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Abstract. In this paper, a novel UAV autonomous navigation system is
proposed, which uses DNN to extract scene features for position match-
ing and optical flow estimation. This method can correct position drift
of IMU under GNSS-denied environment. A realistic simulation test
platform is designed to validate the fusion navigation system, and we
deploy the system on an airborne embedded GPU hardware. Optimiza-
tion strategies for hardware are designed to significantly improve oper-
ational performance, which make it become more practical in engineer-
ing. Field experimental results further verify its effectiveness of proposed
system. Compared with traditional methods, it is more robust and has
higher positioning accuracy.
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1 Introduction

In urban combat scene, UAV (Unmanned Aerial Vehicle) systems face complex
electromagnetic interferences. Seeking continuous and stable GNSS (Global Nav-
igation Satellite System) signal support is a luxury. Once disturbed, UAVs will
not be able to accurately obtain flight position information, resulting in forced
landing, falling and other accidents. Therefore, developing a reliable autonomous
navigation and positioning method under GNSS-denied environment is worth-
while. Many studies have been carried out, such as terrian, geomagnetism, grav-
ity, polarized light navigation, etc. [1–8]. Among them, image matching naviga-
tion technology is more practical in engineering, which has good anti-interference
ability and low cost [9–14]. Because almost all drones wear optical reconnaissance
equipment, and no additional hardware device is required. Besides, commer-
cial remote sensing satellite maps with high resolution and high accuracy are
very easy to obtain. Nowadays, people can get rich topographic and geomorphic
dataset from any region for only a small fee. However, aerial image matching and
positioning has some shortcomings. On one hand, environmental features, illu-
mination changes and spectral features will affect the positioning accuracy. On
the other hand, under high dynamic flight environment, efficient real-time out-
put and the limited computing resources of platform form a mutually restrictive
relationship. How to make trade-offs deserves deep consideration.
c© Beijing HIWING Sci. and Tech. Info Inst 2023
W. Fu et al. (Eds.): ICAUS 2022, LNEE 1010, pp. 3536–3547, 2023.
https://doi.org/10.1007/978-981-99-0479-2_326

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0479-2_326&domain=pdf
https://doi.org/10.1007/978-981-99-0479-2_326


A DNN-Based Optical Aided Autonomous Navigation System for UAV 3537

In recent years, DNN (Deep Neural Network) based feature extraction and
matching technology has gradually occupied an important position in the field of
computer vision. Compared with traditional feature extraction methods, it has
stronger adaptability to changes in environment and light [15–18]. Under differ-
ent vision angle, different seasonal conditions, even different receiving spectrum,
some DNN-based methods still can accurately match the correct base map block.
This high level feature abstraction ability is very suitable for position estimation.
If selecting remote sensing map as base, we can get matched absolute position
coordinates. Similarly, if selecting previous taken photo as base, we get matched
pixel error, i.e. optical flow field, which can be converted into speed information
further [19–22]. Combining these two kinds of information, we can obtain the
location information of platform in real time. Based on the above idea, an optical
aided autonomous navigation method is proposed. This method can effectively
correct position drift of IMU under GNSS-denied environment. A simulation
test bed is built to validate the fusion navigation system, and we also carry
out performance optimization and evaluation on an airborne embedded GPU
hardware. Field flight tests further verify the feasibility of proposed method.
Compared with traditional methods, like SIFT and ORB based algorithms, our
proposed method has smaller positioning deviation and stronger robustness.

2 Algorithm Design

Fig. 1. Schematic diagram of autonomous navigation and positioning system
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The theoretical core consists of DNN-based image matching location algorithm
and speed estimation algorithm. As shown in Fig. 1, the technical implementa-
tion can be divided into following parts: (1) According to actual mission needs,
the high-resolution remote sensing satellite base map blocks of a certain area are
stored and loaded in advance, and meanwhile, use IMU attitude matrix trans-
formation to get near real-time DOMs (Digital Orthoimage) of UAV. (2) Match
DOM with base map block to obtain its longitude and latitude, which will be fur-
ther converted into coordinates of UAV using trigonometric geometry conversion
[23]. D2-net is used as backbone of feature extraction [15]. Considering its high
computation complexity in embedded hardware, it usually completes a round
of iterative calculation in seconds. (3) According to two consecutive frames of
DOMs, the real-time velocity of UAV is obtained by optical flow algorithm, and
relative displacement can be obtained by velocity integrating; (3)Superimpose
delayed matching position and relative displacement to obtain real-time position
of UAV; (4) Using real-time absolute coordinates to correct drift error of IMU,
so as to realize the autonomous navigation and positioning function of UAV in
GNSS-denied environment.

