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Abstract: The emerging event cameras are bio-inspired sensors that can output pixel-level brightness
changes at extremely high rates, and event-based visual-inertial odometry (VIO) is widely studied
and used in autonomous robots. In this paper, we propose an event-based stereo VIO system, namely
ESVIO. Firstly, we present a novel direct event-based VIO method, which fuses events’ depth, Time-
Surface images, and pre-integrated inertial measurement to estimate the camera motion and inertial
measurement unit (IMU) biases in a sliding window non-linear optimization framework, effectively
improving the state estimation accuracy and robustness. Secondly, we design an event-inertia semi-
joint initialization method, through two steps of event-only initialization and event-inertia initial
optimization, to rapidly and accurately solve the initialization parameters of the VIO system, thereby
further improving the state estimation accuracy. Based on these two methods, we implement the
ESVIO system and evaluate the effectiveness and robustness of ESVIO on various public datasets. The
experimental results show that ESVIO achieves good performance in both accuracy and robustness
when compared with other state-of-the-art event-based VIO and stereo visual odometry (VO) systems,
and, at the same time, with no compromise to real-time performance.

Keywords: stereo visual-inertial odometry; event camera; sensor fusion; state estimation;
event-inertial initialization

1. Introduction

Visual odometry (VO) is an emerging and hot research topic in the fields of robotics and
computer vision [1], which aims to make the real-time estimation of camera poses and motion
trajectory using only visual sensors (such as monocular camera [2], stereo camera [3], panoramic
camera [4], depth camera [5], etc.). However, due to the limitation of imaging modalities,
standard camera-based VO methods are not robust enough in some challenging scenarios, such
as fast-moving, high dynamic range (HDR), rapid illumination changing, etc. In recent years,
a new type of bio-inspired vision sensor, namely event camera, has gradually attracted the
attention of researchers. It works differently from the standard camera and has independent
pixels which can capture brightness changes individually and output this information as
“event” asynchronously [6]. Compared to standard cameras, event cameras have the higher
temporal resolution, wider dynamic range, lower latency, lower power consumption, and
bandwidth [7,8]. With these advantages, researchers have developed a series of event-based
VO methods [8–12] to provide correct camera state estimation in the challenging scenarios, as
mentioned above. However, due to the hardware limitation of event cameras (such as noise
and dynamic effects, low spatial resolution, etc.) and related research is still in the exploration
stage, the event-based VO still faces the problems of low accuracy and low robustness in
some scenarios.

In the traditional VO field, introducing a low-cost inertial measurement unit (IMU) to
improve the accuracy and robustness of camera state estimation is a high-efficiency solution,
which is called visual-inertial odometry (VIO) and has been a research highlight in the past
decade [13–18]. For the event-based VO, integrating inertial measurement can also assist the

Sensors 2023, 23, 1998. https://doi.org/10.3390/s23041998 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23041998
https://doi.org/10.3390/s23041998
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5636-790X
https://doi.org/10.3390/s23041998
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23041998?type=check_update&version=1


Sensors 2023, 23, 1998 2 of 28

system in estimating motion and recovery scale. At present, a few works have explored event-
based VIO methods and achieved accurate state estimation results, such as [19–24]. However,
two common challenges exist in the event-based VIO field: (1) how to process the novel
event data and fuse them with IMU measurement to estimate camera motion. Most of the
existing event-based VIO methods (except for [22]) convert event stream to event image
frames and execute feature-based VIO pipelines based on these frames. These methods will
extract and track specific visual features from consecutive event image frames. Then, they
will minimize feature reprojection errors and IMU propagation errors to estimate camera
motion. However, due to the working principle and hardware limitations of event cameras,
most event image frames have the disadvantages of high noise and fewer texture details,
which is not conducive to visual feature extraction and tracking. (2) How to solve initial-
ization parameters by fusing event data and IMU measurement in the initial stage of
the VIO system. Visual-inertial initialization is crucial for VIO, which can help the sys-
tem obtain parameters required for state estimation, including scale, gravity direction,
IMU bias, etc. However, for existing event-based VIO systems, there are no initialization
methods that can effectively fuse event data and IMU measurement together to estimate
initialization parameters.

To this end, firstly, for the challenge (1), we propose a novel direct event-based VIO
method for better fusion of event data and IMU measurement. This VIO method can
directly estimate the state of the system based on event inverse depth frames, Time-Surface
(TS) images, and pre-integrated inertial measurement in a sliding window non-linear
optimization framework without feature tracking. Secondly, for challenge (2), we propose
a semi-joint event-inertial initialization method to improve the performance of event-based
VIO state estimation. This initialization method can obtain an up-to-scale camera trajectory
based on the event-only initialization (since the trajectory estimated by event-based stereo
VO methods, such as ESVO [8], always has a scale error, so the trajectory here is deemed
up-to-scale) and solve initialization parameters using the event-inertial initial optimization.
Thirdly, referring to ESVO [8], we implement an event-based stereo VIO system based on
the above two proposed methods, namely ESVIO. Finally, we evaluate ESVIO on the public
datasets and the experimental results show that ESVIO achieves better performance in
both accuracy and robustness in different scenarios. To conclude, our contributions can be
summarized as below:

• We present a direct event-based stereo VIO method for the first time, which uses the
sliding window tightly coupled optimization method to directly estimate the optimal
state of the system based on the event and IMU data without feature tracking.

• We propose a semi-joint event-inertial initialization method to estimate initialization pa-
rameters, including scale, gravity direction, initial velocities, accelerometer, and gyroscope
biases, in two steps (event-only initialization and event-inertial initial optimization).

• We implement the event-based stereo VIO system, ESVIO, in C++ and evaluate it on
four public datasets [25–28]. The results demonstrate that our system achieves good
accuracy and robust performance when compared with the state-of-the-art, and, at the
same time, with no compromise to real-time performance.

The rest of the paper is organized as follows. Section 2 gives a brief review of related
works. The system overview of ESVIO is presented in Section 3, followed by the preliminar-
ies in Section 4. The proposed event-inertial initialization method is introduced in Section 5,
and the detailed direct event-based VIO pipeline for state estimation is given in Section 6.
Section 7 provides experimental evaluations. Finally, our conclusion is drawn in Section 8.

2. Related Work
2.1. Visual-Inertial Odometry Methods

Considering different sensor fusion methods, VIO methods can be divided into loosely-
and tightly coupled methods [29]. For the loosely-coupled method, firstly, it estimates the
state of the system based on visual information and IMU measurement separately in two
independent estimators, and, then, it solves the system state based on these two state estima-
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tion results. Loosely-coupled methods are common in the early stages of VIO development,
generally through an Extended Kalman Filter (EKF) to achieve sensor fusion and the final
state estimation, such as [30,31]. For the tightly coupled method, it directly estimates the
system state based on visual information and IMU measurement together in one estimator.
Compared with the loosely coupled method, the tightly coupled method needs to consider
the interaction between different sensor data, and the algorithm implementation is more
complicated, but it will obtain more accurate state estimation results. Until now, tightly
coupled methods mainly achieve sensor fusion and state estimation through filter-based
estimation methods (e.g., EKF) [14,32,33] or optimization-based estimation methods (e.g.,
graph optimization) [13,15,17,34–37].

Considering visual measurement processing, VIO methods can also be divided into
two different paradigms: feature-based VIO methods and direct VIO methods. For the
feature-based method, firstly, it extracts and tracks specific visual features from consecutive
camera frames through feature descriptors. Then, it will minimize feature reprojection
errors and IMU propagation errors to estimate the system state. At present, most of the
existing VIO methods are feature-based methods due to their robustness and maturity, such
as [13,15,33,38–40]. Unlike the feature-based method, the direct VIO method directly uses
the intensity value of pixels to construct the photometric error between two camera frames,
and then estimates the system state by minimizing photometric errors and IMU propagation
errors without the procedure of feature extraction and tracking. Compared with feature-
based methods, direct VIO methods have faster processing speed and better performance in
textureless scenarios [41], such as [16,18,42,43]. However, direct methods typically require
a higher frame rate than feature-based methods to maintain good performance [44].

2.2. Event-Based Visual Odometry and SLAM

For event-based VO/SLAM methods, they can be divided into monocular ones and stereo
ones. Mueggler et al. [9] presented an onboard event-based monocular system for 6-Degrees
of Freedom (DoF) localization with high speed and fast rotation. Kim et al., [10] can perform
real-time 3D reconstruction, 6-DoF localization, and scene intensity estimation by EKF
based on a monocular event camera. Kueng et al. [45] implemented a monocular VO system
by event-based feature detection. Rebecq et al. [11] proposed EVO that is implemented
by an image alignment tracker via semi-dense mapping. Bryner et al. [12] introduced a
maximum-likelihood framework to estimate the camera motion. Nguyen et al. [46] used the
Stacked Spatial LSTM Network to estimate camera poses with event images as input. However,
monocular methods always face the scale consistency problem, and stereo methods perform
better in this aspect thanks to the known depth information.

For event-based stereo VO/SLAM methods, Zhou et al. [8] proposed a stereo event-
based VO system called ESVO. The system achieved semi-dense 3D reconstruction [25] and
3D–2D registration tracking [47] via inverse depth map and TS. Jiao et al. [26] analyzed
and compared the performance of ESVO under different event representation methods.
Compared with monocular methods, stereo ones allow for more accurate and robust state
estimation. However, due to the hardware limitation of the event camera, it is still diffi-
cult to obtain accurate state estimation results for VO/SLAM methods based on the event
camera only in some scenes [8]. Therefore, fusing more sensor information, such as IMU
measurement, is a solution to improve the performance of event-based VO/SLAM methods.

2.3. Event-Based Visual-Inertial Odometry

Until now, there are not many VIO methods based on the event camera.
Zhu et al. [19] presented the event-based VIO system, namely EVIO, to provide accu-
rate metric tracking of a camera’s full 6-DoF pose. EVIO uses the sensor state and event
information to track visual features within the event frame over time and fuses visual
feature tracks with the IMU measurement to update the system state employing an EKF
with a structureless vision model. Rebecq et al. [20] also proposed a feature-based method,
but fused event and inertial measurements using a keyframe-based non-linear optimization
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framework to estimate camera motion. Based on [20], Vidal et al. [21] implemented the
first VIO state estimation method that fuses events, standard frames, and inertial mea-
surements in a tightly coupled manner to achieve accurate and robust state estimation.
Mueggler et al. [22] proposed a VIO method with an event camera under the continuous-
time framework which allows direct integration of the asynchronous events with micro-
second accuracy and inertial measurements at high frequency. Gentil et al. [23] presented an
event-based VIO method which uses line features for the first time and constructs different
line feature constraints to assist in state estimation. Chen et al. [24] proposed an event-based
stereo VIO pipeline with sliding windows optimization, and further extended it to include
standard frames, which tightly integrated stereo event streams, stereo image frames, and
IMU together, to achieve accurate feature-based state estimation.

