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Abstract. For the visual-inertial odometry (VIO) system, the localiza-
tion performance depends heavily on initialization for the camera module.
Generally, line features are abundant in workspace, which contain rich geo-
metrical information and can be captured steadily. In this paper, a novel
initialization pattern is proposed for monocular visual-inertial localiza-
tion, which utilizes both point and line features for camera pose estima-
tion. Firstly, a filtration strategy is designed with respect to lengths of
line features, aiming at reducing time cost and computational complex-
ity of line feature extraction. As line features can express plane informa-
tion well, reconstruction approaches are then employed for planar and
nonplanar scenes by a selection criterion, so as to improve accuracy of
pose estimation. At last, localization information is obtained by fusing
point-line features with inertial measurement unit (IMU) measurements
to increase robustness of the VIO system. Comparative experiments on
public datasets are conducted to validate performance of the proposed
method.

Keywords: Visual-inertial odometry · Initialization · Point-line
features

1 Introduction

With continuous advancement of localization and navigation technologies, var-
ious robots can accomplish complex tasks independently in many scenarios [1].
Traditionally, only one sensor is used for collecting environment information in
robotic platforms, and the most common sensor is the monocular camera. A
vision sensor can acquire rich information from external environment, but fre-
quency of data collection is relatively low with respect to quick movement. To
improve localization accuracy, fusing multiple sensors for precise state estimation
becomes one of the hottest topics in robotic fields [2]. One typical framework is
to fuse a camera and an IMU to realize the visual-inertial odometry (VIO) [3].
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Compared with cameras, IMUs can provide high frequency samplings, but accu-
mulate errors as they work. Therefore, fusing a camera and an IMU can make full
use of advantages of both sensors for accurate localization. In the initialization
stage of VIO systems, most of existing methods only use point features for visual
measurement processing, however, point extraction is challenging in textureless
and illumination variation scenes. On the other hand, it brings merits to extract
other types of features, such as line features, in environment for designing VIO
strategies.

For VIO approaches, based on fusion pattern of visual and inertial measure-
ments, they can be classified into loosely-coupled and tightly-coupled categories.
For loosely-coupled approaches, visual and inertial measurements are used for
pose estimation separately, and then results of the two estimators are fused to
obtain the final localization information. Tightly-coupled approaches use raw data
from the two sensors jointly for pose estimation, which can generally obtain more
accurate and robust results compared to loosely-coupled ones [4]. On the other
hand, according to fusing frameworks for visual and inertial measurements, VIO
approaches can also be classified as filter-based [5] and optimization-based cat-
egories [6]. Filter-based approaches are designed with extended Kalman filters
(EKF), which use IMUmeasurements for pose prediction and update the results by
visual measurements [7]. Mourikis et al. propose the classic multi-state constraint
Kalman filter method (MSCKF), where computation complexity is reduced by
marginalizing landmark coordinates from the state vector but instant visual mea-
surements are not fully used [8]. Li et al. further enhance the MSCKF algorithm
with closed-form expression [9]. For the optimization-based approaches, cam-
era and IMU samplings are optimized iteratively with preintegration techniques
to improve localization performance [10]. Classic optimization-based approaches
include the keyframe-based visual-inertial SLAM method (OKVIS) designed by
Leutenegger et al. [11] and the versatile monocular visual-inertial state estimator
(VINS-Mono) designed by Qin et al. [12].

