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Abstract: Multi-line LiDAR and GPS/IMU are widely used in autonomous driving and robotics,
such as simultaneous localization and mapping (SLAM). Calibrating the extrinsic parameters of
each sensor is a necessary condition for multi-sensor fusion. The calibration of each sensor directly
affects the accurate positioning control and perception performance of the vehicle. Through the
algorithm, accurate extrinsic parameters and a symmetric covariance matrix of extrinsic parameters
can be obtained as a measure of the confidence of the extrinsic parameters. As for the calibration of
LiDAR-GPS/IMU, many calibration methods require specific vehicle motion or manual calibration
marking scenes to ensure good constraint of the problem, resulting in high costs and a low degree
of automation. To solve this problem, we propose a new two-step self-calibration method, which
includes extrinsic parameter initialization and refinement. The initialization part decouples the
extrinsic parameters from the rotation and translation part, first calculating the reliable initial rotation
through the rotation constraints, then calculating the initial translation after obtaining a reliable initial
rotation, and eliminating the accumulated drift of LiDAR odometry by loop closure to complete the
map construction. In the refinement part, the LiDAR odometry is obtained through scan-to-map
registration and is tightly coupled with the IMU. The constraints of the absolute pose in the map
refined the extrinsic parameters. Our method is validated in the simulation and real environments,
and the results show that the proposed method has high accuracy and robustness.

Keywords: autonomous driving; robot control; LiDAR-GPS/IMU; hand-eye calibration; sensor fusion

1. Introduction

In autonomous driving and robotics, commonly used sensors are LiDAR, camera, and
GPS/IMU. The LiDAR market has broad prospects. It is predicted that by 2025, China’s
LiDAR market will be close to USD 2.175 billion (equal to CNY 15 billion), and the global
market will be close to USD 4.35 billion (equal to CYN 30 billion). By 2030, China’s LiDAR
market will be close to USD 5.075 billion (equal to CYN 35 billion), and the global market
will be close to USD 9.425 billion (equal to CYN 65 billion). The annual growth rate of the
global market will reach 48.3% (http://www.evinchina.com/newsshow-2094.html, accessed
on 2 January 2023). The annual growth rate of vehicle camera modules from 2018 to 2023
is about 15.8%. It is estimated that the annual sales in 2023 will reach USD 5.8 billion
(about CYN 39.44 billion), of which robots and cars will account for 75% (https://www.
yoojia.com/article/10096726019901689110.html, accessed on 2 January 2023). GPS/IMU is a
comprehensive system combining inertial measurement unit (IMU) and global positioning
system (GPS), which can provide centimeter-level absolute localization accuracy. A single
IMU can only offer a relatively accurate motion estimation in a short time, which depends
on the hardware performance of the IMU. The localization error increases rapidly with time.
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LiDAR (light detection and ranging) is the most critical ranging sensor, which can estimate
the relative motion of vehicles in real-time through point cloud registration. LiDAR’s ranging
calculation is complex and often needs to be accelerated in a parallel settlement [1], and due
to the high cost, FGPA is used as a part of the data processing module to reduce costs [2]. The
SLAM based on LiDAR will degenerate where the geometric feature information is sparse.
The camera projects the three-dimensional scene onto the two-dimensional image, through
which we can obtain visual odometry. However, the visual odometry has scale ambiguity,
and the image is also affected by the exposure rate and the light. In order to integrate the
advantages of the sensors to achieve better robustness, many tasks need more than one kind
of sensor. Multi-sensor fusion has become a trend [3–8]. The study in [3] proposes a pipeline
inspection and retrofitting based on LiDAR and camera fusion for an AR system. In [4], for
the loss of visual feature tracking of mobile robots, a feature matching method is designed
based on a camera and IMU to improve robustness. Efficiently fusing different attributes of
the environment captured by the two sensors facilitates a reliable and consistent perception
of the environment. In [5], a method for estimating the distance between an autonomous
vehicle and other vehicles, objects, and signboards on its path using the accurate fusion of
LiDAR and camera is proposed. It can be seen that many tasks tend to use multi-sensor
fusion to complete the task. However, since the coordinate systems of the data collected by
each sensor are different, we need to unify the coordinate systems of different sensors. This
requires different types of data collected by sensors to calibrate the intrinsic parameters of
a single sensor and the extrinsic parameters of multiple sensors. For example, Refs. [9–12]
are calibration works about multi-LiDAR extrinsic parameters. Refs. [13–15] are calibration
works about LiDAR-camera extrinsic parameters. Refs. [16–18] are calibration works about
LiDAR-IMU extrinsic parameters. There are few calibration works about LiDAR-GPS/IMU
extrinsic parameters. The calibration of LiDAR-GPS/IMU is to complete the calibration of
extrinsic parameters of LiDAR and IMU rotation and LiDAR and GPS translation.