However, most of the above event-based VIO methods (except for [24]) are designed
for monocular systems, and most of them (except for [22]) belong to the category of the
feature-based VIO method. Compared with the standard camera frame, the event image
frame constructed from raw event data has the disadvantages of low resolution, high noise,
and fewer texture details due to the working principle and hardware limitations of event
cameras, which makes the event-based feature extraction and tracking not as accurate and
stable as needed [44]. Therefore, our proposed ESVIO can obtain events’ depth by stereo
constraint and adopt direct VIO method to implement the fusion of event data (event depth
and event image frame) and inertial measurement without feature tracking.

2.4. Visual-Inertial Initialization Methods

To start a VIO system, some parameters need to be estimated in an initialization
process, including scale, gravity direction, initial velocity, accelerometer and gyroscope
biases, etc. A fast and accurate initialization is critical for the subsequent visual-inertial
state estimation. Based on the classification of initialization in [48], we divide visual-inertial
initialization methods into three categories: joint, disjoint, and semi-joint initialization.

Joint initialization is similar to the tightly-couple method, which directly fuses raw
visual and inertial measurements and estimates all initialization parameters in one step.
The joint initialization method was first proposed by Martinelli [49], who presented a
closed-form solution to jointly solve feature depth (scale), gravity, accelerometer bias, and
initial velocity by linear least squares. Subsequent joint initialization methods are basically
extended based on this method, including [50–52]. The advantage of joint initialization is
that the interaction between the parameters is fully considered, and the disadvantage is
that the real-time performance and the convergence of the solution process are not stable.

Disjoint initialization is similar to the loosely coupled method, which processes vi-
sual and inertial information separately, and solves initialization parameters step by step.
Disjoint initialization is based on the assumption that the up-to-scale camera trajectory
can be estimated very accurately from pure monocular vision, and then use this trajectory
to estimate the initialization parameters [48]. Disjoint visual-inertial initialization was
pioneered by Mur-Artal et al. in ORB-SLAM-VI [35] and later adopted by Qin et al. in
VINS-Mono [15,53]. All subsequent disjoint initialization methods are improvements to
these two methods, such as [54–56]. Compared to joint initialization, disjoint initialization
has faster solution speed and better robustness. However, due to insufficient consideration
of the interaction between initialization parameters and possible visual measurement noise,
disjoint initialization does not perform well in estimation accuracy.

Semi-joint initialization can be seen as a compromise between joint initialization and
non-joint initialization. It first solves partial parameters based on the visual measurement
and then estimates all initialization parameters in one step. This idea was first imple-
mented by Yang et al. [34], but matured by Campos et al. in ORB-SLAM-3 [39,48]. In
ORB-SLAM-3, visual-inertial initialization was formulated as two maximum a posteriori
(MAP) estimations: visual-only MAP estimation responsible for obtaining up-to-scale
camera poses and inertial-only MAP estimation responsible for solving all initialization
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parameters. Semi-joint initialization performs well in terms of real-time performance and
accuracy performance.

In this paper, we design a semi-joint event-inertial initialization method for event-
based VIO to achieve better VIO state estimation results.

3. System Overview of ESVIO

The system overview of ESVIO is shown in Figure 1. The proposed ESVIO can be
divided into four components: the measurements processing unit, the initialization unit,
the depth estimation unit, and the VIO state estimation unit.

Figure 1. System overview of ESVIO. The measurements of stereo event cameras and IMU will
be handled by the Measurements Processing Unit, and then the processed data will be sent to
the Initialization Unit for event-only initialization and event-inertial initial optimization. After
initialization, the Depth Estimation Unit will solve events’ depth and fuse the inverse depth frame.
Finally, the VIO State Estimation Unit will estimate the camera’s 6-DoF pose, velocity, and IMU biases
based on inverse depth frames, negative TS images, and pre-integrated IMU measurement.

The measurements processing unit is responsible for processing sensor measurements,
including event processing and IMU measurement processing. For event processing, ESVIO
converts event streams to TS images for subsequent depth estimation and state estimation
(Section 4.2). For IMU measurements processing, ESVIO adopts the IMU pre-integration
algorithm to handle IMU measurements which can efficiently reduce the complexity and
calculation time cost of the IMU propagation model (Section 4.3).

The initialization unit is responsible for solving initialization parameters to improve
the performance of VIO state estimation, including event-only initialization and event-
inertial initial optimization. The first part will estimate an up-to-scale camera trajectory
based on event data (Section 5.1). Additionally, the second part will solve initialization
parameters by fusing event and IMU data in a sliding window optimization framework
(Section 5.2).

The depth estimation unit is responsible for inverse depth frame construction. This unit
estimates the single event’s depth by stereo event matching and fuses these asynchronous
depth points to construct an inverse depth frame (Section 4.4).

The VIO state estimation unit is responsible for camera state estimation by fusion of
event data and inertial measurement. Firstly, it selects a depth points subset to reconstruct
the inverse depth frame (Section 6.1). Secondly, it generates negative TS images for state
estimation (Section 6.2). Thirdly, it estimates the state of the VIO system (including the
camera’s 6-DoF pose, velocity, and IMU biases) using a novel tightly coupled direct VIO
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pipeline in a sliding window non-linear optimization framework based on inverse depth
frames, negative TS images and pre-integrated inertial measurement (Section 6.3).

4. Preliminaries
4.1. Notations

We denote w(·) as the world frame. b(·) is the body (IMU) frame. c(·) is the camera
frame, which is equivalent to the inverse depth frame used in ESVIO. In particular, we
denote cp(·) and cp(r)(·) as the left and right camera image plane of the camera frame c(·).
Note that the camera frames used in the paper are all left camera frames. We use both
rotation matrix R and quaternion q to represent rotation and use translation vector p to
represent translation. We consider xm

n or Xm
n as the vector x or matrix X from frame n to

frame m. mt is the frame m with timestamp t. We also use mi to represent the frame m
while taking the i-th inverse depth frame.

4.2. Event Presentation Based on Time-Surface

The output of the event camera is a stream of asynchronous events. We use
ek = (uk, vk, tk, pk) to represent the k-th event in event stream, containing the pixel co-
ordinate xk(uk, vk) ∈ R2, timestamp tk and polarity pk. Referring to ESVO [8], ESVIO
adopts an alternative event representation method called Time-Surface (TS). TS is a two-
dimensional (2D) camera size map where each pixel stores the time information. At time t,
it can be defined by

I(x, t) .
= exp(− t− tlast(

cpt x)
ϕ

), (1)

where tlast means the timestamp of the latest event at the pixel cpt x(cpt u, cpt v) ∈ R2, and ϕ
is the constant decay rate parameter (e.g., 30 ms).

Based on Equation (1), we can convert a stream of events to a TS image whose pixel’s
intensity is the value of the corresponding pixel in the TS map re-scaled from [0, 1] to the
range [0, 255].

TS can be considered as a kind of fixed time window event processing method. The
length of the time window is determined by the TS image generation frequency and the
average brightness (intensity) of the TS image is determined by ϕ in Equation (1). However,
we find that the setting of ϕ with a fixed value cannot handle different camera motions
(different occurrence frequencies of events), especially at a low speed. When the camera
moves slowly (low event occurrence frequency), there are few pixels in the TS image
that can provide enough intensity information for subsequent depth estimation and state
estimation. In order to tackle this problem, we have made improvements to the TS method
used in ESVO to cope with slow camera motion. Based on Equation (1), we count the
number of events across the image plane in the latest time window as n, and define the
improved TS value:

I(x, t) .
=


exp(− t− tlast(

cpt x)
ϕ

), n ≥ Nτ

exp(− t− tlast(
cpt x)

ϕNτ

), n < Nτ

(2)

where Nτ depends on the number of events for depth estimation and we set Nτ as N in
Section 4.4, ϕNτ is defined by

ϕNτ =
t− tNτ

tw
· ϕ, (3)

where tNτ is the timestamp of the latest Nτ-th events across the image plane, and tw is the
length of the time window of TS.

The improved TS also needs to be rescaled to the range [0, 255] to create the correspond-
ing TS image. From Equations (2) and (3), we can find that: when events occur at a normal
or high frequency (normal or fast camera motion, n ≥ Nτ), the improved TS will work as
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the TS used in ESVO; when events occur at a low frequency (slow camera motion, n < Nτ),
there are at least Nτ events which can provide enough intensity information in the TS image
(when tlast(

cpt x) = tNτ , the intensity of x’s corresponding pixel is 255× exp(−tw/ϕ)) for
depth and state estimation. Figure 2 shows the processes of different TS methods under
slow camera motion in an office scene.

Figure 2. Different TS methods under slow camera motion in an office scene. When the camera is in
slow motion, the improved TS will change the decay rate parameter based on tNτ

, while the ESVO’s
will not. The left column is the intensity frames from the DAVIS346 event camera of the scene. The
middle three columns are the TS processes: the first column shows the determination of tNτ

and
the events which can provide enough intensity information for TS images (in the yellow boxes); the
second and third columns show how events are converted into pixels of different intensities under
fixed ϕ (ESVO’s TS) and unfixed ϕNτ

(improved TS). The right column is the output TS images.

4.3. IMU Pre-Integration

IMU pre-integration [57] is a computationally efficient alternative to the standard
inertial measurement integration. It performs the discrete integration of the inertial mea-
surement dynamics in a local frame of reference, thus preventing the need to reintegrate the
state dynamics at each optimization step [41]. In our ESVIO, we use IMU pre-integration
methods proposed in [15] to process IMU measurement.

A low-cost IMU, generally including a 3-axis accelerometer and a 3-axis gyroscope, can
measure the acceleration a and the angular velocity ω of the IMU. The raw measurements
from IMU, â and ω̂, can be represented by

bâ =ba + Rb
w

wg +bba +
bna

bω̂ =bω +bbg +
bng,

(4)

where bba, bbg and bna, bng are the biases and additive noises from the accelerometer and the
gyroscope in the IMU frame, respectively, wg is the gravity vector in the world frame. Referring
to [15], we assume that the additive noises bna and bng are Gaussian, bna ∼ N (0, σa

2),
bng ∼ N (0, σg

2). Acceleration bias and gyroscope bias are modeled as random walk, whose
derivatives are Gaussian, ˙bba = bnba ∼ N (0, σba

2), ˙bbg = bnbg ∼ N (0, σbg
2).

Given two IMU frames bi and bi+1 that correspond to two consecutive inverse depth
frames, position, velocity, and rotation in the IMU frame bi can be computed by integrating
the kinematics equation of IMU-driven algorithm within the duration t ∈ [ti, ti+1]:

Rbi
w pw

bi+1
= Rbi

w(pw
bi
+ wvi∆t− 1

2
wg∆t2) + α

bi
bi+1

Rbi
w

wvi+1 = Rbi
w(

wvi − wg∆t) + β
bi
bi+1

qbi
w ⊗ qw

bi+1
= γ

bi
bi+1

,

(5)
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where
α

bi
bi+1

=
∫ ∫

t∈[ti ,ti+1]
(Rbi

bt
(btâ− btba − btna))dt2

β
bi
bi+1

=
∫

t∈[ti ,ti+1]
(Rbi

bt
(btâ− btba − btna))dt

γ
bi
bi+1

=
∫

t∈[ti ,ti+1]

1
2

Ω(btω̂− btbg − btng)γ
bi
bt

dt,

(6)

where

Ω(ω) =

[
−bωc× ω

−ω> 0

]
, (7)

∆t is the duration between time interval t ∈ [ti, ti+1], ⊗ is the quaternion multiplication,
b·c× is the skew-symmetric matrix of a 3D vector.