Visual odometry is divided into categories as feature-based odometry, direct
sparse odometry, and semi-direct odometry, according to whether it needs
extract image features. It is noted that feature-based methods are able to match
images with robustness and efficiency, and have good invariance to changes of
viewpoints as well as illumination. Over the years, most of visual odometry meth-
ods extract only point features for pose estimation [8,13]. Representative pixels
in images define the point features, and typical methods of extracting point
features are SIFT, FAST, and ORB [14]. With executing matching operations
after extracting point features, relative pose transformation between specific
two frames is recovered with reconstruction algorithms, and for the sliding win-
dow pattern, triangulate and perspective-n-point (PnP) algorithms are used for
reconstructing multiple frames. Klein et al. design the classic parallel tracking
and mapping (PTAM) strategy by utilizing point features [15]. On this basis,
Mur-Artal et al. propose the famous ORB-SLAM strategy by utilizing ORB
features, which have the advantages of scale and rotation invariance [16]. The
VINS-Mono method is designed by utilizing point features, with high-precision
suitably for unmanned aerial vehicle (UAV) localization and mapping objectives,
and this method has become a VINS benchmark [12].
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In VIO systems, it is challenging to estimate pose information via point fea-
tures in textureless and illumination varying environments. Line features are rich
in workspaces generally and are as supplementary to point features in low-texture
environments, and line detection is less sensitive to illumination variation and
has more robust performance. Moreover, line segments provide more geometri-
cal structure information for describing environments than point features. There
are two kinds of representation for line segments: orthogonal coordinate repre-
sentation and Plucker coordinate representation, where the orthogonal one uses
three DoFs rotation and a scale factor for denotation, while the Plucker one is
with over-parameterization to describe the four degree-of-freedoms (DoFs) spa-
tial lines. As a result, it is reliable to make use of point and line features jointly
for camera pose estimation, such as for visual odometry systems [17,18]. For
visual-inertial odometry systems, point and line features can be fused with IMU
measurements jointly. Kong et al. design a stereo visual-inertial system combin-
ing point and line features based on a filtering pattern [19]. Yu et al. parameterize
line features for VIO systems to take the advantage of linearity properties [20].
Kottas et al. use only line features for pose estimation and provide observabil-
ity analysis [21]. In [22], He et al. propose the PL-VIO strategy based on the
optimization framework, which uses point and line features for tightly-coupled
monocular VIO system.

In this paper, a novel visual-inertial odometry strategy is proposed by uti-
lizing both point and line features for pose estimation, where visual percep-
tion is enhanced for the initialization stage of the camera module, so as to
enhance performance of the whole VIO system. Firstly, a screening mechanism
is designed for eliminating short line features, which can improve efficiency of line
feature extraction and reduce time costs. Then, by taking it into account that
line features have close relationship with plane information with respect to the
workspace, the homography and fundamental matrix are calculated separately
for plane and non-planar scenes, respectively. Accuracy of initial pose estimation
is improved through the selection algorithm in the initialization stage. Lastly,
the extracted line and point features are combined with IMU measurements for
localization. Experimental results with respect to datasets are provided to verify
performance of the proposed approach. Compared with existing methods that
use point and line features for localization, main contributions of the paper are
as follows: 1) complexity and time costs of line feature extraction are reduced
by effectively filtrating short line segments, 2) robustness of pose estimation is
enhanced by the selection algorithm for homography and fundamental matrix.

2 Problem Formulation

2.1 System Description

The framework of the proposed method is illustrated in Fig. 1. Since time cost
is high for line feature extraction generally, computation complexity is reduced
by filtrating short line features so as to ensure real-time performance for visual-
inertial odometry systems. As line features can make good use of plane information
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Fig. 1. Block diagram for visual-inertial odometry initialization with point and line
features.

and point features can satisfy epipolar constraints, homography and fundamental
matrix are used for line and point features, respectively. By judging plane and non-
planar scenes, homography and fundamental matrix are utilized to obtain more
accurate pose estimation results, respectively. Camera measurements are fused
with the IMU module to estimate other states. As a result, by utilizing both point
and line features to estimate pose information jointly, accurate localization is real-
ized for VIO systems, even in some extreme scenes that are not rich with respect
to point features.

2.2 Line Feature Representation

It is known that point features can be represented in three-dimensional (3D)
coordinates directly with three DoFs. By contrast, spatial lines are often
represented by two 3D endpoints with six DoFs, which results in over-
parameterization in the sense that line segments actually have four DoFs. Plucker
and orthogonal coordinate representations are two geometric descriptions for line
segments.

