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Abstract. In the last decades, numerous simultaneous localization and
mapping (SLAM) methods based on different sensors have been pro-
posed. However, it is still an open research problem to achieve robust
SLAM in harsh environments. Compared to LiDAR and camera, mil-
limeter wave radar can operate well under different weather and lack
of light conditions. In this paper, an error state Kalman filter (ESKF)
based SLAM algorithm is proposed. It utilizes a millimeter wave radar
and an inertial measurement unit (IMU) to estimate the location of
the unmanned vehicle and the mapping result of the surroundings. The
unmanned vehicle state is estimated by the state prediction, registra-
tion, and the state update step, and the surrounding environment is
constructed into a map through the map update step. The proposed
algorithm is evaluated via experiment.
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1 Introduction

The objective of simultaneous localization and mapping (SLAM) technology
is to estimate the ego motion of the vehicle while constructing a map of an
unknown environment. Existing SLAM schemes are mainly based on LiDAR
(LOAM [1], FAST-LIO2 [2]), vision (vins-mono [3], ORB-SLAM3 [4]) and multi-
sensors fusion (LVI-SAM [5], R3LIVE [6]), etc. Although LiDAR can acquire
high range resolution and angular resolution in most cases, it is sensitive to
weather, such as rain and fog [7]. On the other hand, the camera is versatile and
inexpensive, but it is susceptible to the changes in the scene, such as lack of light
or snow.

Millimeter wave radar could detect the surrounding environment by emitting
electromagnetic waves with 1–10 mm wavelength. The millimeter waves have a
short wavelength and a wide frequency bandwidth. It can provide relatively
high accuracy. In addition, the wavelength of millimeter wave is larger than
that of visible light and laser, which can easily penetrate rain and fog. As a
result, millimeter wave radar can provide a longer detection distance and more
effective anti-interference capability. Besides the price of millimeter wave radar
is lower than the LiDAR [8]. In recent years, millimeter wave radar has attracted
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more and more attention in the SLAM area because of its robustness in harsh
environments [7–9]. However, millimeter wave radar has larger measurement
errors and more false alarms compared to LiDAR.

In this paper, an ESKF based SLAM method is proposed with millimeter
wave radar and IMU. The ESKF is utilized to fuse the measurements of radar
and IMU to estimate the ego motion and construct the map of the surrounding
environment. We build an experimental platform equipped millimeter wave radar
and IMU, and conduct several experiments to validate the proposed method.

The remainder of this paper is organized in the following manner. In Sect. 2,
the problem formulation is described. Then we present the ESKF based method
to estimate platform motion and construct the map of the surrounding environ-
ment in Sect. 3. The experiment results are provided and discussed in Sect. 4.
And Sect. 5 concludes this paper.

2 Problem Formulation

Assuming an unmanned vehicle is equipped with millimeter wave radar and IMU,
which aims to retrieve the real-time location of the vehicle while constructing a
map of the surroundings.

Millimeter wave radar transmits electromagnetic waves to illuminate the sur-
rounding environment. Let s(t) denote the baseband signal transmitted at each
radar period and fc is the carrier frequency. The echo received by the n-th
receiver from the m-th transmitter at the k-th radar period is expressed as:

rmnk (t) =
L∑

l=1

σmnlks (t) exp (−j2πfcτmnlk) + φmnk (t) , (1)

where σmnlk is the scattering coefficient for the l-th scatter, τmnlk denotes the
round trip time delay of the l-th scatter for the m-th transmitter and n-th
receiver, φmnk (t) denotes the noises. After demodulation, sampling and beam-
forming [10], the point cloud generated by the millimeter wave radar at the k-th
radar period could be written as Pk =

{
p̄k,1, ..., p̄k,N

}
. Here the component

p̄k,j is:
p̄k,j = pk,j + nk,j , (2)

where pk,j is the true positon of the j-th scatter, and the number of points in
the point cloud Pk is denoted as N .

