a mobile base robotic
platform, which allows movements over a large workspace.
It consists of a nb DoFs Omni-directional mobile base and
a na DoFs robotic arm with a Force/Torque (F/T) sensor at
its end-effector to measure the wrenches applied throughout
the interaction. In addition, a motion capture (MoCap) system
is employed to track the movements of the human operator
during the co-carrying task. The sensory systems’ choice
is mainly based on the acquisition of adequate information
to enable co-carrying of objects with different deformability
(from highly deformable to purely rigid) or those with different
perceived deformability in different directions of co-carrying
(e.g., a rope that can be relatively rigid when pulled in the
constrained direction, generating pure wrenches, but very loose
in the opposite direction, generating pure twists). In particular,
the contributions of this paper can be considered three-fold:
• The design of an adaptive framework that merges haptic

and human movement information to generate motion
references for a mobile manipulator, enabling it to
co-transport objects independently of their deformability
during collaboration with a human (Fig. 1).

• The development of an algorithm that enables human
partners to convey their intention of rotating an object
to a desired pose in an intuitive and accurate way.

• The experimental validation of the developed system that
includes a comparison with control frameworks which
are limited to the use of either haptic or human motion
information in the extremities of the object deformability
range, a multi-subject cross-gender user study with the
obtained quantitative and qualitative results, and a prac-
tical showcase where the applicability of our framework
has been tested in a challenging scenario.

The original idea of this study was presented in our previous
conference paper [9]. However, significant contributions have

Fig. 1. On the left, human-robot co-transportation of objects having different
deformation characteristics, ranging from highly deformable (e.g., a rope) to
rigid (e.g., an aluminum profile). On the right, the controller type that can deal
with the corresponding object deformability. Haptic-based controllers solely
use haptic feedback to compute the robot desired motion, while teleoperation
frameworks utilize human body movements. We propose an adaptive control
framework that merges haptic and human motion information to enable
collaborative carrying objects irrespective of their deformation characteristics.

been added to this article with respect to the original work,
in order to improve our collaborative transportation framework
and demonstrate its applicability in more detail. First of all,
we introduce a novel human rotation intention algorithm based
on body movements to enable complex co-transportation tasks
that require the rotational motion of the object. Contrary to the
haptic information-based detection algorithms in the literature,
our method is able to function regardless of the object’s defor-
mation characteristics while providing a natural way for users
to communicate their intention during co-transportation. More-
over, in order to explain our developed framework thoroughly,
we performed new experiments by comparing it with the
aforementioned existing approaches during co-transportation
of the two extremities of the object deformability range (i.e.,
purely rigid aluminum rod and highly deformable rope). These
experiments aim at showing that both types of feedback are
essential for an effective co-transportation of objects with
different deformability. Finally, we validated the potential of
our framework with an additional experiment where a manikin
on a deformable sheet was transported in collaboration with a
mobile robot.

The remainder of this article is organized as follows: first,
Section II covers the background literature related to collabo-
rative carrying. The details of the proposed control framework
and the system overview are presented in Sections III and IV.
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Then, in Section V, our controller is demonstrated and
compared to two existing approaches when co-transporting
objects representing the deformability extremes, i.e., a purely
rigid and a highly deformable. Later, Section VI reports the
details of the conducted user study with a partially deformable
object and the obtained quantitative and qualitative results.
Finally, Section VII describes an additional experiment where
the applicability of our framework is shown and Section VIII
discusses the overall framework performance and draws the
conclusions of the study.

II. RELATED WORK

This section presents a literature review about the previously
mentioned challenges (i.e., load sharing, rotation-translation
ambiguity and deformable object manipulation) in the context
of collaborative transportation.

To address the load sharing problem, in [10], a variable
impedance is used to control the robot’s end-effector motion,
where the damping switches between two discrete values based
on end-effector velocity thresholds. Duchaine and Gosselin
also adjust the virtual damping of the controller according to
the human acceleration/deceleration intention which is pre-
dicted by using the time-derivative of the force at the robot’s
end-effector [11]. Then, the same authors extend their previous
work by adding a stability observer that requires an online
estimation of the human arm stiffness [12]. In [13], mass and
damper parameters of a variable admittance control are tuned
online. Here, the issues related to using the time-derivative of
the force as sensor for human intention are highlighted, and
a new criterion for inferring the intended human motion is
presented.