Under the Plucker representation, a spatial line is expressed by two end-
points SSS = [x1, y1, z1, ξ1]T and EEE = [x2, y2, z2, ξ2]T . So the line segment can be
expressed under the camera coordinate system Fc as [23]

L = SSSEEET − EEESSST (1)

where L is an antisymmetric matrix. Then, the Plucker matrix can be expressed
as follows:

L =

[
[nnn]× ddd

−dddT 0

]
(2)

where nnn(t) is the normal vector to the plane determined by this line segment
with the camera optical center, ddd(t) is the line direction vector, and they are
both expressed under Fc and have the constraint of nnn(t)Tddd(t) = 0.

The L matrix in formula (2) has six DoFs, which is more than the four DoFs
inherent in the line segment. Thus, this over-parameterization property brings
additional constraints of two DoFs and increases computational complexity in
the back-end optimization.
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Unlike the Plucker representation, the orthogonal representation can avoid
redundant constraint problems and speed up optimization processes. Plucker
coordinates in (2) can be expressed under the orthogonal representation as
(U(t),W (t)) ∈ SO(3) × SO(2), where U(t) and W (t) denote three and two
dimensional rotation matrices, respectively. By applying the QR decomposition
algorithm, U(t) and W (t) have the following form for describing line features
under the orthogonal representation:

U =
[

nnn

‖nnn‖ ,
ddd

‖ddd‖ ,
nnn × ddd

‖nnn × ddd‖

]
, W =

[
w1 w2

−w2 w1

]
(3)

where detailed meaning of w1(t) and w2(t) is shown in the following formula (5).
Let R(ϕϕϕ) := U(t) and R(φ) := W (t), then we obtain

R(ϕϕϕ) = [uuu1,uuu2,uuu3] =
[

nnn

‖nnn‖ ,
ddd

‖ddd‖ ,
nnn × ddd

‖nnn × ddd‖

]
, (4)

R(φ) =
[

cos φ − sin φ
sin φ cos φ

]
(5)

=
1√

‖nnn‖2 + ‖ddd‖2

[
‖nnn‖ − ‖ddd‖
‖ddd‖ ‖nnn‖

]

where ϕϕϕ(t) and φ(t) represent a three-dimensional vector and a scale factor,
respectively. Therefore, the orthogonal representation for a line feature has the
form

ooo = [ϕϕϕT , φ]T . (6)

As a result, transformation between the Plucker representation and the
orthogonal representation is shown as follows:

L =
[
w1uuu1

T , w2uuu2
T
]
. (7)

The two representations are utilized in different stages of the visual-inertial
SLAM system, respectively. The Plucker representation is utilized in front-end
pose estimation while the orthogonal one is utilized in the back-end optimization,
so as to improve calculation efficiency and avoid redundant constraints.

3 Line Feature Extraction and Matching

3.1 Line Feature Filtration

A large number of line features can be extracted from each image, and generally
most of short-line features do not appear on two consecutive images [23]. In
this sense, short-line features are not appropriate for feature matching and pose
estimation. By contrast, long-line features have a higher probability of appearing
in successive image frames and are easy for matching. Moreover, extraction of
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Fig. 2. Relationship between lengths of lines and their rectangle areas.

line features is relatively complicated and time-consuming. To deal with these
problems, a filtration strategy needs to be designed with respect to lengths of
line features.

Pixel coordinates of the start and the end points of a line segment are
(u1(t), v1(t)) and (u2(t), v2(t)) in an image, respectively. Pixel distances are
u(t) = |u1(t) − u2(t)| and v(t) = |v1(t) − v2(t)| in horizontal and vertical direc-
tions of the two endpoints, respectively, and the minimum value is denoted as
m(t) = min{u(t), v(t)}. Then, area relationship is evaluated between the rect-
angle of a line segment and the entire image to judge the length of the line
feature.

1) If a line segment is vertical or horizontal (m = 0), as the vertical line seg-
ment in Fig. 2, then pixel length of the line segment is calculated through
l =

√
u2 + v2 directly. Therefore, long line segments are retained for pose

estimation and short ones are excluded directly, which are distinguished by
the following criterion: {

long : l ≥ μmin(h,w),
short : l < μmin(h,w) (8)

where h and w are height and width of the image, respectively, and μ is the
ratio factor and is set to 0.125, the same as that in [23].