The IMU is utilized to measure the angular velocity ω̄I and the accelera-
tion āI of the unmanned vehicle. ω̄I and āI are affected by not only additive
Gaussian white noise nω and na but also slowly varying sensor bias bω and ba ,
respectively:

ω̄I = ωI + bω + nω

āI = RW,T
I

(
aW − gW

)
+ ba + na,

(3)

where the superscript W , I, B denotes the world coordinate frame (the first
radar coordinate frame), the IMU coordinate frame, and the radar coordinate
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frame, respectively. ωI is the true angular velocity of the sensor and aW and
gW denote the true acceleration of the sensor and the gravity in the world
coordinate frame, respectively. In addition, RW

I denotes the rotation matrix of
the IMU coordinate frame represented in the world coordinate frame. To make it
more clear to understand, the relationship among the mentioned three coordinate
frames is shown in Fig. 1.

Fig. 1. The relation of three coordinate frames.

Assume that the radar is connected to the IMU with a known extrinsic
TB

I
.=

(
RB

I ,pB
I

)
. The motion of the platform could be modeled by [11]:

ṗW
B = vW

B , v̇W
B = RW

B RB
I

(
āI − ba − na

)
+ gW ,

Ṙ
W

B = RW
B

⌊
RB

I

(
ω̄I − bω − nω

)⌋

∧
, ḃa = nba , ˙bω = nbω ,

(4)

where �a�∧ denotes the skew symmetric matrix of vector a ∈ R
3. The sensor

bias bω and ba are modeled as the random walk process with white noises nbω

and nba .
The continuous kinematic model in (4) is discretized with the IMU sampling

period Δt:
xi+1 = xi � (Δtf (xi,ui,wi)) , (5)

where i denotes the index of IMU measurements sampled between two consecu-
tive radar periods at time τi ∈ [tk−1, tk]. The state x, function f , input u, and
noise w are defined as:

x =
[
pW,T
B vW,T

B RW,T
B ba

T bω
T
]T

,

u =
[
āI,T ω̄I,T

]T
,w =

[
na

T nω
T nba

T nbω
T
]T

,

f (xi,ui,wi) =

⎡

⎢⎢⎢⎢⎣

vW
B,i

RW
B,iR

B
I

(
āI
i − bai − nai

)
+ gW

RB
I

(
ω̄I

i − bω i
− nω i

)

nbai

nbω i

⎤

⎥⎥⎥⎥⎦
,

(6)
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where pW
B and vW

B are the position and velocity of the radar in the world frame,
respectively. RW

B ∈ SO(3) is the rotation matrix of the radar coordinate frame
represented in the world frame.

Operator � is utilized to establish a projective mapping from the local neigh-
borhood on tangent space R

n to its manifold M, which is defined as [2]:
[

R
a

]
�

[
r
b

]
=

[
R Exp (r)

a + b

]
, (7)

where R ∈ M = SO(3), r ∈ R
3, a, b ∈ R

n, Exp (·) denotes the Rodrigues’s
transformation from the rotation vector to the rotation matrix [12].

The location of the unmanned vehicle and the map of the surrounding envi-
ronment could be jointly estimated by calculating the state x based on the mea-
surements of radar and IMU, and subsequently transforming the radar point
cloud to the world coordinate frame.

3 Methodology

In the following part, an ESKF-based method is proposed to realize the vehicle
ego motion estimation and map construction simultaneously. The flowchart of
our method is shown in Fig. 2. The state of the vehicle is predicted continuously
when IMU measurements arrive. Once the radar point cloud arrives, the position
and rotation of the radar are estimated by registration and state update. Finally,
the radar point cloud is converted to the world coordinate frame and then merged
into map.

IMU

Radar

State
Prediction

Registration

State
Update Odometry

Map

Map
Update

Fig. 2. Flowchart of the proposed algorithm.

3.1 State Prediction

Assume that the state at the k − 1-th radar period tk−1 is x̌k−1 with covariance
matrix P̌ k−1, and xk−1 is the true state of x̌k−1. The error state x̃i is written as:

x̃k = xk � x̌k =
⌊
p̃W,T
B ṽW,T

B δθW,T
B b̃

W,T

a b̃
W,T

ω

⌋T

, (8)
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where δθW,T
B = Log

(
R̂

W,T

B RW
B

)
is the attitude error. p̃W

B , ṽW
B , b̃

W

a , b̃
W

ω are the
error of position, velocity, accelerometer bias, and gyroscope bias, respectively,
which are standard additive errors (x̃ = x−x̌). Operator � is utilized to establish
a projective mapping from manifold M to its tangent space R

n [2]:

[
R1

a

]
�

[
R2

b

]
=

[
Log

(
RT

2 R1

)

a − b

]
, (9)

where R1, R2 ∈ M = SO(3), a, b ∈ R
n, and Log (·) denotes the Rodrigues’s

transformation from the rotation matrix to the rotation vector [12].
Once the IMU measurement is received, the state is predicted as:

x̂i+1 = x̂i � (Δtf (x̂i,ui,0)) ; x̂0 = x̌k−1. (10)

The error state dynamic model can be derived as:

x̃i+1 = xi+1 � x̂i+1

= (xi � Δtf (xi,ui,wi)) � (x̂i � Δtf (x̂i,ui,0))
� F x̃x̃i + F w wi,

(11)

where the matrixes F x̃ and F w are defined as:

F x̃ =
∂ (xi+1 � x̃i+1)

∂x̃i

∣∣∣∣
x̃i=0,w i=0

=

⎡

⎢⎢⎢⎢⎢⎢⎣

I3 I3Δt 03 03 03

03 I3 −R̂
W

B,i

⌊
âB
i

⌋

∧
Δt −R̂

W

B,iR
B
I Δt 03

03 03 Exp
(
−ω̂B

i Δt
)

03 − Jr
(
ω̂B

i Δt
)

Δt

03 03 03 I3 03

03 03 03 03 I3

⎤

⎥⎥⎥⎥⎥⎥⎦
,

F w =
∂ (xi+1 � x̃i+1)

∂wi

∣∣∣∣
x̃i=0,w i=0

=

⎡

⎢⎢⎢⎢⎢⎣

03 03 03 03

−R̂
W

B,iR
B
I Δt 03 03 03

03 − Jr
(
ω̂I

i Δt
)

03 03

03 03 I3Δt 03

03 03 03 I3Δt

⎤

⎥⎥⎥⎥⎥⎦
.

(12)

where âB
i = RB

I

(
āI
i − b̂ai

)
, ω̂B

i = RB
I

(
ω̄I

i − b̂ω i

)
, I3 and 03 are 3×3 identity

matrix and 3 × 3 zero matrix, respectively. Jr (φ) is defined as:

Jr (φ) =
sin φ

φ
I3 +

(
1 − sinφ

φ

)
aaT − 1 − cos φ

φ
�a�∧ , (13)

where φ = ‖φ‖ (‖φ‖ is the norm of φ) and a = φ/φ.
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The covariance matrix of the state x̂i+1 can be computed by:

P̂ i+1 = F x̃P̂ iF
T
x̃ + F ω QF T

ω ; P̂ 0 = P̂ k−1, (14)

where Q is the covariance matrix of the Gaussian white noises w.
The prediction continues until a new period at tk of radar point cloud reaches.

The estimation of the state and the covariance matrix at tk are denoted as x̂k

and P̂ k, respectively.

3.2 Registration

The registration step utilizes the point-to-point iterative closest point (ICP)
algorithm to calculate the relative transformation between two radar point clouds
[13]. The kernel of ICP is aligning two point clouds by iteratively minimizing
the Euclidean distance between the corresponding points.

Assume that a radar point cloud PB =
{
p̄k,1, ..., p̄k,m

}
is aligned with the

point cloud of map Q = {q̄1, ..., q̄n}. Let the pose p̂W
B,k and the rotation matrix

R̂
W

B,k in the predicted state x̂k be the initial guess in the ICP algorithm. The
estimation of pz,k and Rz,k are calculated by iteratively minimizing:

pz,k,Rz,k = arg min
pz,Rz

∑

(i,j)

∥∥Rzp̄k,i + pz − q̄j

∥∥2
, (15)

where (i, j) denotes that the nearest point of Rzp̄k,i + pz in Q is q̄j .

3.3 State Update

Note that the estimation of state xk at time tk is x̂k. The measurement zk =[
pT
z,k,R

T
z,k

]T
is calculated in the registration step when the radar point cloud

arrives. The measurement zk could be denoted as:

zk = h (xk) � nz

� h (x̂k) � Hkx̃k � nz

= ẑk � Hkx̃k � nz,

(16)

where ẑk is the prediction of the measurement, nz is the Gaussian white noise.
Hk is the Jacobin matrix of h (xk), defined as:

Hk =
∂h (xk)

∂xk

∂xk

∂x̃k

=

[
I3 03 03 03 03

03 03 J-1r
(
Log

(
RW

B

))
03 03

]
.