Although the works discussed thus far deal with the load
sharing problem, they assume a follower behaviour of the
robot, which limits the level of proactivity it can achieve.
Conversely, an approach based on programming by demon-
stration (PbD) is used in [14] to show follower and leader
behaviours to a robot during a cooperative lifting task. The
two behaviours are encoded through Gaussian Mixture Models
(GMMs), and Gaussian Model Regression (GMR) is used
to reproduce them during a user study. In [15], a similar
PbD-based framework is also utilized to learn both the position
and the stiffness profile for the impedance-based interaction
model for the collaborative manipulation of rigid objects.
Bussy et al. utilize an admittance control law, where velocity
and position error terms are used inside the admittance law to
let the robot follow pre-defined motion primitives, which are
triggered through heuristics based on velocity thresholds [16],
[17]. Later, this proactive approach is combined with visual
servoing in order to co-transport a rigid table while keeping
a ball on top as a secondary task [18]. In this work, the
vision-based controller is responsible for balancing the ball
by controlling only the height and the roll angle of the side
that the robot carries. The remaining DoFs concerning the
primary co-transportation task are controlled according to the
haptic information, which requires the object to be rigid.
Similarly, Xinbo et al. present a hybrid control framework
using visual and force sensing for collaborative carrying

tasks of rigid objects [19]. This proposed framework is
designed to proactively follow the human operator by esti-
mating the human motion intention. However, this approach
requires the knowledge of the dynamics of the object being
carried.

Regarding the translation/rotation ambiguity, there are two
main approaches used to tackle this issue [20]: virtual con-
straints methods and techniques that consider different motion
modes and switch between them. In [20], the latter approach is
used. The authors define a translation and a rotation mode, and
they present two possible methods to switch between them.
Instead, a virtual non-holonomic constraint is proposed by
Takubo et al. [8], consisting of a virtual wheel located at the
robot’s end-effector. By using this model, lateral movements
are not allowed and the object is moved as if it was positioned
on a cart with fixed passive wheels.

All the previously mentioned works consider just rigid
objects, and only a few studies address the challenge of
co-manipulating deformable objects in the literature [21].
Kruse et al. propose a controller based on a combination
of force and visual feedback for the co-transportation of a
cloth [22]. When the cloth is taut, the force feedback allows
robot compliance. In contrast, when the object is slack due to
human movements, the visual feedback enables the generation
of motions that help the robot recover tautness of the cloth.
Alternatively, some studies exploit the deformation character-
istics of the object based on a model. For instance, a model-
based control framework for translational co-manipulation of
fabrics is presented in [23]. Here, the robot controller tries
to keep the same distance from the human grasping points
obtained by the skeleton tracking via depth camera. The
deformation model of the ply is utilized to filter the generated
twist inputs to avoid movements that can cause fabric stress.
Later, the same approach is extended to include rotational
movements [24]. In another study [25], first, the authors
train a convolutional neural network (CNN) by using depth
images to estimate the displacement-deformation relation of
the fabric. Then, the displacement output of this model is
employed as feedback for the co-transportation controller on-
the-fly. Despite the success of manipulating cloth-type objects,
these previously mentioned approaches can not handle other
deformable materials.

On the other hand, there also exist co-manipulation frame-
works whose applicability is not object-specific. Maeda et al.
present an impedance control method by merging force and
visual feedback where the desired position of the robot
is estimated by a minimum jerk model of human hand
motion [26]. The proposed framework is validated through
a co-transportation of a rubber pipe in a simplistic point-to-
point transportation scenario. However, in a recent work [27],
it is revealed that minimum jerk model is not an appropriate
fit for collaborative manipulation tasks. In another study [28],
DelPreto and Rus design a promising control framework based
on EMG information of the upper arm to assist the human
operator in a collaborative 1D lifting tasks. Nevertheless,
adapting both methods to co-transportation tasks involving
complex movements is not possible.
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Fig. 2. The overall control architecture of the proposed framework.

III. METHODOLOGY

The overall control architecture of the presented system (see
Fig. 2) is composed of two main modules: (1) a Whole-Body
Controller which generates desired joint velocities for the
mobile base robotic platform and (2) an Adaptive Col-
laborative Interface that calculates reference inputs for the
whole-body controller based on the perceived sensory infor-
mation. These two components and the interaction between
them are explained in detail in the following subsections.

A. Whole-Body Controller

The Whole-Body Controller employed on the robot is based
on the solution of a Hierarchical Quadratic Program (HQP)
composed of two tasks. The formulation of the problem as a
HQP allows to exploit the redundancy of the robot, since it
has m = nb + na > 6 DoFs. The cost function of the higher
priority task is written as [29] (dependencies are dropped):

L1 = ||ẋd + K (xd − x)− J q̇||2W1
+ ||k q̇||2W2

, (1)

where the vector of the whole-body joint velocities q̇ ∈ Rm

is the optimization variable, J ∈ R6×m is the whole-body
Jacobian, x ∈ R6 is the current end-effector pose, W 1 ∈ R6×6,
W 2 ∈ Rm×m , and K ∈ R6×6 are diagonal positive definite
matrices and k ∈ R>0 is the so-called damping factor [30],
which depends on the manipulability index of the arm [31],
[32], [33]. Then, the joint velocities of the secondary task are
computed as the negative gradient w.r.t. q of (2) [34], [35],
where W 3 ∈ Rm×m is a diagonal positive semidefinite matrix
and qde f is a default joint configuration:

||qde f − q||2W3
. (2)

These velocities are later projected in the null-space of the
primary task.

