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Abstract. Nowadays, a precise and robust localization system is essen-
tial for an autonomous vehicle to operate safely and effectively. Currently,
individual sensor still can not reach a satisfying level in both accuracy
and robustness. It is a feasible solution to build a localization system by
fusing multi-type sensors and incorporating map information. This paper
proposes a real-time multi-sensor fusion method based on the particle fil-
ter framework. It utilizes the onboard IMU, camera, lidar, and digital
map information. The main novelty and contribution of this paper lie
in combining visual and distance measurements into semantic features
to correct the states. From a mass production perspective, the proposed
system is satisfactory in terms of accuracy and map volume. The pro-
posed method is quantitatively evaluated in real complex scenarios. The
experimental results show the effectiveness and accuracy of the proposed
system.
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1 Introduction

Vehicle localization is crucial to autonomous driving. The localization system
measures the position, velocity and pose of an autonomous vehicle. Precise local-
ization enables the perception system to better perceive the driving environment.
Planning module also requires correct states to generate traveling paths and driv-
ing controls [4]. Therefore, the autonomous driving system needs a localization
system with relatively high positioning accuracy and robustness. The positioning
estimation is conducted by utilizing information of onboard sensors. Typical sen-
sors for positioning are the global navigation satellite system (GNSS) receivers
and the inertial measurement units (IMU). However, low grade sensors provide
inadequate precision since they are affected by larger noises and biases [2,10,13].

Fortunately, the localization system is possible to benefit from a pre-built
digital map with the map-matching process [15]. The map matching process
extracts environmental features and associates the extracted features with map
features to compute optimal position estimates. The precision relies on both
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sensors and map performance. With the advancement of neural network-based
perception technology, the semantic feature-based methods have dominated the
camera-based localization systems [7,9,11]. The semantic features are more
robust against environmental changes and bring lower capacity requirements
of the digital map [14]. However, the major drawback of visual measurement is
its inability to directly obtain distance measurements of features, which explains
why visual positioning systems tend to have large positioning errors. In contrast,
lidar measures environmental features in three dimensions with high precision.
Previous researches match the current scans to dense point cloud maps by the
iterative closest point (ICP) method or normal distributions transform (NDT)
method to calculate position estimates [8,12]. Besides, learning-based methods
have also shown their talents in terms of accuracy [5]. Although the point cloud-
based method provides higher accuracy, their gap lies in the dense and heavy
maps, which limits the application for mass production. Consequently, combin-
ing visual and distance measurements to localize position on semantic maps is
promising for improving accuracy while retaining lightweight properties.

Besides, a single sensor or map-matching module could not meet the accu-
racy and robust requirements of the autonomous driving system. Therefore,
researchers take advantage of multi-sensor fusion to obtain better solutions. The
central idea of multi-sensor fusion is to make full use of measurement informa-
tion and determine a solution with the least error variance. The Kalman filtering-
based methods have been extensively researched owing to their efficiency [1,3,6].
However, during the map matching processes, some of the features cannot be
directly used to update the states. Therefore we turn to the particle filter as the
sensor fusion framework.

In this paper, we propose a real-time method to localize the vehicle position
on semantic maps. A particle filter is used to fusion onboard sensors. The main
contribution lies in combining visual and distance measurements into semantic
features to correct the particle states. The proposed method is quantitatively
evaluated in real complex scenarios. The experimental results indicate that the
localization system delivers accurate position and pose accuracy, which meets
the requirements of autonomous vehicles.

2 Method

2.1 System Overview

Considering an autonomous vehicle equipped with onboard sensors. The sensors
consist of GNSS receiver, low-cost IMU, wheel speed sensor, front camera, and
lidar. The goal of the localization system is to estimate the vehicle position and
pose on a digital map. Figure 1 shows an example of the digital semantic map.
The map consists of poles, lane line. These features contain the information of
the absolute location, which can be used to restore the vehicle position.

A particle filter is built to fuse these signals. The wheel speed signal and the
IMU signal are combined to update the state of the particles. Since the low-cost
GNSS receiver could not provide adequate accuracy for position correction, we
turn to obtaining position measurement through map-matching.
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Fig. 1. An scenario of HD digital map, the map describes the road topology and
geometry information.