α
bi
bi+1

, β
bi
bi+1

and γ
bi
bi+1

in Equation (6) are called pre-integration terms. Pre-integration
terms can be understood as the relative motion from IMU frame bi to bi+1 without the
change of the state of IMU frame bi.

Based on IMU pre-integration terms in Equation (6), we can establish the linear
Gaussian error state recursion equation of IMU measurements, and derive the equation
corresponding covariance matrix and Jacobian matrix in continuous-time and discrete-time
for state estimation referring to [15]. Finally, we write down the IMU measurement model
which will be used to construct the IMU residual in the initialization method (Section 5)
and the VIO method (Section 6):

α̂
bi
bi+1

β̂
bi
bi+1

γ̂
bi
bi+1

0
0

 =


Rbi

w(pw
bi+1
− pw

bi
+ 1

2
wg∆t2 − wvi∆t)

Rbi
w(

wvi+1 +
wg∆t− wvi)

(qw
bi
)−1 ⊗ qw

bi+1
bi+1 ba − bi ba
bi+1 bg − bi bg

. (8)

4.4. Depth Estimation Based on Time-Surface

When stereo TS images are fed into the depth estimation unit, ESVIO will follow the
depth estimation method proposed by ESVO [8] to estimate events’ depth and fuse an
inverse depth frame with the same timestamp as the corresponding TS image. At time t,
the depth of event et−ε = (cpt−ε x, t− ε, p) (with ε ∈ [0, δt], cpt−ε x ∈ R2) on the left image
plane can be estimated based on the stereo temporal consistency criterion across space-time
neighborhoods of the events presented in [8]. The depth estimation optimization objective
function of et−ε is defined by

ct−ε ρ? = arg min
ct−ε ρ

Cdepth(
cpt−ε x, ct−ε ρ, Ile f t(

cpt(·), t), Iright(
cp(r)t(·), t), Tct

ct−δt
),

Cdepth
.
= ∑

cpt x1,i∈cpt W1,cp(r)t x2,i∈cp(r)t W2

ri
2(ct−ε ρ),

(9)

where ct−ε ρ means the inverse depth of the event in the camera frame ct−ε at time
t− ε, Ile f t(

cpt(·), t) and Iright(
cp(r)t(·), t) are the left and the right TS with the timestamp t,

respectively, Tct
ct−δt = (Rct

ct−δt |p
ct
ct−δt

) is camera transformation matrix between camera frame
ct−δt and ct computed from the VIO state estimation results, and the depth residual ri(

ct−ε ρ)
is defined as

ri(
ct−ε ρ)

.
= Ile f t(

cpt x1,i, t)− Iright(
cp(r)t x2,i, t), (10)

where cpt x1,i ∈ R2 and cp(r)t x2,i ∈ R2 are pixel coordinates on the event (et−ε) corresponding
patches cptW1 and cp(r)t W2 of the left and the right TS at time t, respectively.
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Based on Equations (9) and Equation (10), we can estimate the depth of the latest N
events which occur at or before time t. In ESVIO, we set N as 1500 (MVSEC dataset [27]) and
1000 (RPG datasets [25] and ESIM dataset [26]) based on the corresponding setting in [8] for
different sensor resolutions to obtain a trade-off result between accuracy performance and
time cost. Then we will fuse these asynchronous event depth points into an inverse depth
frame with timestamp t based on the probabilistic model of estimated inverse depth and inverse
depth filters proposed in [8]. In the real implementation of ESVIO, we fuse the inverse depth
frame with timestamp t based on 3N ∼ 5N event depth points, where N event depth points
are associated with timestamp t and the rest are associated with several timestamps before t.
In this way, we can construct inverse depth frames containing historical depth information
for a short period of time.

5. Event-Inertial Initialization Method

Initialization is important for VIO to obtain a series of parameters, such as scale, gravity
direction, and IMU bias, etc. These initialization parameters can help the system align with
the world coordinate system and the scale of the real world, improving the convergence
speed and estimation accuracy of state optimization in the VIO system. In the traditional VIO
field, the initialization method, which combines visual information and IMU measurement,
has been developed maturely, such as the disjoint initialization method used in VINS-
Mono [15,53], the semi-joint method used in ORB-SLAM-3 [39,48], etc. However, for the
event-based VIO field, there is no initialization method that fuses event data and IMU
measurement together to estimate initialization parameters.

Therefore, we present an event-inertial initialization method for ESVIO, which can
estimate scale, gravity direction, accelerometer, and gyroscope biases in the initial stage
of ESVIO. This method is a kind of semi-joint initialization method and performs well in
terms of real-time performance and accuracy performance. Our initialization method can
be split into two steps: event-only initialization and event-inertial initial optimization.

5.1. Event-Only Initialization

The initialization procedure of ESVIO starts with the event-only initialization to obtain
an up-to-scale camera trajectory. This trajectory can provide translational and rotational
constraints for the event-inertial initial optimization to improve the accuracy and time
performance of the optimization.

Firstly, ESVIO will apply a modified Semi-Global Matching (SGM) method [58] pro-
vided in ESVO [8] to generate an initial inverse depth frame based on the stereo TS images.
Secondly, ESVIO will execute ESVO’s tracking and mapping procedure bootstrapped by
the initial inverse depth frame. At this period, ESVIO will maintain a sliding window
that contains a series of up-to-scale camera poses estimated by the event-based stereo VO
process (ESVO). The construction method of the sliding window can refer to Section 6.3.
Note that, we find that the camera motion trajectory estimated by ESVO always with a
scale error as 10∼15%, so the camera poses and the trajectory obtained here are called
up-to-scale ones, and the subsequent event-inertial initial optimization also takes the scale
factor as one of the initialization parameters. The up-to-scale camera poses are defined as
T̄c0

ci
= [Rc0

ci |p̄
c0
ci ], i ∈ [0, n], where we set the first camera frame c0(·) in the sliding window

as the reference frame and n is the length of the sliding window. Suppose we have the
extrinsic parameters [Rb

c |pb
c ] between the event camera (left) and the IMU, we can translate

poses from camera frame to IMU frame by

Rc0
bi
= Rc0

ci · R
b
c
>

sp̄c0
bi
= sp̄c0

ci
− Rbi

c0

>
· pb

c ,
(11)

where s ∈ R+ is the initialization parameter scale which can align the up-to-scale trajectory
to the metric-scale trajectory. We will solve this parameter along with other initialization
parameters in the next step.
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5.2. Event-Inertial Initial Optimization

This step aims to solve an optimal estimation of the initialization parameters for
ESVIO. Due to the mutual coupling between the initialization parameters, it is difficult
to decouple all parameters and solve them sequentially in multiple steps. Therefore, we
solve all initialization parameters through one-step optimization to obtain more accurate
initialization results. When the camera motion in the sliding window maintained by
the previous step (Section 5.1) is sufficient, ESVIO will carry out the event-inertial initial
optimization using the sliding window optimization method based on the up-to-scale
camera trajectory in the sliding window. We follow the method proposed in [53] to judge
whether the camera motion is sufficient by checking the variation of pre-integration items
α

bi
bi+1

and β
bi
bi+1

in the sliding window.
Before event-inertial initial optimization, ESVIO will make a rough estimation of

the gravity direction based on velocity pre-integration items β
bi
bi+1

in the sliding window.
Considering two consecutive IMU frames bi and bi+1 in the sliding window, the velocity
pre-integration item in Equation (5) can be converted to the reference frame c0(·) as:

Rc0
bi

β
bi
bi+1

= Rc0
bi
(bi vi+1 − bi vi +

bi g∆t), (12)

where Rc0
bi

can be obtained by Equation (11).
Adding all velocity pre-integration items as shown in Equation (12) we can obtain

n−1

∑
i=0

Rc0
bi

β
bi
bi+1

= c0 vn − c0 v0 +
c0 gt ≈ c0 gt, (13)

where t is the total duration of the sliding window.
When we ignore the camera velocity changes during the sliding window, we can obtain

a rough estimation of the gravity direction by normalizing the result in Equation (13).
Based on the up-to-scale camera trajectory and the rough gravity direction, ESVIO

will start the event-inertial initial optimization by the sliding window optimization method.
The optimal variables in the sliding window are defined by

X = [Rc0
w , s, x0, x1, . . . , xn]

>

xi = [bi vi, bi ba, bi bg], i ∈ [0, n],
(14)

where Rc0
w is the gravity direction such that the gravity in the camera frame c0(·) is expressed

as c0 g = Rc0
w

wg, with wg = (0, 0, G)> being G the Gravitational Constant, xi is the camera
initial velocity and the IMU biases in body frame at the time while taking the i-th data
frame. n is the number of data frames in the sliding window.

Then, the optimization cost function Cinit for the event-inertial initial optimization can
be designed by

Cinit = arg min
X

{
∑
i∈B

∥∥∥rB(ẑ
bi
bi+1

,X )
∥∥∥2

P
bi
bi+1

+
∥∥∥rp

∥∥∥2

Pp

}
, (15)

where rB(ẑ
bi
bi+1

,X ) is the residual for IMU measurement between consecutive IMU frames bi

and bi+1, rp is the prior residual for the accelerometer bias as rp = ∑ ||bi ba
2|| referring to the

initialization method [48]: if the motion does not contain enough information to estimate
ba, this prior will keep its estimation close to zero; if the motion makes ba observable, its
estimation will converge towards its true value. Pbi

bi+1
is the covariance matrix for the IMU

measurement residual and can be computed iteratively with IMU propagation as proposed
in [15]. Pp is the covariance matrix for the prior residual and can be defined as the diagonal
matrix of noise σba

2. As to the gyroscope bias bg, it is observable from estimated camera
orientations and gyroscope readings, so we do not need to set a prior factor for it [48].

For the IMU measurement residual rB(ẑ
bi
bi+1

,X ), it can be defined according to the
IMU measurement model defined in Equation (8) and the up-to-scale camera poses defined
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in Equation (11) and has the same form as Equation (25) with different position, velocity
and rotation residuals:

δα
bi
bi+1

= Rbi
c0(s(p̄c0

bi+1
− p̄c0

bi
) +

1
2

Rc0
w

wg∆t2 − Rc0
bi

bi vi∆t)− α̂
bi
bi+1

δβ
bi
bi+1

= Rbi
c0(Rc0

bi+1

bi+1 vi+1 + Rc0
w

wg∆t− Rc0
bi

bi vi)− β̂
bi
bi+1

δγ
bi
bi+1

= 2
[
qc0

bi

−1 ⊗ qc0
bi+1
⊗ (γ̂bi

bi+1
)−1]

xyz

(16)

where Rbi
c0(qc0

bi
), qc0

bi+1
, p̄c0

bi
and p̄c0

bi+1
can be obtained from the up-to-scale camera trajec-

tory estimated in the event-only initialization (Section 5.1), [·]xyz means the real part of a
quaternion which is used to approximate the three-dimensional rotational error.