This formulation allows to obtain the desired whole-body
joint velocities q̇d ∈ Rm that distribute the movements between
base and arm. The primary task guarantees the tracking of

the desired end-effector motion (ẋd and xd ). On the other
hand, the secondary task keeps the arm close to the joints
configuration qde f , which can be chosen in order to ensure a
task-related robot posture during the co-carry.

B. Adaptive Collaborative Interface

The detailed architecture of our Adaptive Collaborative
Interface (ACI) that handles objects with different deformation
properties is illustrated in Fig. 2. The presented interface can
be subdivided into four operational units, namely an Admit-
tance Controller, which computes a reference translational
velocity based on the force transferred through the object,
an Object Translation unit that merges the velocity calculated
by the Admittance Controller together with the reference
velocity produced by the MoCap system, an Object Rotation
unit, which finds a reference twist based on the human torso
and hand movements, and a Reference Generator that sends
the actual reference pose and twist to the Whole-Body Con-
troller based on the input coming from both Object Translation
and Rotation units.

1) Admittance Controller: In this work, a standard admit-
tance controller is utilized. It implements the following transfer
function expressed in Laplace domain:

V adm(s) =
Fee(s)

Madms + Dadm
, (3)

where Madm and Dadm ∈ R3×3 are the desired mass and
damping matrices, s is the Laplace variable, Fee(s) ∈ R3 is the
Laplace transform of the measured forces and V adm(s) ∈ R3 is
the Laplace transform of the admittance reference translational
velocity.

2) Object Translation Unit: As mentioned earlier, the
main contribution of this work is to enable human-robot
co-transportation of objects having different deformability.
Due to such property of the object, relying just on haptic
information may not be sufficient for an effective coordination
of the co-carrying task. To address this issue, we introduce
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the Object Translation unit, which computes a translational
velocity reference (vtrans) based on the admittance reference
velocity (vadm) and the human hand velocity (vh) measured
by the MoCap system. This unit calculates an adaptive index
during the collaboration as follows:

α = 1−
||

∫ tcur

tcur−Wl
vadm(t) dt ||

||
∫ tcur

tcur−Wl
vh(t) dt || + ϵ

, (4)

where α ∈ [0, 1] is the adaptive index, tcur is the current
time, Wl is the length of the sliding time window and ϵ is
a small number used to avoid the problem of division by
zero. This index allows to understand whether the object is
non-deformable (α = 0), deformable (α = 1) or partially
deformable (α ∈ (0, 1)). Note that, α is saturated at 0.

Subsequently, α is used on-the-fly to regulate the contribu-
tion of vh to vtrans using:

vtrans = vadm + αvh . (5)

This formulation allows to benefit from two different
sources of information. In order to clarify how the Object
Translation unit deals with objects having different deforma-
tion properties, it can be informative to analyze three distinct
cases. If the object being carried does not transmit any force
applied by the human (e.g. a loose rope), α is closer to 1.
In that case, vadm is always close to zero and consequently,
vtrans ≈ vh . On the other hand, if the carried object is capable
of transferring the forces applied by the human (e.g., a rigid
box), human and robot will move rigidly together (vh ≈ vadm).
In this situation, α is closer to 0, resulting in vtrans ≈ vadm .
The two examples presented so far are the extreme cases of
highly deformable and purely rigid objects, respectively. When
the objects exhibit intermediate characteristics in terms of
deformability, α will take values between 0 and 1, resulting in
a reference translational velocity computed by a combination
of vadm and vh .

3) Object Rotation Unit: In this work, human torso and
hand movements are utilized to detect the intention of rotating
an object. Specifically, to initiate a rotational movement, the
human agent should turn his/her torso towards a desired
rotation angle. At this point, this unit plays a key role for
both detecting the human rotation intention and planning the
trajectory to the intended pose.