2.2 Visual and Distance Measurements Combination

In this section, the details of the visual and distance measurements combination
are introduced. Considering an image Ik obtained from the camera at time k, the
goal is to associate the visual semantic information to the points of a lidar scan
Lk. Note that laser scans may not be captured at time k, motion compensation
is required before starting the association.

For every point pL
i in the laser scan, we project the point into the image

plane as follows: ⎡
⎣

u
v
1

⎤
⎦ = pI

i = KTL
I pL

i (1)

where K is the camera intrinsics matrix, TL
I is the transform matrix from lidar

coordinate system to camera coordinate system.
As shown in Fig. 2, the image is processed by a features detection network,

which extract lane line and pole features. With the extracted features, the trans-
formed points can be labeled with a specific feature type. A pixel threshold is
set to filter out points that are excluded from the target feature.

Nevertheless, the association in the image plane may gather points that do
not belong to the same feature. Therefore in the next stage, the points are further
filtered in the lidar frame. For the points belonging to the lane line, the points
are filtered according to their horizontal height. For the points belonging to the
pole, we perform clustering in the vertical direction to ensure that these points
belong to a vertical line. After the filtering, the extracted features Z can be used
to corrected the states in particle filter.
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Fig. 2. The extracted semantic features are used to label transformed lidar points, the
outlier points are dropped out.

Z =
{

zpole
i , zline

j

}
i=1:Npole,j=1:Nline

(2)

2.3 Particle Based Sensor Fusion

This section focus on the particle filter based sensor fusion. Since the horizontal
position accuracy is more concerned, the state vector in our particle filter is
defined as Xi

k = [xi
k, yi

k, ψk]T , where xi
k, yi

k and φi
k are the ith particle’s 2D

position and heading angle in the east-north-up (ENU) coordinate system. We
adopt the kinematic model to describe the motion of the vehicle as follows:

Xi
k+1 =

⎡
⎣

x̃i
k+1

ỹi
k+1

ψ̃i
k+1

⎤
⎦ =

⎡
⎢⎢⎣

x̃i
k + ṽkΔt cos

(
ψ̃i

k + ω̃kΔt
2

)
+ δi

x

ỹi
k + ṽkΔt sin

(
ψ̃i

k + ω̃kΔt
2

)
+ δi

y

ψ̃i
k + ω̃kΔt + δi

ψ

⎤
⎥⎥⎦ (3)

where ṽk is the vehicle speed measured by the wheel speed sensor. ω̃k represents
the z-axis angular velocity acquired from IMU. δi

x, δi
y, δi

φ stand for the increment
of uncertainty during the prediction stage.

The filter requires an initialization when the localization system boots from
a cold start. For each particle, their states are randomly generated following
the Gaussian distributions whose mean and variance depend on the GNSS
measurement.



Vehicle Localization 1587

In the update phase, the particle weights are sequentially updated by the
measurements. The updating equation is:

ω̃i
k+1 = ωi

k · ωi
k,pole · ωi

k,lane · ωi
k,heading (4)

where ωi
k,pole, ωi

k,lane and ωi
k,heading represent the weight offerd by different type

of features.

wi
k,pole =

1
2π

√
det (Rpole)

exp
[
−1

2
(
r̂i
k − rk

)T
R−1

k,pole

(
r̂i
k − rk

)]
(5)

where Rpole represents the 2 × 2 uncertainty matrix of pole detection. r̂i
k is the

relative position between the ith particle and pole. rk is the pole position from
by the visual and lidar combination module. The pole position is calculated by
the mean of zpole. We use the nearest neighbor matching in this process.

When processing the lane line, the relative distance between particle and lane
line is extracted as d̂i

k. The percepted relative distance is dk, and the uncertainty
is denoted as σlane. The heading angle update follows the same pattern, note
that the relative heading angle is calculated by the curvature of lane line.

wi
k,lane =

1√
2πσ2

lane

· exp
[
−1

2

(
d̂i

k − dk

)2

/σ2
lane

]
(6)

wi
k,heading =

1√
2πσ2

ψ

· exp
[
−1

2

(
ψ̂i

k − ψk,ψ

)2

/σ2
ψ

]
(7)

Reweighting is needed in each step of updating to make sure the sum of the
particle weights equals to 1. For each particle, the reweighting procedure is:

ω̂i
k =

ω̃i
k∑N

j=1 ω̃i
k

(8)

Resampling is important in the particle filter as it prevents the situation
where the weights concentrate on only a few particles. A random resampling
method is utilized when the inequation (9) is satisfied. Where N is the number
of the particles.

