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Abstract. Visual inertial odometer is a device that takes camera and IMU as
input and takes the position and attitude of unmanned platform as output. The
traditional odometer is an important auxiliary navigation mode in the unmanned
navigation system. But the traditional odometer cannot adapt to many new devel-
opments. Therefore, this paper aims to make a study on a new odemeter: visual
inertial odometer (VIO). This paper mainly studies the robustness and applicable
environment of the visual inertial odometer. Firstly, this paper explains what is
visual inertial odometer, and puts forward the significance of this research. After
that, simulation experiments are carried out to verify the robustness and accu-
racy of the visual inertial odometer. Then the visual inertial odometer is tested
based on hardware. Finally, through the analysis of the experimental results and
errors, the applicable environment and conditions of the visual inertial odometer
are obtained.

Keywords: Visual navigation · Inertial navigation · Pose estimation · Monocular
vision inertial odometer

1 Introduction

Visual inertial odometer (VIO) is a new odometer which integrated the traditional visual
odometer and the inertial odometer [1]. The VIO’s purpose is to estimate unmanned-
system’smotion and trajectory, so as to achieve the purpose of navigation andpositioning.

With the development of unmanned navigation technology, the working environ-
ment of navigation system has become more diverse and complex. For example, in
modern warfare, unmanned systems may be in a denied environment [2]. In the denied
environment, radio navigation and GPS navigation are likely to fail, so a new naviga-
tion is needed to replace the failed navigation. The VIO is not affected by the denied
environment.

In the mean time, the traditional inertial navigation is easy to accumulate errors [3].
The pure visual odometer cannot work well when the unmanned systemmoving too fast.
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Different from both of the above, VIO are not affected by the environment and motion
speed. Therefore, the research of the VIO is very significant. This paper mainly studies
the robustness of the VIO and its application conditions.

2 Model and Algorithm

In this paper, the visual-inertial odometer uses the Vins-Mono open source code [4].
This open source code combined with own hardware to form a VIO for experiments.
The frame of visual inertial odometer is shown in the following figure (Fig .1):

Fig. 1. The frame of the VIO

As the front-end of the VIO, camera and IMU provide the information for VIO. The
back-end of the VIO receives the data from the front-end for pose estimation. According
to the fusion mode of front-end’s information, it can be divided into tight coupling and
loose coupling. There are two pose estimation methods of back-end: optimization and
filtering. The methods of close coupling combined filtering mainly be used by ROVIO
(robust visual inertial odometry) [5] and MSCKF (multi-state constraint Kalman filter)
[6, 7].

At present, the commonly used method is the combination of tight coupling and
optimization, such as Vins-Mono. In Vins-Mono, the front-end adopts Harris corner
detection algorithm [8] andKLT [9] optical flow trackingmethod, and the back-end adopt
BA (Bundle Ajustment) algorithm [10]. Some key algorithms are introduced below.

Harris Corner Detection Algorithm: Assume that E(u, v) is the pixel change in the
small window, I is the gray value of the image.

E(u, v) = [u, v]M

[
u

v

]
(1)

M =
∑
x,y

wx,y

[
I2x Ix Iy
Ix Iy I2y

]
(2)



Research on an Unmanned Platform Odometer 2199

R(x, y) = det(M ) − k (tr(M ))2 (3)

Defined a judgement function as R(x,y). If R(x,y) bigger than a certain value, we
can say that this point is corner point.

Bundle Adjustment Algorithm: The conversion relationship between pixel coordi-
nates and space point coordinates is as follows.

si

⎡
⎣ui
vi
1

⎤
⎦ = K exp(ξ̂ )

⎡
⎢⎢⎣
Xi

Yi
Zi
1

⎤
⎥⎥⎦ (4)

The (4) has errors, we add up the errors to construct the least square problem.
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The coordinates of three-dimensional points can be obtained by solving the least
square problem (5).

KLT Algorithm: KLT algorithm is an algorithm for image matching by solving the
offset d. Suppose I and J are two consecutive pictures, the pixel value of point (x,y) is
I(x,y) and J(x,y) respectively.
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Let (7) equal zero to solved.

IMU Pre-integration: IMU Pre-integration solves the problem that the amount of cal-
culation of PVQ update is too large. Assume that the bias of IMU is known and the value
of Pre-integration is only related to the measurement of IMU. By integrating the IMU
data directly, the value of Pre-integration can be obtained:⎧⎪⎪⎪⎨
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The new IMU Pre-integration formula of PVQ is obtained:⎡
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The (9) is the final formula of IMU Pre-integration, it can simplify IMU integral
operation.

3 Mainly Results

The visual inertial odometer can work normally in different environments and tracks,
and has good stability and robustness. However, its positioning accuracy is affected by
the following aspects:

1) Lighting conditions: In poor or complex lighting conditions, the APE errors of visual
inertial odometry will be bigger.

2) Speed: The movement speed should not be too fast, not more than 17m/s; The speed
should also not be too slow.

3) IMU: Before using the visual-inertial odometry, the IMU should be fully activated.
4) Length of trajectory: With the increasement of the length of trajectory, the errors

will become bigger.

As the difficulty of the experiment increases, the error of the experiment will also
increase. And from the experiments, If the trajectory vibrates or the robot suddenly stops
moving, the VIO is prone to drift. The reasons are as follows:

1) If the robot runs too slowly, the image update speed will be too slow, and the feature
points cannot be updated quickly, so the camera pose transformation cannot be
calculated by the new feature points and the old feature points.

2) Due to the slow movement of the robot, the inertial components are not fully
activated.