In order to address the rotation intention problem, Alg. 1
is developed in this work. Its main objective is to detect
whether or not the human intends to rotate the object, which
is represented through the boolean variable ζ . Then, if the
rotation intention is detected, the pose of the human torso
at that moment (Tw

t,det ) is recorded by the algorithm. The
relative yaw angle between the human torso and the hand
(θ t

h) can be considered as primary source of information in
our algorithm. However, employing it alone is not sufficient to
infer the source of its change. For instance, it can be altered by
only rotating the hand or by rotating the torso unintentionally
due to natural body movements, which might happen during
co-carrying tasks. To overcome this issue, our algorithm also
uses torso and hand yaw angles expressed in world frame (θw

h
and θw

t respectively) for identifying the one responsible of

Algorithm 1 Human Rotation Intention Algorithm
Input: θ t

h, θ
w
h , θw

t , ˙θw
t , Tw

t
Output: ζ, Tw

t,det
I ni tiali zation :
θh,l ← 0, θh,u ← 0, θt,l ← 0, θt,u ← 0
Control loop :
if |θ t

h | > lower angle threshold then
θh,l ← θw

h , θt,l ← θw
t

while |θ t
h | > lower angle threshold do

θh,u ← θw
h , θt,u ← θw

t
1θh ← |θh,u − θh,l |

1θt ← |θt,u − θt,l |

if |θ t
h | > upper angle threshold and 1θt > 1θh

and | ˙θw
t | < veloci ty threshold then

ζ ← 1 ▷ Human rotation intention
Tw

t,det ← Tw
t

else
ζ ← 0

end if
end while

else
ζ ← 0

end if

Fig. 3. Snapshots of the rotation motion. The human operator carries the
object collaboratively without rotation intention (1), then he intends to rotate
by turning his torso to the desired rotation angle and this intention is detected
by our algorithm (2). Next, the robot starts to move along its planned trajectory
(3), and the robot reaches the desired pose (4).

a change in θ t
h . In addition, the torso yaw velocity ( ˙θw

t ) is
utilized to infer whether or not the torso movement is ended.

If human rotation intention is detected by the algorithm,
Object Rotation unit starts to plan the trajectory to the desired
position and orientation as illustrated in Fig. 3. The desired
robot’s end-effector transformation w.r.t. the world frame can
be computed as

Tw
r,des = Tw

t,det T
t,i
r,i , (6)

where T t,i
r,i is the initial transformation between the robot’s

end-effector and the human torso. With this derivation, the
initial configuration between robot’s end-effector and human
torso is preserved, when a rotation intention is detected.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 18,2023 at 05:08:08 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 4. Results of the co-transportation experiments of a rigid aluminum profile with an admittance control and teleoperation framework. The graphs show
(a) the end-effector velocity vee , (b) the admittance reference velocity vadm , and (c) the human hand velocity vh .

Indeed, it is assumed that the initial configuration is the
desirable one for the human during collaboration. Finally,
a point-to-point motion trajectory planning is implemented by
means of a third-order polynomial to have smoother trajecto-
ries between the actual robot pose and the desired robot pose.

4) Reference Generator: This unit is in charge of sending
the actual reference pose and twist to the Whole-Body Con-
troller, based on the outcome of the human rotation intention
detection. They are computed as follows:

ẋd = ζ ẋrot + (1− ζ )ẋtrans, (7)

xd =

∫ tc

0
ẋd(t) dt (8)

where ẋtrans = [v
T
trans, 0T

]
T .

IV. SYSTEM OVERVIEW

In this work, the robotic platform Kairos (see Fig. 2) was
used for our experiments. It consists of an Omni-directional
Robotnik SUMMIT-XL STEEL mobile base, and a high-
payload (16 kg) 6-DoFs Universal Robot UR16e arm attached
on top of the base.

In order to track human movements during co-carry,
we decided to use the Xsens as a MoCap system (see Fig. 2).
Though our framework can operate with different MoCap
systems, such as vision-based, Xsens was preferred in this
study due to its precision. It is composed of seventeen Inertial
Measurement Units (IMUs) placed on specific parts of the
human body. Thanks to this system, it is possible to get
real-time measurements of the human hand and torso twists,
that are fed to our controller as described in Section III.

V. EXTREMITIES

In this article, we consider the two extremities of the object
deformability range as purely rigid, that transmits the applied
wrenches from one end to the other end of the object without
any loss, and highly deformable, which does not transfer any
haptic information. The use of haptic-based controllers or
teleoperation-like frameworks (where human movements are
mirrored and replicated by the robot) alone are not sufficient
to perform a co-transportation task for both the extreme
cases. While the haptic-based controllers are suitable for rigid
objects, they are not competent during co-transportation of
deformable objects due to the lack of haptic cues. On the
other hand, teleoperation-like frameworks enable to perform
co-transportation of highly deformable objects without requir-
ing haptic information. However, they fail in the other extreme
condition because the rigid connection between the human and
the robot does not allow them to initiate the motion. In the
following subsections, we demonstrate the discussed perfor-
mances of haptic-based controllers and teleoperation frame-
works in these two extremities, and additionally, we illustrate
how the proposed controller can handle both thanks to its adap-
tive nature. In the experiments performed in this section, the
human partner is simply asked to carry out co-transportations
with the robot along the three directions for fixed distances.