The solution to the non-linear optimization problem in Equation (15) is similar to the
state estimation in Equation (19), and a detailed description can be found in Section 6.3.
Additionally, the Jacobian matrices of the IMU measurement residual can be found in
Appendix A.1.

6. Direct Event-Based VIO Method

In this section, we propose a novel direct event-based VIO method for ESVIO to directly
estimate camera state based on event data and IMU measurement without feature tracking.
Firstly, the proposed method reconstructs the inverse depth frame to simplify the redundant
depth information. Then, it generates the negative TS image for state estimation. Thirdly,
based on inverse depth frames, negative TS images, and pre-integrated IMU measurement,
the method estimates the optimal state of the system in a sliding window non-linear opti-
mization framework. In the following, we will describe in detail the inverse depth frame
reconstruction, the negative TS image generation, and the direct VIO state estimation.

6.1. Inverse Depth Frame Reconstruction

For ESVIO, the inverse depth frame provided by the depth estimation unit sometimes
contains too many depth points with redundant depth information, which will bring
additional computation overhead. To tackle this problem, we propose an inverse depth
frame reconstruction method to filter the depth point subset according to the distribution
of depth points and reconstruct the inverse depth frame based on these depth points. As
illustrated in Figure 3, the method can be achieved following the below four steps:

Figure 3. Four steps of the inverse depth frame reconstruction. Step 1: Enhance the TS image based
on the inverse depth frame. Step 2: Extract the edge map from the enhanced TS image. Step 3: Extract
connected regions in the edge map and cluster depth points. Step 4: Select depth points from each
connected region according to the distribution of depth points to reconstruct the inverse depth frame.

• Step 1: Project all depth points of the inverse depth frame to its corresponding TS
image (same timestamp) to enhance the intensity information in this TS image.
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• Step 2: Use EDLines [59] to extract line segments in the enhanced TS image to obtain
the edge map (taking less than 1.5 ms per TS image in datasets used in Section 7).

• Step 3: Extract connected regions in the edge map based on the contour retrieval
algorithm [60]. According to the connected regions and projected coordinates in the
TS image, cluster the depth points into each connected region.

• Step 4: According to the proportion of the number of depth points in each connected
region to the total number of depth points, determine the number of points to select in
each connected region, and then randomly select this number of depth points from
each connected region to reconstruct the inverse depth frame.

6.2. Negative TS Image Generation

In the TS image, the pixel with a large intensity value represents the recently triggered
event. Additionally, in a certain direction of this pixel, the pixel’s intensity value will
decrease as the distance increases, representing the same event triggered at multiple
previous moments. Due to this characteristic, the TS image can be interpreted as a kind of
anisotropic distance field which is usually used in edge-based VO systems [8]. Referring
to ESVO [8], we invert the TS image to the negative one and utilize it to construct the
minimization optimization problem for the VIO state estimation. The negative TS image
can be created from a TS map by

I(x, t) = 1− I(x, t), (17)

then re-scale the pixel’s value from [0, 1] to the range [0, 255].
In ESVIO, the negative TS image will be used to construct event measurement residual

and participates in the state estimation.

6.3. Direct VIO State Estimation Based on Event Data and IMU Measurement

For the direct method in the traditional VIO field, it constructs the visual measurement
residual by the photometric error between two camera frames, which will utilize the whole
image information for state estimation. However, the event can only reflect the brightness
change, not the brightness intensity, and event-based VIO can hardly construct visual
residual by the photometric error. Therefore, inspired by ESVO [8], for the direct method in
ESVIO, we construct the event data residual based on the projection error of the inverse
depth frame on the negative TS image, which can utilize the information of event inverse
depth frames and event image frames (negative TS images) more comprehensively than
feature-based methods.

After achieving the inverse depth frame reconstruction (Section 6.1) and the negative
TS image generation (Section 6.2), based on the reconstructed inverse depth frame, ESVIO
will construct data frame which contains the corresponding negative TS image with the
same timestamp and pre-integrated IMU measurement between two consecutive inverse
depth frames. The sliding window will consist of a fixed number of data frames as shown
in Figure 4. Note that, referring to [8], we only use the left negative TS for VIO because
incorporating the right negative TS does not significantly increase accuracy while it doubles
the computation cost.

The full state variables in the sliding window while taking the i-th data frame are
defined by

X = [x0, x1, . . . , xn]
>

xi = [pw
bi

, wvi, qw
bi

, bi ba, bi bg], i ∈ [0, n],
(18)

where xi is described as the system position, velocity, and orientation in the world frame at
the time while taking the i-th data frame and the IMU biases in the corresponding IMU
frame. n is the number of data frames in the sliding window.
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Figure 4. The sliding window construction of ESVIO. ESVIO construct data frame based on the
frequency of inverse depth frames and construct the sliding window by a fixed number of data frames.

We achieve the optimization of the state estimation based on inverse depth frames,
negative TS images, and pre-integrated IMU measurement. All the state variables are
optimized in the sliding window by minimizing the sum of the cost terms from all the
measurement residuals, including IMU measurement residuals and event data residuals.
We design the optimization cost function Cstate for state by

Cstate = arg min
X

{
∑
i∈B

∥∥∥rB(ẑ
bi
bi+1

,X )
∥∥∥2

P
bi
bi+1

+ ∑
j∈D,l∈T

ρ(
∥∥∥rD,T (ẑ

cl
j ,X )

∥∥∥2

P
cl
j

)

}
, (19)

where rB(ẑ
bi
bi+1

,X ) is the residual for IMU measurement and B is the set of pre-integrated

IMU measurement in the sliding windows. rD,T (ẑ
cl
j ,X ) is the residual for event data.

D and T are the sets of inverse depth frames and corresponding negative TS images
in the sliding window, respectively. Pbi

bi+1
and Pcl

j are covariance matrices for the IMU

measurement residual and the event data residual. Pbi
bi+1

can be computed iteratively with

IMU propagation as proposed in [15], and Pcl
j is set as the identity matrix during the

implementation of ESVIO. ρ is the Huber loss function [61], which is used to down-weight
the large event data residual to improve the efficiency and reduce the impacts of noise
events or incorrect depth points, defined as

ρ(r) =

{
r , r ≤ k2

2k
√

r− k , r > k2
(20)

where k is the scale of the Huber loss and we set k as 20 in ESVIO by trial-and-error method.
ESVIO uses Levenberg–Marquard (LM) algorithm to solve the minimization non-

linear optimization problem in Equation (19). The optimal state vector X will be found by
iteratively minimizing the Mahalanobis distance of all the residuals. At each LM iteration
step, the state increment δX can be solved by following equation based on Equation (19):

(HB + HD,T )δX = (bB + bD,T ), δX = [δx0, δx1, . . . , δxn]
>, (21)

where H(·) is the Hessian matrix of residuals vector r(·), we have H(·) = J>(·)P
−1
(·) J(·) and

b(·) = −J>(·)P
−1
(·) r(·), where J(·) is the Jacobian matrix of residuals vector r(·) with respect to

X , and P(·) is the covariance matrix of measurements.
For position, velocity, and bias items of state vector X , the update operator and

increments at each LM iteration step can be defined as

p′ = p + δp, v′ = v + δv, b′ = b + δb. (22)
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For the rotation item of state vector X , since the four-dimensional rotation quaternion
q is over-parameterized, we use a pertubation δθ ∈ R3 as the rotation increment referring
to [15]. Therefore, the update operator of q at each LM iteration step can be defined as

q′ ≈ q⊗
[

1
1
2 δθ

]
. (23)

We can also write the Equation (23) as the rotation matrix form:

R′ ≈ R(I + bδθc×). (24)

Considering the real-time performance, we do not set a specific marginalization step
to marginalize old states. Formulations of measurements’ residuals will be defined in the
following, and the Jacobian matrices can be found in Appendix A.2.

For the IMU measurement residual between two consecutive frames bi and bi+1 in the
sliding window, according to the IMU measurement model defined in Equation (8), it can
be defined by

rB(ẑ
bi
bi+1

,X ) =


δα

bi
bi+1

δβ
bi
bi+1

δγ
bi
bi+1

δba
δbg

 =


Rbi

w(pw
bi+1
− pw

bi
+ 1

2
wg∆t2 − wvi∆t)− α̂

bi
bi+1

Rbi
w(

wvi+1 +
wg∆t− wvi)− β̂

bi
bi+1

2
[
qw

bi

−1 ⊗ qw
bi+1
⊗ (γ̂bi

bi+1
)−1]

xyz
bi+1 ba − bi ba
bi+1 bg − bi bg

. (25)

For the event data residual between two data frames, inspired by ESVO [8], it can be
defined as the depth projection error of one’s inverse depth frame on another’s negative TS
image. Considering the j-th inverse depth frame and the l-th negative TS image (j < l) in
the sliding window, the event data residual can be defined by

rD,T (ẑ
cl
j ,X ) = ∑

m∈Dj

Ile f t((
cpl um, cpl vm), tl) = ∑

m∈Dj

Ile f t(π(clPm), tl), j < l

clPm =

clxm
clym
clzm

 = Rc
b(Rbl

w(Rw
bj
(Rb

c(
cjPm) + pb

c) + pw
bj
− pbl

w)− pb
c),

(26)

where cjPm ∈ R3 is the m-th depth point in the j-th inverse depth frame, clPm ∈ R3

is the same depth point but in the l-th camera frame coordinate system. Additionally,
(cpl um, cpl vm) is the projected pixel location of clPm in the image plane of the l-th negative
TS image. π is the projection function that turns a 3D point to a 2D pixel location using
event camera intrinsic parameters.

7. Experimental Evaluation

We implement the ESVIO system referring to the implementation of the ESVO
system [8] based on Robot Operating System (ROS) [62] in C++. In the ESVIO system, there
are three different independent threads, namely time_surface thread, depth_estimation thread,
and VIO thread. They run concurrently to achieve the VIO state estimation. time_surface
thread implements the conversion of the event stream into TS images, which is a part of
the measurements processing unit (in Figure 1). depth_estimation thread implements the
depth estimation unit (in Figure 1). VIO thread implements the pre-integration of IMU
measurement (another part of the measurements processing unit shown in Figure 1), the
initialization unit (in Figure 1), and the VIO state estimation unit (in Figure 1). Each thread
has a different running rate accordingly to ensure reliable operation and the real-time
performance of the whole system.

To evaluate the proposed ESVIO system, we perform corresponding quantitative
and qualitative experimental evaluations on the public RPG dataset [25] and MVSEC
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dataset [27]. The data provided by the RPG dataset were collected with a handheld stereo
event camera in an indoor environment. Additionally, the sequences we used for 6-DoF
pose estimation from MVSEC dataset were collected using a stereo event camera mounted
on a drone flying in a capacious indoor environment. We also evaluate the ESVIO on
the ESIM dataset, which is generated by Jiao et al. [26] using the event camera simulator
ESIM [63]. In addition, we try to evaluate ESVIO on the driving dataset DSEC [28] where
the data were collected from a stereo event camera mounted on a driving car with a higher
resolution. These four datasets all provide stereo event stream, IMU measurement, intrinsic
parameters of event cameras, extrinsic parameters between event cameras and the IMU.
The ground truth 6-DoF poses are also provided except DSEC dataset. However, none of
these four datasets provide ground truth IMU bias, which can be used for the initialization
evaluation. We list the parameters of sensors in each dataset in Table 1.