(17)
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The state is updated by the ESKF through the following equations [14]:

K = P̂ kH
T

(
HP̂ kH

T + N
)−1

,

x̌k = x̂k � (K (zk � ẑk)) ,

P̌ k = (I15 − KH) P̂ k,

(18)

where N is the covariance matrix of nz and I15 is 15 × 15 identity matrix.

3.4 Map Update

The map update step aims to transform the radar point clouds to the world
frame and merge them to the map. The radar point cloud Pk is projected from
the radar coordinate frame at time tk to the world coordinate frame with the
state update x̌k via:

p′
k,j = Ř

W

B,kp̄k,j + p̌W
B ; p̄k,j ∈ Pk. (19)

As the unmanned vehicle moves, repeat the above process and append the radar
point cloud to the existing map. Gradually, the map of the surrounding environ-
ment is obtained through step-by-step iterative processing.

4 Experiments

4.1 Experimental Platform

The experiment is carried out using a wheeled robot, as shown in Fig. 3. A
LiDAR (Livox Horizon) is mounted at the front of the wheeled robot, which is
used to provide reference ground truth to verify our proposed algorithm. A 77
GHz millimeter wave radar (Texas Instruments AWR2944EVM) is equipped at
the top of the vehicle. The parameters of the radar are shown in Table 1. An
IMU (HFI-A9) is mounted next to the millimeter wave radar. The specification
of the IMU is given in Table 2.

Table 1. Radar specification.

Parameter Specifications

Maximum range (m) 200

Range resolution (m) 1.3

Maximum velocity (m/s) ±38.89

Velocity resolution (m/s) 0.1

Azimuth angular resolution (Deg) 9.5

Frame rate (Hz) 4
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Fig. 3. Experimental platform.

Table 2. IMU specification.

Parameter Specifications

Gyroscope range (Deg/s) ±2000

Acceleration range (g) ±8

Angle accuracy (Deg) 0.5

Frame rate (Hz) 150

Table 3. Absolute pose error results

Absolute pose error ICP+IMU Proposed method

Translation (m) 16.6869 8.5217

Rotation (rad) 0.3344 0.1691

(a) (b) (c)

Fig. 4. Mapping results. (a) Satellite map. (b) Mapping results of the proposed method.
(c) Mapping results of FAST-LIO2.
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Fig. 5. Trajectories estimated by different algorithms.

4.2 Validation

To verify the effectiveness of the proposed method, we simultaneously collected
the data of LiDAR, millimeter wave radar, and IMU data by manually controlling
the wheeled robot moving around a building in University of Electronic Science
and Technology of China. The experimental scene is shown in Fig. 4(a).

The mapping results of the proposed method and FAST-LIO2 are depicted in
Fig. 4(b) and 4(c), respectively. It shows that the proposed method can generate
a similar mapping result compared with FAST-LIO2.

The trajectories estimated by different algorithms are presented in Fig. 5.
FAST-LIO2 is the reference trajectory generated by FAST-LIO2 [2] using LiDAR
and IMU. ICP+IMU is the trajectory estimated by using ICP method which
employing IMU to provide an initial rotation matrix guess. From the Fig. 5, we
can find that the trajectory of the proposed method is close to the trajectory
generated by FAST-LIO2, while the trajectory of ICP+IMU has larger error.

To quantitatively evaluate the performance of the proposed method, we com-
pute the root mean square error (RMSE) of the absolute position error (APE) for
the proposed method and ICP+IMU. As shown in Table 3, the proposed method
achieves higher translation and rotation accuracies compared with ICP+IMU.

5 Conclusion

In this paper, an ESKF-based SLAM algorithm with millimeter wave radar and
IMU is proposed to simultaneously calculate the location of the unmanned vehi-
cle and the mapping of the surrounding environment, where the ESKF is utilized
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to fuse the measurements of radar and IMU. The IMU measurements are used to
predict state. Subsequently, the predicted state is fed into the registration step as
the initial guess to calculate the position and rotation of radar. Finally, the state
is corrected after the position and rotation matrix of the radar are calculated,
and the map of the surrounding environment is obtained. Experimental result
shows that our algorithm can provide reliable location and mapping result.
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