A. Purely Rigid Object

In these experiments, we evaluated the performances of
3 different frameworks, namely the admittance controller,
the teleoperation1, and the proposed controller (ACI) during

1As mentioned erlier, in this article, teleoperation refers to a control
architecture through which human movements are mirrored and replicated
by the robot during co-carrying.
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Fig. 5. (a) The adaptive index α, (b) the end-effector velocity vee , (c) the
admittance reference velocity vadm , and (d) the human hand velocity vh during
co-transportation of a rigid aluminum profile with the proposed framework.

the co-transportation of an aluminum rod that was rigidly
connected to the end-effector of the robot. We used vadm =

vtrans for the admittance controller and vh = vtrans in the case
of teleoperation, instead of combining vadm and vh by using
the adaptive index (see Eq. 5) as in our proposed controller.

Fig. 4 shows the results obtained from the co-carry exper-
iments of the aluminum rod with the admittance controller
and teleoperation only. In the case of teleoperation, the robot
stood still and the task could not be executed due to the rigid
connection between the human and the robot. Indeed, this
connection prevented the human from generating vh , even
if he applied forces to the object (see Fig. 4b, 4c). On the
other hand, when the admittance controller was employed,
the co-transportation task was performed successfully in all
the directions. In addition, it can also be realized that vee was
almost equal to vh in both trials, since the human hand and
the end-effector were connected rigidly to each other through
the carried object.

The logged velocities and the adaptive index (α) data during
the co-carry of the same object with the proposed controller
are presented in Fig. 5. As in the admittance controller case,
the human operator was able to carry the object in all the
directions. As explained in Sec. III, α changes on-the-fly
according to the deformability of the object being carried.
Here, it was computed almost equal to zero during the whole
task, as anticipated, since vadm and vh were approximately
equal to each other during the whole co-transportation task.
The effect of vh becomes negligible on the calculated reference

velocity and the proposed controller behavior approaches the
admittance controller to enable performing the task.

B. Highly Deformable Object

For the co-transportation experiments of the highly
deformable object, we used an unstretched rope in order to
avoid the transmission of wrenches applied by the human
to the end-effector of the robot. Fig. 6 depicts the recorded
results during the experiments with the admittance controller
and the teleoperation framework. The rope did not provide any
haptic feedback to the robot during the motion, as can be seen
from Fig. 6b. Therefore, the robot was not able to move with
the admittance controller, whereas the co-transportation task
was successfully performed with the teleoperation framework
which uses the human hand motion as the source of informa-
tion for the reference velocity to follow.

The data obtained from the co-carry of the same rope with
our controller is exhibited in Fig. 7. Unlike the rigid case, α

was computed as almost always equal to 1 on this opposite
side of the object deformability range (vadm ≪ vh in Eq. 4).
This adaptive feature of the controller allowed to handle this
extremity by adding vh based on α into vtrans .

VI. USER STUDY: PARTIALLY DEFORMABLE OBJECT

To verify the effectiveness of our proposed framework,
we investigated the performance of our Adaptive Collaborative
Interface (ACI) during a human-robot co-carrying task of
a partially deformable object. For this experiment, a bag
(44 cm length, 9.5 cm width, 5 cm height) filled with sty-
rofoam packing peanuts was used (see Fig. 2). It features
an approximately rigid behaviour if stretched along its larger
dimension (when it is pulled), while it is rather partially
deformable if stressed along the other directions. Because
the co-transportation of the rigid objects cannot be performed
with teleoperation frameworks as demonstrated in the previous
section, we used an admittance controller as a baseline for our
experiments.

A. Experimental Procedure
In the experiment, the participants were asked to co-carry

a partially deformable object along a designed path in collab-
oration with the robot. An underactuated Pisa/IIT SoftHand
was mounted at the end-effector of the robotic arm to grasp
the object. The path comprises six main sub-movements: an
initial down-up movement (2 of 6) followed by a square
trajectory on a plane (4 of 6) parallel to the floor at a height
that is customized based on the preference of each subject,
as shown in Fig. 8. The following guidelines were given to
the participants before the beginning of the experiment:
• The object must be kept inside the drawn path.
• If the object is tilted at the end of each sub-movement,

the participant cannot start the following one. In this
case, the participant must transmit a force to the robot by
deforming the object to align the robot to the intended
position and then start the following sub-movement.
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Fig. 6. Results of the co-transportation experiments of a highly deformable rope with an admittance control and teleoperation framework. The graphs show
(a) the end-effector velocity vee , (b) the admittance reference velocity vadm , and (c) the human hand velocity vh .

Fig. 7. (a) The adaptive index α, (b) the end-effector velocity vee , (c) the
admittance reference velocity vadm , and (d) the human hand velocity vh during
co-transportation of a highly deformable rope with the proposed framework.