2) If the line segment is oblique (m �= 0), the rectangle area of a line segment is
expressed with s = uv, and another variable ts = s/m is defined for labeling
longer line segments. As an example, rectangle areas of blue and red lines in
Fig. 2 are the same, and the blue one is marked longer then the red one with
bigger ts.

Therefore, a line feature can be determined that whether it is a long segment
or not by {

long : ts > η min(h,w),
short : ts ≤ η min(h,w) (9)

where η is a ratio factor. Trajectory estimation accuracy for the VIO system and
extraction time of line features are contradictory with respect to the ratio factor
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η. This factor is tried through practical manner for selecting a compromise value
in the following experimental section. As a result, only long line features that
satisfy requirements (8) and (9) are extracted appropriately for better feature
matching and pose estimation.

3.2 Multiple View Geometry for Scenes

The fundamental matrix from multiple view geometry is suitable for accurate
pose estimation in scenarios with rich point features, however, it degenerates
and is sensitive to noise when the camera has pure rotation and observed feature
points are coplanar. By contrast, line features can represent plane information
well, and the homography can be used more suitably for pose estimation with
respect to planar scenes. Therefore, both the two types of multiple view geometry
are calculated in parallel to realize better visual initialization, and they are
selected in planar and nonplanar scenes to estimate relative poses, respectively.

Relating to the fundamental matrix estimated by the eight-point algorithm,
the essential matrix satisfies the epipolar constraint and has only five DoFs due
to scale equivalence. The rotation matrix R(t) and the translation vector TTT (t) are
calculated through singular value decomposition (SVD) algorithms with depth
evaluation. On the other hand, the homography is used to describe the mapping
relationship with respect to plane scenes, such as grounds and walls. Similar to
the essential matrix, pose information can be calculated from the homography
by utilizing direct linear transform (DLT) algorithms.

The fundamental matrix and the homography are selected when point and
line features are relatively richer, respectively. On the basis of the selection strat-
egy in [16], scores SF (t) and SH(t), with unified form SM (t), are calculated
separately for selecting the fundamental matrix and the homography in each
iteration:

SM =
∑
i

(ρM (d2cr(p
i
c, p

i
r,M)) + ρM (d2rc(p

i
c, p

i
r,M))) (10)

where

ρM (d2cr) =
{

ΓM − d2cr, d2cr < TM ,
0, d2cr ≥ TM

(11)

and ρM (d2rc) is calculated with the same formula. In (10) and (11), symbol
M denotes the selected fundamental matrix and homography, d2cr and d2rc are
mutual reprojection errors from one frame to the other, TM is the outlier rejection
threshold with TF = 3.84 for the fundamental matrix and TH = 5.99 for the
homography the same as those in [16], and ΓM is defined similarly to TM .

In special cases, such as parallax is low with approximate plane scenes, trans-
formation relationship between two frames is ambiguous expressed by either the
fundamental matrix or the homography. To solve this problem, the following
criterion is utilized with respect to SH and SF :

RH =
SH

SH + SF
. (12)
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(a) (b)

Fig. 3. The diagram for the reprojection error of a line feature.

with (12), the homography is selected when RH > 0.45, otherwise the fundamen-
tal matrix is used. In summary, the above processes are designed to obtain better
results of feature matching and pose estimation with point and line features.

3.3 Reprojection Errors of Line Features

The projection model of line segments with respect to the camera plane is

lll = Klnnn =

⎡
⎣ fx 0 0

0 fy 0
−fycx fxcy fxfy

⎤
⎦nnn (13)

where lll = [l1, l2, l3]T is the normal vector of the plane that is defined by the line
and the camera optical center, Kl is the transformation matrix for line segment
projection, and fx, fy, cx, cy are camera intrinsic parameters.