1∑n
i=1 (ω2

i )
< 0.5N (9)

The estimation equations of position and heading angle are as below:

X̂k =

⎡
⎣

x̂k

ŷk

ψ̂k

⎤
⎦ =

N∑
i=1

ω̂i
k

⎡
⎣

x̂i
k

ŷi
k

ψ̂i
k

⎤
⎦ (10)

Note that the shape of the particle distribution has to be inspected before the
output, and we consider the filter as diverging when a bimodal distribution with
large distances exists and needs to be re-initialized.
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3 Experiment Results and Discussions

In this section, we evaluate the performance of the proposed localization system.
4 sequences of driving routes were established and evaluated. The test vehicle is
driven following the routes while the onboard computer collects the sensor data
and conducts the fusion algorithm. The frequencies of the wheel speed sensor,
IMU, camera, and lidar 50 Hz, 100 Hz, 20 Hz, 10 Hz, respectively. Besides we use
a high-end GNSS/INS device to generate reference trajectories.

Fig. 3. The error curves under the body frames.

3.1 Qualitative Analysis

From the perspective of the planning module, the position errors along lateral
and longitudinal are more concerned. Therefore, the position errors in the ENU
frame are transformed into the body frame. Figure 3 shows the error curves dur-
ing a time interval. Blue, green, and orange curves represent the lateral position
error, the longitudinal position error, and the heading angle error, respectively. It
can be seen that the curves have small fluctuations, which indicates the proposed
system presents smooth position and heading angle accuracies.
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Table 1. Localization mean absolute error of different methods.

Lat [95%] (m) Lon [95%] (m) Head [95%] (◦)

Sequence 1 0.054 [0.172] 0.172 [0.411] 0.142 [0.337]

Sequence 2 0.061 [0.210] 0.195 [0.509] 0.174 [0.372]

Sequence 3 0.063 [0.198] 0.189 [0.483] 0.138 [0.294]

Sequence 4 0.057 [0.239] 0.155 [0.395] 0.135 [0.303]

Total 0.059 [0.218] 0.179 [0.480] 0.144 [0.328]

To further evaluate the accuracy quantitatively, the mean absolute errors are
calculated. As shown in Table 1, the proposed method delivers larger longitudinal
errors than lateral errors on average. The reason comes from the distribution of
the features used to correct the states. In the update stage, we use the pole and
the lane line features to update the particle weights. The poles provide lateral
and longitudinal restraints, while the lane lines provide only lateral restraints.
Since the lane lines are present in most of the scenes, the lateral positions can
be continuously corrected. Fortunately, the downstream module demands lower
longitudinal accuracy. It can be concluded that the proposed localization system
meets the requirements of the autonomous driving system.

3.2 Limitations and Future Works

As discussed above, the proposed system works well in most scenes. However,
there are some occasions that may lead to system failure. One example is when
the vehicle travels through a long interaction without lane lines and poles. In this
case, the proposed system can only depend on the prediction process to predict
future states. It would not last long as the measurements of low-cost IMU and
wheel speed are usually superimposed with high-frequency noises. Adding exten-
sive environmental features to the map to provide more persistent constraints is
a way to solve this problem.

4 Conclusion

In this paper, we propose a precise vehicle localization system that fuses onboard
IMU, camera, lidar, and digital map information. The main novelty and contribu-
tion of this paper are combining visual and distance measurements into semantic
features to correct the states. Consequently, the position accuracy is improved
and the system still retains a lightweight property. From a mass production
perspective, the proposed system is adventurous in terms of accuracy and map
volume. The system is quantitatively evaluated in complex environments on a
real-time platform. Experimental results show that this system offers reliable
solutions of the vehicle position in both lateral and longitudinal directions. In
future work, we will aim to extend the types of features and hence provide more
constraints to improve system performance.
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