• The task must be completed as fast as possible.
Each participant performed a total of 10 trials

(2 controllers × 5 repetitions). The order of the trials

Fig. 8. Illustration of the experiment and its intervals, in which an object is
co-transported with a mobile manipulator along a path to be followed.

was randomized not to affect the results with the learning
effect. Before the experiment, a familiarization phase for both
controllers was conducted until the subjects felt at their ease
with the system. To guarantee human safety, mobile base
velocities and the arm forces were constantly monitored and
limited.

B. Participants

Twelve healthy volunteers, six males and six females, (age:
26.8 ± 6.7 years; mass: 64.9 ± 16.2 kg; height: 172.4 ±
10.1 cm)2 were recruited for the experiments. After explaining
the experimental procedure, written informed consent was
obtained, and a numerical ID was assigned to anonymize the
data. The whole experimental activity was carried out at the
Human-Robot Interfaces and Physical Interaction (HRII) Lab,

2Subject data is reported as: mean ± standard deviation.
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TABLE I
CUSTOM QUESTIONNAIRE

Istituto Italiano di Tecnologia (IIT), in accordance with the
Declaration of Helsinki.

C. Controller Parameters

In order to have a fair comparison between the ACI
and the standard admittance controller, the same desired
mass (Madm = diag{6, 6, 6}) and damping (Dadm =

diag{30, 30, 30}) were assigned for both controllers in this
study. These parameters were selected based on a heuristic,
in order to balance a trade-off between transparency and
stability during the co-transportation.

Furthermore, the length of the sliding time window (Wl)
which was used for the calculation of the adaptive index (α)
was selected as 0.25 s. This time length was tuned in order
to compromise the delay in the detection of a change in the
object deformability with its accurate identification.

Regarding the Whole-Body Controller, K , W 1 and W 2 were
experimentally tuned so that an accurate tracking of the
desired motion was achieved while avoiding too high
joint velocities. The values selected for this purpose are
K = diag{0.1, 0.1, 0.1, 0.01, 0.01, 0.01}, W 1 = 100 ·
diag{10, 10, 10, 5, 5, 5} and W 2 = diag{10nb , 0.5na }. More-
over, in order to guarantee a locomotion behaviour (base
following arm movements), W 3 = diag{0nb , 1na }.

D. Performance Metrics and Assessment Tools

After the experiments, the participants filled a questionnaire
to rate different qualitative aspects of their experience for each
controller. The questionnaire is composed of a standard part,
namely the NASA-TLX [36], and a custom Likert scale-based
part designed specifically for this study (see Table I). Besides,
for the quantitative evaluation of the task-related performance,
the following metrics were used.
• Completion Time (tc): This is the elapsed time from the

beginning to the end of the co-carrying task.
• Alignment (DAM ): This metric is formulated to calcu-

late the robot performance in following human move-
ments during the co-carrying task by taking into account

the alignment of the object between human and robot.
We assume that the experiment starts with an ideal
object alignment (see Fig. 2). If the robot cannot keep
the pace of the human during the task, the alignment
of the object deviates from its ideal condition. In this
situation, the distance between the optimal position of
the robot’s end-effector and its current position can be
used as a metric to assess the performance of the robot.
Thus, in a scenario where the robot perfectly follows the
human, this metric will be 0. In order to track the object
movements necessary for the calculation of this metric,
we utilized the OptiTrack MoCap system. To this end,
two different marker sets were placed near the human
and robot grasping positions of the object. Based on
these markers, the alignment metric is computed in the
following way:

DAM =

∫ te
ts
||rcrm(t)− rchm(t)− (rsrm − rshm)||dt

te − ts
,

(9)

where rchm and rcrm are the current human and robot
marker positions, rshm and rsrm are human and robot
marker positions at the beginning of the experiment, and
ts and te indicate the starting and ending time of the
experiment.

• Effort (EE MG): In this study, the muscular activity of
Anterior Deltoid (AD), Posterior Deltoid (PD), Biceps
Brachii (BB), Triceps Brachii (TB), Flexor Carpi (FC),
Extensor Digitorum (ED), Erector Spinae (ES) longis-
simus, and Multifidus (MF) was recorded using the
Delsys Trigno platform, a wireless sEMG system com-
mercialized by Delsys Inc. (Natick, MA, United States).
The sEMG sensors were placed on the selected muscle
groups of each participant’s right arm and right part of
the back according to SENIAM recommendations [37].
Afterward, the signals obtained were filtered and normal-
ized with their Maximum Voluntary Contractions (MVC).
The effort metric is obtained for each individual muscle
by calculating the average of this processed sEMG data
during the experiment.

E. Results

For a deep analysis of the experimental results during
the different movement directions, the experiment has been
divided into 5 intervals as depicted in Fig. 9: (1) Lowering
and lifting; (2) Pulling; (3) Moving sideways to the right;
(4) Pushing; and (5) Moving sideways to the left. In the same
figure, the results obtained from an example experiment with
the proposed framework are shown.