The reprojection error of a line feature is illustrated in Fig. 3, and there are
two camera keyframes Fc1 and Fc2 taken as an example with respect to the world
coordinate system Fw. A line feature is represented by PQ, which projects on the
two image planes according to the projection model (13). The line segment on the
Fc1 image plane is detected by line segment detector (LSD) algorithms, and its
reprojection line segment is calculated and shown as the blue one on Fc2 with xxxs

and xxxe being the start and the end points, respectively. The reprojected line seg-
ment is matched with the detected one on Fc2 , and the reprojection error exists
as shown in Fig. 3(b).

The line feature can be converted from the world coordinate system Fw to the
camera coordinate system Fc by the following relationship:

Lc = c
wT Lw, c

wT =
[

c
wR [cwTTT ]×

c
wR

0001×3 1

]
(14)

where w
c R(t) and w

c TTT (t) are the rotation matrix and the translation vector of Fc

under Fw, respectively.
The reprojection error model of a line feature with respect to the image plane

can be obtained as

eeel =

[
xxxT
s lll√

l21 + l22
,

xxxT
s lll√

l21 + l22

]T

(15)
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Fig. 4. The diagram of linear feature based pose estimation.

where lll(t) is projected to the camera plane by (13), l1(t) and l2(t) are entities of
lll(t). The norm of eeel(t) is just the length of d(t), as shown in Fig. 3(b).

4 Fusion of Line Features and the IMU

4.1 Pose Estimation with Line Features

Considering three successive camera keyframes Fc1 , Fc2 , and Fc3 , a line segment
PQ is observed on these images, as illustrated in Fig. 4. Line PQ projects on the
three image planes with the features denoted as siei, i = {1, 2, 3}. Since keyframes
are successive with short time, velocities among these three camera keyframes are
assumed to be constant. Here the keyframe Fc2 is set as the reference, and then
its rotation matrix denoted as R2 is set equal to 3× 3 identity matrix I [18]. Rota-
tion matrices of Fc2 to Fc1 and Fc2 to Fc3 can be described as Rc1

c2 = RT and
Rc3

c2 = R, respectively, where the rotation matrix R is expressed approximately as
follows [18]:

R =

⎡
⎣ 1 −r3 r2

r3 1 −r1
−r2 r1 1

⎤
⎦ . (16)

Camera optical center Oi and each projection line segments siei define a plane,
and its normal vector is denoted as llli, i = {1, 2, 3}. The constraint for vectors lll1,
lll2, and lll3 is shown by the following equation:

lll2
T ((RT lll1) × (Rlll3)) = 0. (17)

Consequently, three quadratic equations are established by the above formula.
Moreover, camera poses can be calculated for the initialization stage from (17),
which is solved by employing polynomial solving algorithms in [24] with at least
five matched line features.
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4.2 IMU Fusion

Visual information becomes more sufficient by extracting both point and line fea-
tures jointly. Thus, the vision module can estimate poses accurately in different
scenes and reduce risk of tracking failure in lack of point features. Furthermore,
after the visual module provides pose relationship between two camera keyframes,
IMU measurements are aligned and fused to obtain other states. At last, the above
algorithms are integrated into typical SLAM systems such as VINS-Mono, and
localization performance is improved for the whole VIO system.

5 Experimental Results

In this section, experiments are conducted to verify performance of the proposed
VIO method. The classic EuRoC datasets [25] are used with comparative tests to
evaluate the accuracy of the proposed method.

5.1 Extraction of Long Line Features

The filtration strategy for long line features in Sect. 3. A is verified in this
part, and the ratio factor η is obtained through tradeoff in experiments. Taking
MH 05 difficult dataset as an example, feature maps of the workspace are shown
inFig. 5, where each subgraph corresponds to different ratio factors. The number of
extracted line features becomes smaller as the ratio factor is adjusted larger, imply-
ing that lengths of extracted line features should be longer. On the other hand, with
very few line features, it is difficult to combine line features with point features for
robust pose estimation. Therefore, the ratio factor for line feature lengths can be
turned to affect extraction time, moreover, pose estimation accuracy should also
be taken into account when tuning this factor.