For matching location part, there are two key factors affecting the position
accuracy. One is the feature extraction method, the other is the pre-processing
strategies on the UAV image. First, complete DOM transformation. Considering
UAV altitude, the pixel coordinates (xg, yg) of orthophotoed picture can be
transformed from that of raw picture:

(xg, yg) =
(

f
r11x + r12y + r13f

r31x + r32y + r33f
, f

r21x + r22y + r23f

r31x + r32y + r33f

)
(1)

where f represents camera focal length and rij is obtained from transformation
matrix R−1 which is determined by UAV real-time attitude. Assuming (ω, θ, φ)
indicate pitch, yaw and row angle respectively, the matrix R can be denoted as:

R =

⎡
⎣ cosωcosθ cosωsinθ −sinω

sinφsinωcosθ − cosφsinθ sinφsinωsinθ + cosφcosθ sinφcosω
cosφsinωcosθ + sinφsinθ cosφsinωsinθ − sinφcosθ cosφcosω

⎤
⎦ (2)

Then, resize DOMs using camera field angle, altitude information to maintain
consistent resolution with base block. Feature extraction module adopts D2-net
as backbone to get key points and descriptors, i.e., feature vecters. Compared
with classical methods, such as SIFT and HOG [24,25], it has better adaptability
when existing obvious differences between matched picture and the base block
in light, season, spectrum. Pre-processing module achieve two function.

D2-net outputs the n feature vectors of aerial photo and m feature vectors
of base block at the same time, which can be respectively represented as:

Guav = (p1,p2, . . . ,pn), Gbase = (q1,q2, . . . ,qm) (3)

For each vector pi, there are m matching pairs with qi. Euclidean distance
of matching pairs can be denoted as (disi:1, disi:2, . . . , disi:m). Using k-nearest
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neighbor search algorithm to roughly filter out matching point pairs whose dis-
tance are too far away, where K = 2. Then, choose 2 nearest distance value
disi and dis

′
i from (disi:1, disi:2, . . . , disi:m) to calculate the distance deviation,

where dis
′
i > diisi. For Guav, average distance deviation of all feature vectors

can be denoted as:

disavg =

[
n∑

i=1

∣∣∣disi − dis
′
i

∣∣∣
]

/n (4)

If disi < dis
′
i − disavg is satisfied, the corresponding matching points pair is

reserved, otherwise, it will be rejected. Then classic RANSAC (Random Sam-
ple Consensus) is applied to further delete redundant mismatching pairs [26].
Select base map block with the most matching pairs to calculate homography
matrix which is used for matching and positioning [23]. Sliding window over-
lap rate and maximum iterations of RANSAC are two hyperparameters which
can affect matching accuracy. After screening test, they are set to 80% and 100
respectively. For speed estimation part, both DNN-based RAFT (Recurrent All-
Pairs Field Transforms) and classic LK (Lucas-Kanade) are verified [20,27]. In
order to keep the resolution of adjacent pictures consistent, the flight altitude
change needs to be taken into account. Assuming that UAV adopts “North East
earth” coordinate system, connect camera and UAV body as a rigid body, which
therefore, X, Y and Z axes of the camera coordinate system will coincide with
the that of the body coordinate system respectively. For the same feature point
located at p and p

′
in two consecutive images respectively, the optical flow can

be represented as: [
u
v

]
=

[
pu − pu

′

pv − pv
′

]
(5)

where [u, v]T is optical flow in two vertical directions between time T and T +1.
Take the derivative of [u, v]T and get pixel speed:

[
vfow u

vfow v

]
=

[
u̇
v̇

]
(6)

Further considering imaging model of camera, the velocity of UAV body can be
obtained through the following transformation formula:

[
vx
vy

]
=

[−h/f 0
0 −h/f

] [
vfow u

vfow v

]
+

[
ωyf
−ωxf

]
(7)

where h represents flight altitude and (ωx, ωy) is angular velocity of UAV body.
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3 Simulation Platform Design and Validation

Fig. 2. Schematic diagram of simulation platform

As shown in Fig. 2, a realistic simulation test platform is designed for carrying
out various ablation trials, which can help screen out optimal hyperparameters.
Waypoint planning and motion control input module defines a rough flight path.
After being processed by UAV motion model, it is further converted into a fine
motion trajectory, which can output real-time position and motion status, such
as attitude, velocity vector, GNSS coordinates, etc. according to set duration and
step resolution. On one hand, these true datastream will be transferred to error
model of IMU and GNSS receiver. On the other hand, UAV aerial dataset will
use them to generate real continuous aerial photos which superimpose flight state
disturbance and camera parameter limits. UAV aerial dataset is obtained from
open source GIS website [28], which has 0.075metre/pixel resolution. Satellite
remote sensing dataset is obtained from commercial GIS software: BIGEMAP,
which has 0.51 m/pixel resolution. Autonomous navigation algorithm receives
simulated UAV photo and satellite map block to output estimated GNSS position
which will replace output of GNSS receiver under denial environment. Simulation
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platform runs on a workstation which equips with 2080Ti graphics card and
32GB memory. In order to simulate the embedded system environment more
realistically, an adjustable delay is added into matching positioning module.

Fig. 3. Simulation example. (a)Planned waypoints. (b) Error outputs by image match-
ing & optical flow. (c) Error outputs by image matching & optical flow & IMU.