Table 1. Parameters of sensors in three datasets used in experimental evaluations. The IMU noise
specs of MPU-6150 are from its product specification. The power spectral density is the square of
noise amplitude density.

Dataset Event
Camera

Resolution
(Pixel) IMU IMU Freq. (Hz) IMU Noise Specs

RPG [25] DAVIS240C 240 × 180 MPU-6150 1000 total RMS noise of gyr: 0.2◦/s-rms
power spectral density of acc: 400 µg/

√
HzMVSEC [27] DAVIS346 346 × 260 MPU-6150 1000

ESIM [26] Simulator [63] 346 × 260 Simulator [63] 1000

gyr noise density: 1.86 × 10−4 rad/s
√

Hz
gyr random walk: 2.66 × 10−5 rad/s2

√
Hz

acc noise density: 1.86 × 10−3 m/s2
√

Hz
acc random walk: 4.33 × 10−4 m/s3

√
Hz

DSEC [28] PPS3MVCD 640 × 480 MPU-9250 1000

gyr noise density: 5.07 × 10−3 rad/s
√

Hz
gyr random walk: 5.69 × 10−5 rad/s2

√
Hz

acc noise density: 7.81 × 10−2 m/s2
√

Hz
acc random walk: 1.33 × 10−3 m/s3

√
Hz

Based on the above datasets, firstly, we show the performance of the event-inertial
initialization proposed in ESVIO. Secondly, we compare ESVIO with state-of-the-art meth-
ods in terms of accuracy performance. Thirdly, we show the improvement brought by the
addition of IMU to ESVIO. Fourthly, we show the results of ESVIO on sequences from the
driving dataset DSEC. Finally, we analyze the real-time performance of our system. Consid-
ering the randomness of the algorithm results [26], the results of quantitative evaluations
(motion estimation, scale error, and time cost) are all average results of 10-trial tests. Addi-
tionally, considering the possible scale error in the adopted comparison methods, we align
the estimated trajectory with ground truth using Sim(3) Umeyama alignment [64] in all
evaluations. All experiments run on a computer equipped with Intelr Core™ i9-10900K
CPU @ 3.70 GHz and Ubuntu 20.04 LTS operation system.

7.1. Performance of the Event-Inertial Initialization

To prove the effectiveness of our proposed event-inertial initialization method for
ESVIO, we compare ESVIO and its variant without the proposed event-inertial initializa-
tion (simply “ESVIO without initialization”) on the RPG and MVSEC datasets which are
collected in the real world. The ESVIO without initialization is achieved by the direct VIO
state estimation method provided in Section 6 with the initial guesses for gravity direction
(solved by Equation (13)), accelerometer bias (zero), gyroscope bias (zero), velocities, and
depth (recovered from the event-only initialization method in Section 5.1).

Because RPG and MVSEC datasets do not provide IMU calibration parameters and
ground truth IMU bias, we choose the scale error and the mean absolute translational
error (ATE) as the metric for evaluations. We compare the scale error at the beginning
of the VIO system (5 s after the system starts running) and at the end of the system for
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ESVIO and ESVIO without initialization. The scale error at the beginning of the system can
directly reflect the influence of initialization on scale recovery. The scale error at the end
of the system and the mean ATE can represent the effect of initialization on the VIO state
estimation. As shown in Table 2, ESVIO demonstrates lower scale errors and better accuracy
performance than ESVIO without initialization in most sequences. The results in Table 2
show that the event-inertial initialization can effectively recover the scale and improve the
accuracy performance for ESVIO state estimation. In addition, note that although the lack
of initialization will make the VIO system have a scale error in the initial stage, due to the
addition of IMU, the scale error will decrease after the system works for a while.

Table 2. Quantitative comparison results of ESVIO and ESVIO without initialization on the RPG and
MVSEC datasets. The scale error and the mean absolute translational error (ATE) are used as the
metric. The scale error includes the error at the beginning of the system (5s) and at the end of the
system. The best result is highlighted in bold.

Sequence Duration (s) Method
Scale Error (%)

Mean ATE (cm)
5s End

RPG_bin_edited 16.995
ESVIO 1.8 0 2.0

ESVIO_w/o_initialization 8.2 0.1 2.2

RPG_boxes_edited 14.995 ESVIO 8.7 2.2 4.0

ESVIO_w/o_initialization 15.8 4.0 4.7

RPG_desk_edited 12.995 ESVIO 2.0 1.7 1.8

ESVIO_w/o_initialization 2.9 2.2 2.5

RPG_monitor_edited 22.985 ESVIO 2.3 0.2 2.6

ESVIO_w/o_initialization 15.3 2.6 3.8

MVSEC_indoor
_flying1_edited 25.976

ESVIO 8.7 5.1 7.7

ESVIO_w/o_initialization 9.8 5.9 9.4

MVSEC_indoor
_flying3_edited 24.984

ESVIO 6.4 3.8 4.3

ESVIO_w/o_initialization 9.6 3.6 7.1

Mean 19.822
ESVIO 5.0 2.2 3.7

ESVIO_w/o_initialization 10.3 3.1 5.0

7.2. Evaluation of the VIO State Estimation Accuracy for ESVIO

To show the state estimation accuracy performance of ESVIO, we perform quantitative
and qualitative evaluation experiments on the public ESIM, RPG, MVSEC datasets.

Firstly, the state estimation results of ESVIO evaluated on ESIM, RPG, and MVSEC
datasets are shown in Figure 5. As shown in Figure 5, the trajectories (the fourth row)
estimated by ESVIO have a good accuracy performance compared to the ground truth.
Furthermore, the TS images (the second row) and inverse depth frames (the third row)
from Figure 5 show the performance of ESVIO for event processing and depth estimation.

Secondly, we compare ESVIO with the state-of-the-art event-based stereo VO methods,
including ESVO [8] and variants of ESVO with different event processing methods (refer
to [26]), on ESIM, RPG, and MVSEC datasets. Table 3 shows the mean ATE under 12 se-
quences for ESVIO, ESVO, and variants of ESVO. The subscript of ESVO represents the
different event-processing methods. TS represents TS (ESVOTS equals to the original ESVO).
EM2000, EM3000, EM4000, EM5000 represent Event Map with 2000, 3000, 4000, 5000 events
per map. EMTS represents a combination of TS and Event Map. We refer to [26] for the
results of ESVO and variants of ESVO. As shown in Table 3, ESVIO demonstrates better
accuracy performance in terms of motion estimation on all sequences compared with the
state-of-the-art event-based stereo VO methods. In addition, we plot the absolute transla-
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tional and rotational error statistics of ESVIO and ESVO in Figure 6. As shown in Figure 6,
for absolute translational error, ESVIO performs better than ESVO on all sequences. As to
the rotational error, ESVIO performs better than ESVO in both rotational error median and
distribution on most sequences. From Figure 6, the experimental results demonstrate that
the proposed ESVIO not only has the advantages of accuracy performance, but also has the
advantages of robustness compared with the event-based stereo VO method.

Figure 5. Results of ESVIO evaluated on ESIM, RPG, and MVSEC datasets. The first row shows
intensity frames from the event camera, the second and the third rows show the TS images and the
inverse depth frames generated by ESVIO, and the fourth row shows the trajectories estimated by
ESVIO. Inverse depth frames are color-coded from red (close) to blue (far) over a black background.

Thirdly, we compare ESVIO with the state-of-the-art event-based VIO method. At
present, event-based VIO methods [19–23] are all designed for monocular systems and
evaluated on the public dataset [65] which only provides monocular event data. Among
these methods, only Ultimate SLAM [21] is open source method which is a feature-based
VIO method and provides different VIO modes based on different sensor combinations.
Therefore, we compare ESVIO and Ultimate SLAM on the same sequences used in Table 3,
and the results are shown in Table 4. When we run Ultimate SLAM, we use its all parameter
settings except the sensor calibration parameters. The results of Ultimate SLAM are col-
lected under “event (E) + IMU” and “event (E) + IMU + frame (Fr)” two modes. As shown
in Table 4, the performance of Ultimate SLAM is not as good as ESVIO. In most sequences,
Ultimate SLAM cannot correctly estimate the state due to the failure of feature tracking
(features can be extracted, but cannot be tracked stably). In the remaining sequences,
although state estimation can be performed, the accuracy performance of Ultimate SLAM
is still not as good as ESVIO due to the large estimation error in the initial stage. From the
results in Table 4, we can find that ESVIO has better accuracy and robustness performances
compared with Ultimate SLAM.
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Table 3. Accuracy performance with ESVIO and different event-based stereo VO methods. The public RPG, MVSEC, ESIM datasets are adopted for comparison. The
mean ATE (cm) is used as the metric. The best result is highlighted in bold and the second best result is highlighted with underline.

Sequence Duration (s) Length (m) ESVOTS ESVOEM2000 ESVOEM3000 ESVOEM4000 ESVOEM5000 ESVOEMTS ESVIO

ESIM_ office_ planar 15.999 5.014 4.7 4.0 3.9 3.7 4.1 4.9 1.8

ESIM_ poster_ planar 15.999 5.014 4.7 3.7 4.3 4.6 5.0 5.2 2.5

ESIM_ checkerboard_ planar 15.999 5.014 4.2 2.9 2.2 2.3 2.4 3.5 2.0

ESIM_ office_ 6DoF 29.999 15.003 9.1 25.3 21.0 16.6 15.8 9.4 3.8

ESIM_ poster_ 6DoF 29.999 15.003 18.2 15.4 16.3 16.8 17.4 17.8 10.2

ESIM_ checkerboard_ 6DoF 29.999 15.003 23.0 17.0 14.0 15.1 13.4 22.4 11.5

RPG_ bin_ edited 16.995 4.923 3.4 22.4 16.6 8.0 14.1 3.5 2.0

RPG_ boxes_ edited 14.995 6.686 6.5 5.3 17.1 13.7 9.8 22.1 4.0

RPG_ desk_ edited 12.995 3.926 3.4 2.9 3.3 3.2 2.9 3.6 1.8

RPG_ monitor_ edited 22.985 6.251 7.2 5.3 5.2 7.4 7.3 7.3 2.6

MVSEC_ indoor_ flying1_ edited 25.976 11.761 18.5 22.0 16.7 16.0 22.1 14.9 7.7

MVSEC_ indoor_ flying3_ edited 24.984 10.646 20.9 10.8 11.9 14.0 15.0 10.6 4.3

Mean 21.41 8.687 10.3 11.4 11.0 10.1 10.8 10.4 4.5
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Table 4. Accuracy performance with ESVIO and Ultimate SLAM [21] on the ESIM, RPG, and MVSEC
datasets. The mean ATE (cm) is used as the metric. The results of Ultimate SLAM are collected under
“event (E) + IMU (I)” and “event (E) + IMU (I) + frame (Fr)” two modes. The symbol “-” means that
the system can not correctly estimate states. The best result is highlighted in bold.