Figure 6 provides effect of different ratio factors by the filtrate strategy in the
MH 05 difficult experiment. The top subgraph shows relationship between the
scale factor and line feature extraction time, and the bottom one shows relation-
ship between scale factor and root-mean-square-error (RMSE) of the estimated
trajectory. It is seen that extraction time of line features decreases obviously when
the scale factor increases, and RMSE of the estimated trajectory is preferable with
a compromise value of the scale factor. As a result, the scale factor is selected as
0.2 by taking into account both extraction time and trajectory RMSE.

5.2 Tests for Localization

The EuRoC datasets provide 20 frames per second images, synchronized IMU
measurements, and ground truth for states of unmanned aerial vehicles. The left
camera from stereo vision is only used in this part as the monocular camera.
All experiments are performed on a laptop computer (Quadcore Intel i7-7700H,
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Fig. 5.Line feature maps corresponding to different ratio factors η in the MH 05 difficult
experiment.

Fig. 6. Line feature extraction time (top) and trajectory RMSE (bottom) with respect
to different ratio factors η in the MH 05 difficult experiment.

CPU@2.8 GHZ, 8 GB RAM) with Ubuntu 16.04/ROS Kinetic. We accomplish the
proposed strategy on the basis of the PL-VINS framework [23], and provide our
detailed implementation on the website1. To form the monocular visual-inertial
SLAM system with respect to point-line features, the implementation includes
real-time line feature extraction, loop detection, and relocalization.

Experimental results of the proposed method with relevant datasets are pro-
vided in Table 1, and localization errors are evaluated by RMSE from the evo pack-
age (https://github.com/MichaelGrupp/evo). Moreover, the PL-VINS method
[23] is conducted as a comparison, and relevant results are also provided in Table 1.
It is seen that localization accuracy of the proposed method is superior over that
of the comparative method.

1 https://github.com/TGUMobileVision/VIOPointLine.

https://github.com/MichaelGrupp/evo
https://github.com/TGUMobileVision/VIOPointLine
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Table 1. RMSE of the proposed method and PL-VINS.

Sequence Proposed PL-VINS

MH 01 easy 0.152 0.157

MH 02 easy 0.171 0.169

MH 03 medium 0.277 0.277

MH 04 difficult 0.299 0.303

MH 05 difficult 0.276 0.281

V1 02 medium 0.122 0.123

V1 03 difficult 0.177 0.181

Fig. 7. Process images by the proposed method in MH 05 difficult (top) and
V1 03 difficult (bottom) experiments.

Fig. 8. Extracted point-line features and estimated trajectories by the proposed method
in MH 05 difficult (left) and V1 03 difficult (right) experiments.

Process images of MH 05 difficult and V1 03 difficult experiments are shown
in Fig. 7. It can be seen that abundant line features are detected in scenes with less
texture and small parallax. Figure 8 provides both trajectories and feature maps
for these experiments, where red and green lines denote ground truth and actual
trajectories, respectively.

Moreover, trajectory errors are marked with graduated colors to display results
intuitively, as shown in Fig. 9. Left and right subgraphs represent results of the
proposed method and [23], respectively. It is seen that trajectory errors of the pro-
posed method are less than that of PL-VINS, obviously when the camera rotates
rapidly.
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Fig. 9. Trajectory error comparison in MH 05 difficult (top) and V1 03 difficult (bot-
tom) experiments (left subgraphs: the proposed method, right subgraphs: PL-VINS).

6 Conclusions

A novel visual-inertial odometry is proposed by utilizing point and line features
jointly for pose estimation. For line feature extraction, to deal with the problem
of high computational complexity, a filtration strategy is designed with respect to
lengths of line features, so as to exclude short line features and speed up line feature
extraction time to obtain real-time performance. Since point features satisfy the
epipolar constraint and line features well express plane information, fundamen-
tal matrix and homography are set to be computed concurrently for non-planar
and planar scenes, respectively. Then, a selection strategy is conducted for the
two multiple view geometry results to improve localization accuracy. Pose infor-
mation obtained by the camera module is finally fused with measurements of the
IMU module, and the scale factor and other states are calculated to obtain more
robust initialization information for the visual inertial odometry.
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