As mentioned in Sec. III, when the adaptive index (α)
approaches 1, it shows that the object being carried is highly
deformable. Vice-versa, when α approaches 0, this indicates
the rigidity of the object. Fig. 10a shows the means and
standard errors of α during the intervals, which are calculated
by averaging for all participants. As it can be seen, the highest
mean is observed during the first interval, where it is close to
1. Conversely, the smallest one is observed during the second
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Fig. 9. Snapshots of the experiment: (1) Lowering and lifting; (2) Pulling; (3) Moving sideways to the right; (4) Pushing; and (5) Moving sideways to the
left. Lower plots show the values obtained with the proposed controller during the collaborative transportation task of a typical trial.

Fig. 10. (a) The means and standard errors of the adaptive index, α, during
the intervals, (b) the measured force amplitude from the end-effector of the
robot for both controllers during the intervals along with outcomes of sign-test
carried out: *: p < 0.05, **: p < 0.01, ***: p < 0.001.

one among all intervals, where it approaches 0. Moreover,
the third, fifth and fourth intervals exhibit intermediate values,
with means of 0.6 for the former two and 0.25 for the latter.
These results indicate that the object in combination with the
grasping type used, is not rigid while lowering and lifting, and
it behaves as a non-deformable object when it is fully stretched
while pulling. Additionally, the object is partially deformable

when it is pushed and moved sideways. Note that, similar
deformability is estimated in the two directions of sideways
movements. These outcomes are expected considering the
characteristics of the object being carried combined with the
non-purely rigid Pisa/IIT Softhand placed at the end-effector.

The means and standard errors of the force amplitude
measured at the robot’s end-effector for the two controllers
during the intervals are depicted in Fig. 10b. These results
are calculated by finding their average over all participants.
When these results are analyzed, it can be seen that the
admittance controller presents statistical significant higher
force amplitudes according to sign-test for all intervals except
the second one. This difference is due to the deformability of
the object, which is indicated by high values of α. These high
values can be interpreted as the difficulty of transferring forces
from the human to the robot through the object. The ACI copes
with this issue by estimating humans intention by means of
the velocity of their hand. Instead, the admittance controller
fails, and the cooperating human needs to deform the object to
allow the force transmission and the intention communication.
In contrast, in the second interval no significant differences
are revealed between the two controllers, as expected. Indeed,
in that segment of the task the object is almost purely rigid
(i.e. α approaches 1).

Fig. 11 illustrates the means and standard errors of the
performance metrics described in subsection VI-D for both
the proposed controller and the admittance controller. The
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Fig. 11. The means and the standard errors for the performance metrics along
with the outcomes of the sign-test carried out for the compared controllers:
*: p < 0.05, **: p < 0.01, ***: p < 0.001.

performance metrics are obtained by averaging these measured
quantities for all participants. Sign-tests are performed to
evaluate the effect of the controller on the performance metrics
and the outcomes of them can be found (see Fig. 11). The
results show that the completion time and the alignment for
the proposed controller are significantly lower (p < 0.001)
than those of the admittance controller (see Fig. 11a, 11b).
The mean efforts for all the selected muscle groups are lower
under the proposed controller (see Fig. 11c). However, there is
no significant effect of controller type on the effort of AD and
MF muscles. These results indicate that participants completed
the task faster, with less effort and higher effectiveness under
the proposed controller.

The qualitative results are reported in Fig. 12. For each
questionnaire statement, the means and standard errors for both
controllers are represented as bar plots, and the outcomes of
the sign-tests are reported. Particularly, Fig. 12a depicts the
outcomes of the custom questionnaire, which aims to obtain
a subjective evaluation of the two controllers, while Fig. 12b
shows the results obtained for the NASA-TLX questionnaire
through which the participants score their perceived workload
for six subscales. The statements of the custom question-
naire can be classified into 3 categories: safety (Q.1 and 5);
performance (Q.2, 3, 8, and 10); and usability (Q.4, 6, 7,
and 9). As shown in Fig. 12a, the proposed controller has
better score means compared with the admittance controller
in all statements of the custom questionnaire. In addition,
statistically significant differences (p < 0.05) are observed
for all statements apart from the ones related to safety. These
results demonstrate that the proposed controller surpasses the
admittance controller in terms of performance and usability
according to the participants while ensuring safety which is
of utmost importance for a controller in pHRI. Regarding
the NASA-TLX questionnaire (see Fig. 12b), the ACI has
statistically significant superior scores in all the categories,
as well as in the computed overall workload.

Fig. 12. The means and the standard errors obtained from (a) the custom
and (b) the NASA-TLX questionnaires for the two controllers along with
the outcomes of the sign-test carried out for the compared controllers: *:
p < 0.05, **: p < 0.01, ***: p < 0.001.