Sequence ESVIO
Ultimate SLAM Ultimate SLAM

(E + I) (E + I + Fr)

ESIM_office_planar 1.8 - 9.2
ESIM_poster_planar 2.5 5.8 7.3

ESIM_checkerboard_planar 2.0 - 7.0
ESIM_office_6DoF 3.8 - -
ESIM_poster_6DoF 10.2 - -

ESIM_checkerboard_6DoF 11.5 - -

RPG_bin_edited 2.0 2.5 2.8
RPG_boxes_edited 4.0 - -
RPG_desk_edited 1.8 - -

RPG_monitor_edited 2.6 3.8 3.8

MVSEC_indoor_flying1_edited 7.7 - -
MVSEC_indoor_flying3_edited 4.3 - -

(a) (b)

Figure 6. Boxplots of absolute translational (a) and rotational (b) error statistics for ESVIO and ESVO.
The middle box spans the first and third quartiles, while the whiskers are the upper and lower limits.
(a) Absolute Translational Error. (b) Absolute Rotational Error.

7.3. Evaluation of the Impact of Adding IMU to ESVIO

To validate the improvement brought by the addition of IMU to ESVIO, we present the
quantitative and qualitative experimental evaluations in this subsection. We evaluate ESVIO,
ESVIO without IMU (state estimation implemented based on only event measurement
residual), and ESVO on the public ESIM, RPG, and MVSEC datasets. The mean ATE and
scale error are chosen as the evaluation metric. The evaluation results are shown in Table 5.
The results show that ESVIO with IMU has more accurate state estimation accuracy and
lower scale error, which demonstrates that the addition of IMU improves the state estimation
accuracy performance for ESVIO. Additionally, we notice that ESVIO will not reduce to
ESVO when no IMU measurement is used due to the different event processing methods
(improved TS vs. TS) and different state estimation methods (sliding window optimization
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framework vs. 3D–2D registration between two consecutive frames). Note that, because [26]
does not provide the scale error of ESVO, the results of ESVO in Table 5 are obtained by our
own evaluation.

Table 5. Quantitative comparison results of ESVIO with and without IMU measurement on the ESIM,
RPG, and MVSEC datasets. The scale error and the mean ATE are used as the metric. The best result
is highlighted in bold.

Sequence
Scale Error (%) Mean ATE (cm)

ESVIO ESVIO_w/o_IMU ESVO ESVIO ESVIO_w/o_IMU ESVO

ESIM_office_planar 2.4 7.9 13.1 1.8 6.5 4.1
ESIM_poster_planar 1.6 12.4 11.0 2.5 6.7 4.7

ESIM_checkerboard_planar 3.3 10.7 13.0 2.0 5.3 4.9
ESIM_office_6DoF 1.7 11.6 24.3 3.8 9.1 11.5
ESIM_poster_6DoF 2.0 24.8 21.7 10.2 21.5 15.6

ESIM_checkerboard_6DoF 10.7 17.2 14.0 11.5 17.8 19.7

RPG_bin_edited 0.0 11.8 16.4 2.0 3.9 3.1
RPG_boxes_edited 2.2 11.1 24.7 4.0 5.0 8.8
RPG_desk_edited 1.7 6.7 7.7 1.8 3.2 3.6

RPG_monitor_edited 0.2 8.1 9.9 2.6 5.2 7.2

MVSEC_indoor_flying1_edited 5.1 9.5 12.7 7.7 13.1 14.1
MVSEC_indoor_flying3_edited 3.8 9.8 12.8 4.3 9.7 27.8

Mean 2.9 11.8 15.1 4.5 8.9 10.4

Then we choose two sequences RPG_monitor_edited and MVSEC_indoor_flying1_edited
to show the details of translational and rotational errors of ESVIO and ESVIO without
IMU measurement. The RPG_monitor_edited sequence contains more rotations, while the
MVSEC_indoor_flying1_edited sequence is collected by a drone in a larger indoor space
with a faster camera motion. As shown in Figure 7, the top subfigures are the estimated
trajectories, the middle subfigures are the translational errors over time, and the bottom
subfigures are the rotational errors over time. From the trajectories subfigures, we can
discover that the trajectories estimated by ESVIO have a lower scale error, which are more
consistent with the ground truth trajectories. From the translational error subfigures and
the rotational error subfigures, we can intuitively find that ESVIO always has a lower value
of the translational and rotational errors. Furthermore, from Figure 7, we can discover that
the addition of IMU can significantly reduce rotation estimation error when the camera
keeps rotating (e.g., 5–10 s in the RPG_monitor_edited sequence) or make a sharp turn (e.g.,
3–7 s in the MVSEC_indoor_flying1_edited sequence).

7.4. Experiments on DSEC Dataset

To show the performance of ESVIO in large-scale scenes, we perform qualitative eval-
uation experiments on the public driving dataset DSEC. Driving scenarios are challenging
for event-based sensors because forward motions typically produce considerably fewer
events in the center of the image (where apparent motion is small) than in the periphery [66].
Additionally, the higher sensor resolution (640 × 480), the large-scale outdoor scenes and the
dynamic objects (moving cars) are also challenging for ESVIO.
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(a) (b)

Figure 7. (a): Trajectories and the corresponding translational errors and rotational errors on the
RPG_monitor_edited sequence. (b): Trajectory and the corresponding translational errors and rotational
errors on the MVSEC_indoor_flying1_edited sequence. The blue line represents the results of the ESVIO,
and the yellow line represents the results of ESVIO without IMU measurement. (a) RPG_monitor_edited
sequence. (b) MVSEC_indoor_flying1_edited sequence.

Since the DSEC dataset does not provide the ground truth 6-DoF poses, we only show
the results of ESVIO for the DSEC dataset sequences zurich_city_04 and zurich_city_11_a
in Figure 8. As shown in Figure 8g–l, ESVIO can successfully achieve the camera pose
estimation not only on the medium-length driving sequences ((g), (h), (j), (l)), but also on the
long driving sequences of up to more than 300 m ((i), (k)). Furthermore, the reconstructed
3D maps and estimated trajectories from Figure 8m,n show that ESVIO can complete
semi-dense depth estimation and state estimation in the case of sparse and dense events
(events in zurich_city_04_a and zurich_city_04_b are denser than in zurich_city_11_a, due
to the richer texture). However, because of the very heavy events load, ESVIO can not
run in real-time on the DSEC dataset, so we slow down the playback of the rosbag when
performing the corresponding experiments in this subsection.
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(a) zurich_city_04_a (b) zurich_city_04_b (c) zurich_city_04_c (d) zurich_city_04_e (e) zurich_city_04_f (f) zurich_city_11_a

(g) zurich_city_04_a (h) zurich_city_04_b (i) zurich_city_04_c (j) zurich_city_04_e (k) zurich_city_04_f (l) zurich_city_11_a

(m) Depth reconstruction in zurich_city_04_a (n) Depth reconstruction in zurich_city_04_b (o) Depth reconstruction in zurich_city_11_a

Figure 8. (a–f): Scene images of different sequences in DSEC dataset. (g–l): The trajectories produced
by ESVIO with DSEC dataset sequences. (m–o): The reconstructed 3D maps and trajectories with
DSEC dataset. The trajectories are in green and the depth points are in gray.

7.5. Real-Time Performance Analysis

In this section, we analyze the real-time performance of our proposed ESVIO system.
Firstly, we present the time cost of the initialization of ESVIO. For the event-only

initialization, ESVIO will take about 12 ms to execute the modified SGM method to generate
an initial inverse depth frame. Then ESVIO will take about 10 ms and 46 ms to execute
the tracking and mapping procedure of ESVO, respectively, for estimating up-to-scale
camera poses. For event-inertial initialization, ESVIO will take less than 1 ms for the rough
estimation of the gravity direction and about 95 ms for the event-inertial initialization
optimization in the slide window optimization framework (including 10 data frames).
Considering the visual observation conditions required for the modified SGM method
and the collection and accumulation time of the data frames in the sliding window, the
initialization will be completed within 2 s after the ESVIO starts.

Secondly, we show the real-time performance of ESVIO. Table 6 lists the detailed exe-
cution times of different threads of ESVIO under MVSEC_ indoor_ flying1_ edited sequence.
As shown in Table 6, for ESVIO, the time_surface thread takes about 12 ms (∼ 83 Hz) to
create the TS image, the depth_estimation thread takes about 46 ms (∼ 22 Hz) to estimate
1500 events’ depth and fuse 6000 depth points to the inverse depth frame, the VIO thread
takes about 24 ms (∼ 42 Hz) to perform state estimation in the slide window optimization
framework (including 6 data frames) based on 500 depth points per reconstructed inverse
depth frame.
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Table 6. Mean execution time of ESVIO’s different threads with MVSEC_indoor_flying1 sequence of
MVSEC Dataset.

Thread Method Times (ms) Rate (Hz)

time_surface Event processing 12.0 83.3

depth_estimation Depth estimation 45.8 21.8

VIO
IMU pre-integration 0.4

41.5Data preprocessing 2.1
Nonlinear optimization 21.6

Regarding the choice for the size of the sliding window (6 as mentioned above), we
justify it by showing its influence on the state estimation accuracy and computation cost.
As shown in Table 7, we have investigated the effect of sliding window size (4, 6, 8, and
10 frames, respectively) in terms of state estimation accuracy and computation cost of the
VIO thread under MVSEC_ indoor_ flying1_ edited sequence. The results show that the sliding
window with 4 data frames presents the worst performance in accuracy, and the sliding
window with 6/8/10 data frames demonstrates similar accuracy performance. However,
the sliding window with 8/10 data frames has a larger computation cost. Considering the
real-time performance, we set the sliding window size to 6 in the state estimation.

Table 7. State estimation accuracy and computation cost of the VIO thread under different sizes of
the sliding window optimization framework with MVSEC_indoor_flying1 sequence. The mean ATE
(cm) is used as the metric for accuracy comparison.

Size of Sliding
Window

State Estimation Accuracy
(cm)

Computation Cost of VIO Thread
(ms)

4 10.2 16.9
6 7.7 24.1
8 7.5 36.5
10 8.3 44.2

Regarding the choice for the number of depth points selected in the state estimation (500 as
mentioned above), we implement the same experiments under MVSEC_ indoor_ flyin- g1_ edited
sequence. Table 8 shows the state estimation accuracy and computation cost of the VIO thread
with selecting 300, 500, 1000, and 1500 depth points per reconstructed inverse depth frame. As
shown in Table 8, while increasing the number of depth points can effectively improve the state
estimation accuracy, however, it also brings more computation cost. Considering the real-time
performance, we choose to select 500 depth points per reconstructed inverse depth frame in
the state estimation.

Table 8. State estimation accuracy and computation cost of the VIO thread under different numbers of
depth points per reconstructed inverse depth frame in the state estimation with MVSEC_indoor_flying1
sequence. The mean ATE (cm) is used as the metric for accuracy comparison.