Based on the above simulation platform, test results are shown in Fig. 3. Sim-
ulation conditions are as follows: flight altitude is set to 200 m, flight duration
is no more than 220 s, max speed limit is 20 m/s. Considering the embedded
hardware output delay in real scene, adjustable delay is set to 5 s, which rep-
resents the total time of one correct image matching positioning. The planned
fight path is shown is Fig. 3(a). Figure 3(b) represents the error curve between
the estimated position coordinates and true GNSS positions, which has no IMU
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involvement. Figure 3(c) represents the error curve between IMU-fused position
coordinates and true GNSS positions, which is relatively smoother and more
continuous.

4 Hardware Deployment and Evaluation

Fig. 4. Embedded hardware platform

As shown in Fig. 4, we deploy the software into an airborne embedded hardware
platform, which consists of image processing board, data link module, cam-
era, IMU, laser altimeter and power module. The core chip of image processing
board is based on Nvidia Xavier SoC, which has 21 TOPS for AI computation.
In order to find performance bottlenecks and accelerate hardware implementa-
tion. At first, non-optimized software is directly deployed and runs on embed-
ded environment, which consumes 334.64 s to complete 247 sliding base blocks
searchings and matching computations. In a single matching processing, feature
extraction module takes the longest time, about 1.103 s. KNN(K-nearest neigh-
bor) research and RANSAC module takes the second longest time, about 0.084 s.
The low computational efficiency is unacceptable in real scene. Therefore, several
optimization strategies are applied:

(1) Transform PyTorch model of D2-net into TensorRT model to accelerate
feature extraction processing, which can make full use of embedded DLAs
(deep learning accelerators).

(2) All the features of base map blocks are extracted in advance and reloaded
into cache before running.

(3) Discard the base map blocks with inconsistent sizes when sliding, which will
reduce the number of matches by 40%.

After the above optimization, total time cost is reduced to 5.5 s, which
becomes more practical in engineering. Detailed running time statistics on
embedded hardware platform are listed in Table 1
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Table 1. Ablation trail: time cost with different optimization strategies

Optimization
strategies

Feature
extraction
(unit:sec)

KNN &
RANSAC
(unit:sec)

Number of
sliding base
blocks

Total
(unit:sec)

— 1.103 0.084 247 334.64

(1) 0.693 0.072 247 201.72

(1)&(2) 0.004 0.035 247 9.983

(1)&(2)&(3) 0.004 0.035 135 5.547

(—: No optimization is adopted.)

5 Field Experiment Verification

Fig. 5. Planned path in Jingzhou, Hubei Province

Field flight experiment is conducted in Jingzhou City, Hubei Province. The UAV
flies along pre-set path at different altitudes (200 m, 250 m, 300 m) to ground. The
planned path is shown in Fig. 5. Both GNSS coordinates and DNN-based results
are plotted in Fig. 6. The result deviations of two technical approaches are listed
in Table 2. Average relative deviation is only less than 9 m, and max relative
deviation is less than 31 m, which therefore is a good alternative positioning
means under GNSS denial environment (Table 2).
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Fig. 6. Field experiment. (a) Waypoints at 200 m height. (b) Waypoints at 250 m
height. (c) Waypoints at 300 m height.

In order to further verify the superiority of proposed method, we replace
the DNN-based backbone with traditional algorithm, such as SIFT and ORB,
which is used to compare their positioning accuracy and robustness. As shown
in Fig. 7, SIFT-based method acquires an average deviation of about 200 m and
ORB-based method has an average deviation of about 400 m. Besides, their
variances of the minimum and maximum deviation are too large, which is poor
in engineering feasibility. Conversely, DNN-based method is more robust and its
location deviation is stably distributed in a smaller interval, which verifies its
stronger environmental adaptability.
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Table 2. Position deviation statistics of GNSS and DNN-based system

Flight altitude
(unit:meter)

Amount of
photos

Average deviation
(unit:meter)

Max deviation
(unit:meter)

Min deviation
(unit:meter)

200 160 7.32 27.05 0.74

250 171 8.17 20.62 0.26

300 199 8.39 30.56 1.68

Fig. 7. Accuracy comparison. (a) Minimum deviation. (b) Maximum deviation. (c)
Average deviation.

6 Conclusion

In this paper, an optical aided UAV autonomous navigation system is proposed,
which uses DNN-based module to extract scene features for position match-
ing and optical flow estimation. The image matching algorithm intermittently
obtains absolute position information of platform, and the optical flow estima-
tion algorithm obtains the speed information and integrates it to improve the
position update rate in real time. This approach can effectively correct position
drift of IMU under GNSS-denied environment. A realistic simulation test sys-
tem is designed to validate the fusion navigation system. Compared with classic
matching location method, it is more adaptable to the environment, light and
seasonal changes. We also carry out performance optimization and evaluation on
an airborne embedded GPU hardware, which makes it more practical in engi-
neering. Field experimental results show that, compared with SIFT and ORB
based methods, DNN-based method is more robust and its location deviation is
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stably distributed in a smaller interval, which verifies its stronger environmental
adaptability.
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