VII. PRACTICAL SHOWCASE

Previously, the applicability of the ACI has been demon-
strated in experimental settings, i.e., the user-study and the
extremities experiments. In the latter, objects were straightfor-
ward to model, while in the former the object was hard to
characterize even though anticipating its behaviour and fore-
seeing the results in terms of deformability was still feasible.
In this section, we have validated the proposed controller in
a more realistic and challenging scenario including rotational
movements, where outcomes in terms of object deformability
are tough to predict. In particular, a 4kg manikin laying on
a sheet is carried by grasping the sheet’s ends. Note that, the
complexity of its deformability properties is mostly due to the
manikin’s freedom to move inside the sheet, which changes
the load distribution during co-transportation. A video of this
showcase can be found in the multimedia attachment3.

Fig. 13 depicts the data associated to this experiment. The
human operator began the co-carry task with the back-and-
forth movements in all 3 Cartesian axes (X-Y-Z order). Apart
from the sudden drops during the change of directions, α was
closer to 1 along all the axes (see Fig. 13b). Then, the human
operator started to turn his torso in order to rotate the robot
to an intended angle (see Fig. 13f). This motion caused a
relative yaw angle between the human torso and hand (θ t

h)
which was generated by human torso rotation (θw

t ). When the
torso yaw velocity decreased below the threshold of 0.05 rad/s
(see Fig. 13g), which shows the intended torso rotation angle

3Find the video also here https://youtu.be/oyfUkYj5WYw
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Fig. 13. The results obtained during the showcase where a manikin is collaborative carried through a sheet. The graphs show (a) the human rotation intention
ζ detected by the algorithm, (b) the adaptive index α, (c) the end-effector velocity of the robot vee , (d) the admittance reference velocity vadm , (e) the human
hand velocity vh , (f) the relative yaw angle between the human torso and the hand θ t

h , the torso angle with respect to the world frame θw
t , the torso angle

with respect to the world frame θw
h , and the selected angle threshold of 0.4 rad (the dashed line) for the algorithm, and (g) the torso yaw velocity ˙θw

t and the
selected velocity threshold of 0.05 rad/s (the dashed line) for the algorithm.

was reached and human decided to stop, Alg. 1 that runs
at 10 Hz detected the human rotation intention (see Fig. 13a).
Later, a trajectory that lasts 5 seconds is planned from the
current pose to the calculated desired pose (Tw

r,des) according
to this detected torso angle. After the robot reached its planned
pose and the following 5 seconds standstill period, the human
operator finished the co-carry task by transporting the object
along all 3 directions as in the first part.

VIII. DISCUSSION AND CONCLUSION

Collaboration between a human and a robot can be an
effective solution for the task of carrying an object that can
not be performed by a single partner. In such situations,
we believe that the pHRI frameworks that enable transporting
objects with different deformability behaviours are missing in
the state-of-the-art. This paper presented an adaptive control

framework that can handle objects with unknown deforma-
bility for human-robot collaborative transportation. Instead
of relying just on the deficient haptic information that is
transferred through the deformable object, the proposed con-
troller allows us to benefit from the information of human
movements. Based on this perceived sensory information, it is
also possible to react to changes in deformability of the object
through an adaptive index computed online. Moreover, the
proposed control framework is able to plan the motion of the
mobile manipulator when it detects the rotation intention of
the human by using the torso and hand movements.

In this study, the effectiveness of the presented framework
was evaluated in the extremities of the object deformability
range with a purely rigid aluminum profile and a highly
deformable rope. After validating that our framework was
successful in handling these extremities, we compared its
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TABLE II
MATHEMATICAL NOTATION AND SYMBOLS

performance to an admittance controller during a collaborative
carrying task of a partially deformable object. A thorough
analysis based on quantitative and qualitative results of the
12-subjects user study was carried out to assess the perfor-
mance of the two controllers. The results showed that the
proposed controller outperforms than the admittance controller
on providing assistance during co-carrying of deformable

objects. In addition to this user study, we demonstrated the
usability of our framework during a more realistic scenario in
which the deformation of the object is complicated to estimate
beforehand.

In the future, we plan to make the proposed framework more
applicable for the industrial scenarios by replacing our human
motion capture system (Xsens suit) with a less expensive
vision-based system. Especially, placing the cameras of this
vision-based system on the robot will make the framework
flexible to use and overcome the disadvantages of Xsens such
as the need of wearing a suit. However, to avoid possible
occlusions that depend heavily on the object being co-carried,
we might also need to exploit multiple cameras placed in the
environment.

APPENDIX A
MATHEMATICAL NOTATION AND SYMBOLS

Main mathematical notation and symbols used throughout
the text are defined in Table II.
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