Number of Depth
Points

State Estimation Accuracy
(cm)

Computation Cost of VIO Thread
(ms)

300 9.9 16.4
500 7.7 24.1

1000 7.8 43.8
1500 7.3 66.5

Regarding the number of events for depth estimation and the number of the depth
points for depth fusion in the depth_estimation thread (1500 and 6000 as mentioned above),
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we refer to the corresponding settings in ESVO [8] and make some adjustments on this
basis to obtain inverse depth frames with more depth information on different datasets.

8. Conclusions

This paper proposes a novel event-based stereo VIO system, namely ESVIO. Firstly, we
present a direct event-based stereo VIO pipeline for the first time, which can directly estimate
camera motion based on event data and IMU measurement in a tightly coupled sliding
window non-linear optimization framework. Secondly, we design a semi-joint event-inertial
initialization method that can solve initialization parameters in two steps at the initial stage of
the VIO system. Based on the VIO and the initialization methods, we implement the ESVIO
system. Corresponding experimental evaluations are conducted to prove the effectiveness of
the proposed system, and the results show that ESVIO achieves good accuracy and robustness
performance when compared with other event-based monocular VIO and stereo VO systems,
and, at the same time, with no compromise to real-time performance.

However, ESVIO still has some limitations. Firstly, the performance of ESVIO is still lim-
ited by the hardware of event cameras. Secondly, ESVIO lacks the long-term data association
mechanism, such as loop closure, which enables relocalization and drifts elimination.

In the future, we will introduce the standard camera frame to enhance the perfor-
mance of ESVIO and implement loop closure for ESVIO. We will also implement a specific
marginalization step for ESVIO. We would also like to record an event camera dataset that
is more suitable for event-based VIO systems and event-inertial initialization methods to
test and evaluate.
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Appendix A

Appendix A.1. Jacobian Matrices in Initialization

The Jacobian matrices of the IMU measurement residual with respect to state incre-
ments δxi and δxi+1 are, respectively, computed by

∂rB
∂δxi

=



−∆t −Jα
bi ba

−Jα
bi bg

−I −Jβ
bi ba

−Jβ
bi bg

0 0
[
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bi
bi+1
⊗ qc0

bi+1

−1⊗ qc0
bi

]
L Jγ

bi bg

0 −I 0
0 0 −I


,

∂rB
∂δxi+1

=


0 0 0

Rbi
c0 Rc0

bi+1
0 0

0 0 0
0 I 0
0 0 I

, (A1)
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where [·]L is the left-quaternion-product matrices [67], J(·)bi ba
=

∂(·)bi
bi+1

∂δbi ba
and J(·)bi bg

=
∂(·)bi

bi+1
∂δbi bg

are

the Jacobian matrices of pre-integration terms with respect to accelerometer bias increment

and gyroscope bias increment, respectively, referring to [15], such as Jα
bi ba

=
∂α

bi
bi+1

∂δbi ba
.

The Jacobian matrices of the IMU measurement residual with respect to the gravity
direction increment δRc0

w and the scale increment δs are, respectively, computed by

∂rB
∂δRc0

w
=


1
2 ∆t2Rbi

c0 Rc0
w bwgc×

1
2 ∆tRbi

c0 Rc0
w bwgc×

0
0
0

,
∂rB
∂δs

=


Rbi

c0(p̄c0
bi+1
− p̄c0

bi
)

0
0
0
0

. (A2)

Appendix A.2. Jacobian Matrices in State Estimation

Appendix A.2.1. Jacobian Matrices of IMU Measurement Residual

During the non-linear optimization, the Jacobian matrix of the IMU measurement
residual with respect to the state increment δxi is computed by

∂rB
∂δxi

=



−Rbi
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0 0 0 −I 0

0 0 0 0 −I


, (A3)

where [·]R is the right-quaternion-product matrices [67].
The Jacobian matrix of the IMU measurement residual with respect to the state incre-

ment δxi+1 is computed by

∂rB
∂δxi+1

=


Rbi

w 0 0 0 0
0 Rbi

w 0 0 0
0 0

[
qw

bi

−1 ⊗ qw
bi+1
⊗ (γ̂bi

bi+1
)−1]

L 0 0
0 0 0 I 0
0 0 0 0 I

. (A4)

Appendix A.2.2. Jacobian Matrices of Event Data Residual

The Jacobian matrices of the event measurement residual with respect to system state
increments δxj and δxl can be solved by the chain rule:[

∂rD,T
∂δxj

,
∂rD,T
∂δxl

]
= ∑

m∈D

∂rD,T
∂(cpl um, cpl vm)

· ∂(cpl um, cpl vm)

∂clPm
·
[

∂clPm

∂δxj
,

∂clPm

∂δxl

]
. (A5)

The first part in Equation (A5), ∂rD,T
∂(cpl um ,cpl vm)

, can be considered as the gradient at the
pixel location (cpl um, cpl vm) in the l-th negative TS image:

∂rD,T
∂(cpl um, cpl vm)

=
[
∇u(cpl um ,cpl vm) ∇v(cpl um ,cpl vm)

]
. (A6)
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Additionally, the second part ∂(cpl um ,cpl vm)
∂clPm

can be regarded as the derivative result of
the back projection function:

∂(cpl um, cpl vm)

∂clPm
=

P (1,1)
clzm

0 −P (1,1) ·clxm

(clzm)2

0
P (2,2)

clzm
−P (1,1) ·clym

(clzm)2

, (A7)

where P is the projection matrix of the event camera.
Finally, the third part of Equation (A5) can be, respectively, defined by
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References
1. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, present, and future of

simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans. Robot. 2016, 32, 1309–1332. [CrossRef]
2. Gomez-Ojeda, R.; Moreno, F.A.; Zuñiga-Noël, D.; Scaramuzza, D.; Gonzalez-Jimenez, J. PL-SLAM: A stereo SLAM system

through the combination of points and line segments. IEEE Trans. Robot. 2019, 35, 734–746. [CrossRef]
3. Wang, R.; Schworer, M.; Cremers, D. Stereo DSO: Large-scale direct sparse visual odometry with stereo cameras. In Proceedings

of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3903–3911.
4. Huang, H.; Yeung, S.K. 360vo: Visual odometry using a single 360 camera. In Proceedings of the 2022 International Conference

on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 5594–5600.
5. Fontan, A.; Civera, J.; Triebel, R. Information-driven direct rgb-d odometry. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 4929–4937.
6. Gallego, G.; Delbruck, T.; Orchard, G.; Bartolozzi, C.; Taba, B.; Censi, A.; Leutenegger, S.; Davison, A.; Conradt, J.; Daniilidis, K.;

et al. Event-based vision: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 154–180. [CrossRef]
7. Mostafavi, M.; Wang, L.; Yoon, K.J. Learning to reconstruct HDR images from events, with applications to depth and flow

prediction. Int. J. Comput. Vis. 2021, 129, 900–920. [CrossRef]
8. Zhou, Y.; Gallego, G.; Shen, S. Event-based stereo visual odometry. IEEE Trans. Robot. 2021, 37, 1433–1450. [CrossRef]
9. Mueggler, E.; Huber, B.; Scaramuzza, D. Event-based, 6-DoF pose tracking for high-speed maneuvers. In Proceedings of the

2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Chicago, IL, USA, 14–18 September 2014;
pp. 2761–2768.

10. Kim, H.; Leutenegger, S.; Davison, A.J. Real-time 3D reconstruction and 6-DoF tracking with an event camera. In Proceedings of
the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland,
2016; pp. 349–364.

11. Rebecq, H.; Horstschäfer, T.; Gallego, G.; Scaramuzza, D. EVO: A geometric approach to event-based 6-DoF parallel tracking and
mapping in real time. IEEE Robot. Autom. Lett. 2016, 2, 593–600. [CrossRef]

12. Bryner, S.; Gallego, G.; Rebecq, H.; Scaramuzza, D. Event-based, direct camera tracking from a photometric 3D map using
nonlinear optimization. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC,
Canada, 20–24 May 2019; pp. 325–331.

13. Leutenegger, S.; Lynen, S.; Bosse, M.; Siegwart, R.; Furgale, P. Keyframe-based visual–inertial odometry using nonlinear
optimization. Int. J. Robot. Res. 2015, 34, 314–334. [CrossRef]

14. Bloesch, M.; Omari, S.; Hutter, M.; Siegwart, R. Robust visual inertial odometry using a direct EKF-based approach. In
Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots And Systems (IROS), Hamburg, Germany,
28 September–2 October 2015; pp. 298–304.

15. Qin, T.; Li, P.; Shen, S. VINS-Mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 2018,
34, 1004–1020. [CrossRef]

16. Von Stumberg, L.; Usenko, V.; Cremers, D. Direct sparse visual-inertial odometry using dynamic marginalization. In Pro-
ceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018;
pp. 2510–2517.

17. Usenko, V.; Demmel, N.; Schubert, D.; Stückler, J.; Cremers, D. Visual-inertial mapping with non-linear factor recovery. IEEE
Robot. Autom. Lett. 2019, 5, 422–429. [CrossRef]

18. Von Stumberg, L.; Cremers, D. DM-VIO: Delayed Marginalization Visual-Inertial Odometry. IEEE Robot. Autom. Lett. 2022,
7, 1408–1415. [CrossRef]

19. Zihao Zhu, A.; Atanasov, N.; Daniilidis, K. Event-based visual inertial odometry. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5391–5399.

http://doi.org/10.1109/TRO.2016.2624754
http://dx.doi.org/10.1109/TRO.2019.2899783
http://dx.doi.org/10.1109/TPAMI.2020.3008413
http://dx.doi.org/10.1007/s11263-020-01410-2
http://dx.doi.org/10.1109/TRO.2021.3062252
http://dx.doi.org/10.1109/LRA.2016.2645143
http://dx.doi.org/10.1177/0278364914554813
http://dx.doi.org/10.1109/TRO.2018.2853729
http://dx.doi.org/10.1109/LRA.2019.2961227
http://dx.doi.org/10.1109/LRA.2021.3140129


Sensors 2023, 23, 1998 27 of 28

20. Rebecq, H.; Horstschaefer, T.; Scaramuzza, D. Real-time visual-inertial odometry for event cameras using keyframe-based
nonlinear optimization. In Proceedings of the British Machine Vision Conference, London, UK, 4–7 September 2017.

21. Vidal, A.R.; Rebecq, H.; Horstschaefer, T.; Scaramuzza, D. Ultimate SLAM? Combining events, images, and IMU for robust visual
SLAM in HDR and high-speed scenarios. IEEE Robot. Autom. Lett. 2018, 3, 994–1001. [CrossRef]

22. Mueggler, E.; Gallego, G.; Rebecq, H.; Scaramuzza, D. Continuous-time visual-inertial odometry for event cameras. IEEE Trans.
Robot. 2018, 34, 1425–1440. [CrossRef]

23. Le Gentil, C.; Tschopp, F.; Alzugaray, I.; Vidal-Calleja, T.; Siegwart, R.; Nieto, J. Idol: A framework for imu-dvs odometry using
lines. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV,
USA, 24 October–24 January 2021; pp. 5863–5870.