3) Vibration in a small range will reduce the accuracy of IMU, and it will make the
camera unable to process rapidly changing images.

4 Experimental Results and Error Analysis

4.1 Euroc Dataset Simulation Results and Error Analysis

Euroc dataset [11] is commonly used in the simulation test of visual inertia algorithm.
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The upper left corner of the Fig. 2 is the real-time image of the camera. The lower
left corner of the picture shows the ring detection results, and the right part of the Fig. 3
shows the output trajectory of the unmanned platform.

Fig. 3. Output results of dataset experiment

The following figure shows the comparison between the output trajectory and the
real trajectory:

Fig. 4. Output trajectories vs true trajectories
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Fig. 5. PE&RPE error of simulation experiment

The solid line in the Fig. 4 is the output trajectory of visual inertial odometer, while
the dotted line represents the real trajectory. There is little difference between the real
trajectory and the output trajectory.

Table 1. Error table of simulation experiment.

APE-mean APE-min APE-max RPE-mean RPE-min RPE-max

Error 0.078913 0.003406 0.169524 0.009952 0.000378 0.068184

The figure of APE error and RPE error is as follows:
It can be seen from the Table 1 and Fig. 5 that both the APE error and the RPE error

are maintained within a relatively small range.

4.2 Experimental Results and Error Analysis Based on Hardware

The experimental hardware is as follows (Fig. 6):

Fig. 6. Experimental hardware

The basic idea of the experiment based on the hardware is to let the robot carry a VIO
and walk twice in the same path. The two paths can be as close as possible by setting
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road markings. But limited by the experimental condition, the two paths may not be
exactly the same and the experimental error may become larger. However, as long as the
error is within the acceptable range, it will not affect the analysis of VIO’s performance.
After the above description, then we can compare the errors of the two paths, analyze
the errors, and get the characteristics of the visual inertial odometer (Fig. 7).

Fig. 7. Output trajectory of six experiments
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Fig. 8. APE error of six experiments

It can be seen from the Table 2 and Fig. 8 that the average value of APE error andRPE
error is within a relatively small range. The visual inertial odometer can work normally
in different environments and tracks, and has good stability and robustness. However,
in the fifth and sixth experiments, the error becomes bigger. After carefully observing
the fifth and sixth experiments, it can be seen that the output trajectory vibrated in these
two experiments (Fig. 9).

In the actual experiment, the speed of the robot at the corner will also become very
low. So, the low speed and vibration caused the error to become larger.



Research on an Unmanned Platform Odometer 2205

Table 2. Error table of six experiments.

APE-mean APE-min APE-max RPE-mean RPE-min RPE-max

TheFir 0.227576 0.012622 0.692916 0.027238 0.000378 0.560324

TheSec 0.464942 0.073091 1.213435 0.030403 0.000618 0.392573

TheThi 0.547895 0.072934 1.375854 0.082922 0.005244 0.534687

TheFou 0.721566 0.078212 1.699692 0.121585 0.007112 0.924192

TheFiv 0.702418 0.091417 1.857750 0.104320 0.001957 0.876218

TheSix 0.846011 0.136444 2.929616 0.069932 0.033430 1.057165

Fig. 9. The fifth and the sixth experiment output trajectory description

The experimental environment and trajectory of the six experiments are as follows
(Fig. 10):

Fig. 10. Six experiments’ environments
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Table 3. Table of six experiments.

Indoor/outdoor Lighting
conditions

Environmental
information

Trajectory shape Overview

Case1 Indoor Good Generally Straight line Easy

Case2 Indoor Good Generally Closed loop Medium

Case3 Indoor Generally Less Closed loop Medium

Case4 Outdoor Generally Good Closed loop Difficult

Case5 Indoor Generally Less Rregular Disaster

Case6 Outdoor Poor Good Irregular Disaster

The specific information for six experiments has listed in the Table 3.As the difficulty
of experiment increases, the error of experiment also increases.

5 Conclusions

This visual inertial odometer can work in different environments and has robustness.
The positioning accuracy of this visual inertial odometer is affected by illumination
conditions, environmental information, track length and so on. But in most cases, this
visual inertial odometer has good positioning accuracy.

The visual inertial odometer industry also still faces some problems:

1) When the robot changes direction violently or vibrates, the positioning effect of VIO
is not good, and it is easy to drift. The robustness of the system needs to be further
improved.

2) The computational complexity of the system needs to be further improved and
optimized.

For the above problems, the following are some suggestions for improvement:

1) Adding trajectory shape optimization algorithm and vibration judgement algorithm:
When the vibration judgement algorithm detected that the robot is vibrating, the
trajectory shape optimization algorithm will be used to optimize the trajectory, to
smooth the trajectory.

2) Adding environment judgment algorithm:When the operating environment is judged
to be good, the VIO can reduce the number of feature points, to reduce the amount
of calculation. While in difficult environments, the VIO can increase the amount of
feature points appropriately.

Today, most unmanned aerial vehicles and robots are equipped with a variety of
sensors, among these sensors, cameras and inertial components are very common. For
example, the United States’ global Eagle UAV is equipped with optical and infrared
cameras. Dajiang UAV is equipped with high-definition cameras and inertial devices.
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And VIO has low requirements for cameras and inertial devices. The price of a camera is
about 200 yuan, and the electronic inertial component MEMS is just only about twenty
yuan. Therefore, theVIO is very economical and feasible. And this VIO can obtain better
positioning performance under the conditions of good lighting conditions and sufficient
information of the surrounding environment (which can be satisfied in most cases), and
can provide auxiliary navigation for unmanned aerial vehicles or robots.
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