24. Chen, P.; Guan, W.; Lu, P. ESVIO: Event-based Stereo Visual Inertial Odometry. arXiv 2022, arXiv:2212.13184.
25. Zhou, Y.; Gallego, G.; Rebecq, H.; Kneip, L.; Li, H.; Scaramuzza, D. Semi-dense 3D reconstruction with a stereo event camera. In

Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 235–251.
26. Jiao, J.; Huang, H.; Li, L.; He, Z.; Zhu, Y.; Liu, M. Comparing Representations in Tracking for Event Camera-based SLAM. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Virtual Conference, 19–25
June 2021; pp. 1369–1376.

27. Zhu, A.Z.; Thakur, D.; Özaslan, T.; Pfrommer, B.; Kumar, V.; Daniilidis, K. The multivehicle stereo event camera dataset: An event
camera dataset for 3D perception. IEEE Robot. Autom. Lett. 2018, 3, 2032–2039. [CrossRef]

28. Gehrig, M.; Aarents, W.; Gehrig, D.; Scaramuzza, D. Dsec: A stereo event camera dataset for driving scenarios. IEEE Robot.
Autom. Lett. 2021, 6, 4947–4954. [CrossRef]

29. Corke, P.; Lobo, J.; Dias, J. An introduction to inertial and visual sensing. Int. J. Robot. Res. 2007, 26, 519–535. [CrossRef]
30. Weiss, S.; Achtelik, M.W.; Lynen, S.; Chli, M.; Siegwart, R. Real-time onboard visual-inertial state estimation and self-calibration

of MAVs in unknown environments. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation,
St Paul, MN, USA, 14–18 May 2012; pp. 957–964.

31. Lynen, S.; Achtelik, M.W.; Weiss, S.; Chli, M.; Siegwart, R. A robust and modular multi-sensor fusion approach applied to MAV
navigation. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan,
3–7 November 2013; pp. 3923–3929.

32. Mourikis, A.I.; Roumeliotis, S.I. A multi-state constraint Kalman filter for vision-aided inertial navigation. In Proceedings of the
2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007; pp. 3565–3572.

33. Yang, Y.; Geneva, P.; Eckenhoff, K.; Huang, G. Visual-Inertial Odometry with Point and Line Features. In Proceedings of the 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, 4–8 November 2019; pp. 2447–2454.

34. Yang, Z.; Shen, S. Monocular visual–inertial state estimation with online initialization and camera–IMU extrinsic calibration.
IEEE Trans. Autom. Sci. Eng. 2016, 14, 39–51. [CrossRef]

35. Mur-Artal, R.; Tardós, J.D. Visual-inertial monocular SLAM with map reuse. IEEE Robot. Autom. Lett. 2017, 2, 796–803. [CrossRef]
36. Liu, Z.; Shi, D.; Li, R.; Qin, W.; Zhang, Y.; Ren, X. PLC-VIO: Visual-Inertial Odometry Based on Point-Line Constraints. IEEE

Trans. Autom. Sci. Eng. 2021, 19, 1880–1897. [CrossRef]
37. Mo, J.; Sattar, J. Continuous-time spline visual-inertial odometry. In Proceedings of the 2022 International Conference on Robotics

and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 9492–9498.
38. He, Y.; Zhao, J.; Guo, Y.; He, W.; Yuan, K. PL-VIO: Tightly-coupled monocular visual–inertial odometry using point and line

features. Sensors 2018, 18, 1159. [CrossRef]
39. Campos, C.; Elvira, R.; Rodríguez, J.J.G.; Montiel, J.M.; Tardós, J.D. Orb-slam3: An accurate open-source library for visual,

visual–inertial, and multimap slam. IEEE Trans. Robot. 2021, 37, 1874–1890. [CrossRef]
40. Xu, B.; Wang, P.; He, Y.; Chen, Y.; Chen, Y.; Zhou, M. Leveraging structural information to improve point line visual-inertial

odometry. IEEE Robot. Autom. Lett. 2022, 7, 3483–3490. [CrossRef]
41. Huang, G. Visual-inertial navigation: A concise review. In Proceedings of the 2019 International Conference on Robotics and

Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 9572–9582.
42. Usenko, V.; Engel, J.; Stückler, J.; Cremers, D. Direct visual-inertial odometry with stereo cameras. In Proceedings of the 2016

IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1885–1892.
43. Eckenhoff, K.; Geneva, P.; Huang, G. Direct visual-inertial navigation with analytical preintegration. In Proceedings of the 2017

IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 1429–1435.
44. Hidalgo-Carrió, J.; Gallego, G.; Scaramuzza, D. Event-aided Direct Sparse Odometry. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5781–5790.
45. Kueng, B.; Mueggler, E.; Gallego, G.; Scaramuzza, D. Low-latency visual odometry using event-based feature tracks. In

Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of
Korea, 9–14 October 2016; pp. 16–23.

46. Nguyen, A.; Do, T.T.; Caldwell, D.G.; Tsagarakis, N.G. Real-time 6-DoF pose relocalization for event cameras with stacked
spatial LSTM networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,
Long Beach, CA, USA, 16–17 June 2019.

47. Zhou, Y.; Li, H.; Kneip, L. Canny-VO: Visual Odometry with RGB-D Cameras Based on Geometric 3D-2D Edge Alignment. IEEE
Trans. Robot. 2018, 35, 184–199. [CrossRef]

http://dx.doi.org/10.1109/LRA.2018.2793357
http://dx.doi.org/10.1109/TRO.2018.2858287
http://dx.doi.org/10.1109/LRA.2018.2800793
http://dx.doi.org/10.1109/LRA.2021.3068942
http://dx.doi.org/10.1177/0278364907079279
http://dx.doi.org/10.1109/TASE.2016.2550621
http://dx.doi.org/10.1109/LRA.2017.2653359
http://dx.doi.org/10.1109/TASE.2021.3077026
http://dx.doi.org/10.3390/s18041159
http://dx.doi.org/10.1109/TRO.2021.3075644
http://dx.doi.org/10.1109/LRA.2022.3146893
http://dx.doi.org/10.1109/TRO.2018.2875382


Sensors 2023, 23, 1998 28 of 28

48. Campos, C.; Montiel, J.M.; Tardós, J.D. Inertial-only optimization for visual-inertial initialization. In Proceedings of the 2020 IEEE
International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 51–57.

49. Martinelli, A. Closed-form solution of visual-inertial structure from motion. Int. J. Comput. Vis. 2014, 106, 138–152. [CrossRef]
50. Kaiser, J.; Martinelli, A.; Fontana, F.; Scaramuzza, D. Simultaneous state initialization and gyroscope bias calibration in visual

inertial aided navigation. IEEE Robot. Autom. Lett. 2016, 2, 18–25. [CrossRef]
51. Campos, C.; Montiel, J.M.; Tardós, J.D. Fast and robust initialization for visual-inertial SLAM. In Proceedings of the 2019

International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 1288–1294.
52. Liu, H.; Qiu, J.; Huang, W. Integrating Point and Line Features for Visual-Inertial Initialization. In Proceedings of the 2022

International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 9470–9476.
53. Qin, T.; Shen, S. Robust initialization of monocular visual-inertial estimation on aerial robots. In Proceedings of the 2017

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017;
pp. 4225–4232.

54. Huang, W.; Liu, H. Online initialization and automatic camera-IMU extrinsic calibration for monocular visual-inertial SLAM. In
Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018;
pp. 5182–5189.

55. Li, J.; Bao, H.; Zhang, G. Rapid and robust monocular visual-inertial initialization with gravity estimation via vertical edges. In
Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macao, 4–8 November
2019; pp. 6230–6236.

56. Huang, W.; Wan, W.; Liu, H. Optimization-based online initialization and calibration of monocular visual-inertial odometry
considering spatial-temporal constraints. Sensors 2021, 21, 2673. [CrossRef]

57. Lupton, T.; Sukkarieh, S. Visual-inertial-aided navigation for high-dynamic motion in built environments without initial
conditions. IEEE Trans. Robot. 2011, 28, 61–76. [CrossRef]

58. Hirschmuller, H. Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 2007,
30, 328–341. [CrossRef]

59. Akinlar, C.; Topal, C. EDLines: A real-time line segment detector with a false detection control. Pattern Recognit. Lett. 2011,
32, 1633–1642. [CrossRef]

60. Suzuki, S. Topological structural analysis of digitized binary images by border following. Comput. Vision, Graph. Image Process.
1985, 30, 32–46. [CrossRef]

61. Huber, P.J. Robust estimation of a location parameter. In Breakthroughs in Statistics; Springer: Cham, Switzerland, 1992; pp. 492–518.
62. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating

System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009; Volume 3, p. 5.
63. Rebecq, H.; Gehrig, D.; Scaramuzza, D. ESIM: An open event camera simulator. In Proceedings of the Conference on Robot

Learning, Zürich, Switzerland, 29–31 October 2018; pp. 969–982.
64. Umeyama, S. Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach.

Intell. 1991, 13, 376–380. [CrossRef]
65. Mueggler, E.; Rebecq, H.; Gallego, G.; Delbruck, T.; Scaramuzza, D. The event-camera dataset and simulator: Event-based data

for pose estimation, visual odometry, and SLAM. Int. J. Robot. Res. 2017, 36, 142–149. [CrossRef]
66. Ghosh, S.; Gallego, G. Multi-Event-Camera Depth Estimation and Outlier Rejection by Refocused Events Fusion. Adv. Intell. Syst.

2022, 4, 2200221. [CrossRef]
67. Sola, J. Quaternion kinematics for the error-state Kalman filter. arXiv 2017, arXiv:1711.02508.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11263-013-0647-7
http://dx.doi.org/10.1109/LRA.2016.2521413
http://dx.doi.org/10.3390/s21082673
http://dx.doi.org/10.1109/TRO.2011.2170332
http://dx.doi.org/10.1109/TPAMI.2007.1166
http://dx.doi.org/10.1016/j.patrec.2011.06.001
http://dx.doi.org/10.1016/0734-189X(85)90016-7
http://dx.doi.org/10.1109/34.88573
http://dx.doi.org/10.1177/0278364917691115
http://dx.doi.org/10.1002/aisy.202200221

	Introduction
	Related Work
	Visual-Inertial Odometry Methods
	Event-Based Visual Odometry and SLAM
	Event-Based Visual-Inertial Odometry
	Visual-Inertial Initialization Methods

	System Overview of ESVIO
	Preliminaries
	Notations
	Event Presentation Based on Time-Surface 
	IMU Pre-Integration
	Depth Estimation Based on Time-Surface

	Event-Inertial Initialization Method
	Event-Only Initialization
	Event-Inertial Initial Optimization

	Direct Event-Based VIO Method
	Inverse Depth Frame Reconstruction
	Negative TS Image Generation
	Direct VIO State Estimation Based on Event Data and IMU Measurement

	Experimental Evaluation
	Performance of the Event-Inertial Initialization
	Evaluation of the VIO State Estimation Accuracy for ESVIO
	Evaluation of the Impact of Adding IMU to ESVIO
	Experiments on DSEC Dataset
	Real-Time Performance Analysis

	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.2
	Appendix A.2


	References