Since the intrinsic parameters of IMU and LiDAR are usually provided by the man-
ufacturer at the factory, we mainly solve the calibration of extrinsic parameters between
LiDAR and GPS/IMU. At present, there are many challenges in the calibration of extrinsic
parameters of LiDAR and GPS/IMU. For example, the movement of the vehicle in auto-
matic driving is not like the movement of the robot arm. The movement of the vehicle is
mainly the plane movement of three degrees of freedom, which has fewer constraints on
the other three degrees of freedom, so the error of the other three degrees of freedom is
relatively large. Due to the large difference in the measurement principle between radar and
GPS/IMU, to detect the same object in different sensors for calibrating extrinsic parameters
between them, many calibration methods require specific vehicle operation and manual
calibration marking scenes, resulting in high cost and low degree of automation.

The motion-based method is the primary method for calibration between LiDAR and
GPS/IMU. Geiger et al. [19] proposed to use a hand–eye calibration method to constrain
GPS/IMU odometry and obtain LiDAR odometry through point-plane registration. How-
ever, it does not have an initial extrinsic parameter calculation, so its accuracy depends on
the high-precision registration of the LiDAR odometry. Hand–eye calibration utilizes the
hand-eye model proposed in the field of robotics. It is used to solve the rigid transformation
between the manipulator and the camera rigidly mounted above, and this problem can
be extended to solve the problem of relatively rigid transformation between any two sen-
sors [20,21]. Therefore, we can also use it to solve the rigid transformation between LiDAR
and GPS/IMU. Hand–eye calibration mainly solves the equation AX = XB, where A and B
are the odometry of two different sensors, respectively, and X is the extrinsic parameters
between the two sensors. In [22], the ground is used to solve the Z-axis translation, roll,
and pitch transformation, and then the three-dimensional problem is converted into a two-
dimensional problem. The remaining three degrees of freedom are estimated by hand–eye
calibration. It can be regarded as taking the three degrees of freedom optimized on the
ground as the initial value and then performing hand–eye calibration. The initial value
calculation is too simple and rough, there are manual operation errors, and the obtained ac-
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curacy is relatively low. Baidu’s open-source Apollo project divides the calibration process
into two steps. First, calculate the initial calibration parameters through the trajectory and
then refine the calibration parameters through the feature-based method. Our calibration
method shares the same idea, which is to complete the calibration parameters from the
coarse to the fine, but the details of the method implementation are different. We adopt
more strategies, such as loop closure detection and tight coupling strategies, so the accu-
racy and robustness are relatively better. In [23], in order to solve the problem of missing
constraints caused by the plane motion of vehicle motion, large-range and small-range tra-
jectories are used to solve the extrinsic parameters of rotation and translation, respectively.
However, large-range trajectory recording requires a large labor cost and is demanding;
therefore, the method is not universal. The advantages and disadvantages of related work
are shown in Table 1.

Table 1. The advantages and disadvantages of the related work.

Methods Advantages Disadvantages

Geiger et al. Hand–eye calibration method is proposed no initial extrinsic parameters
Chen, C et al. Group calibration manual operation, the accuracy is low

Baidu Apollo project Calibrate from coarse to fine no loop closure detection
Xuan, Y et al. The large-range trajectories strategy harsh conditions, not universal

This paper proposes a new two-step self-calibration method, which includes extrinsic
parameters initialization and refinement. The initialization part decouples the extrinsic
parameters from the rotation and translation part by first calculating the reliable initial rota-
tion through the rotation constraints, then calculating the initial translation after obtaining
a reliable initial rotation, and eliminating the accumulated drift of LiDAR odometry by
loop closure to complete the map construction. In the refinement part, the LiDAR odometry
is obtained through scan-to-map registration and is tightly coupled with the IMU. The
constraints of the absolute pose in the map refined the extrinsic parameters. The main
contributions of our work can be summarized as follows:

• A new LiDAR and GPS/IMU calibration system can be calibrated daily in an open
natural environment and has good universality.

• Like the common localization problem, we divide the calibration problem into two
steps and adopt the idea from coarse to fine to make the extrinsic parameters have
better robustness and accuracy and effectively eliminate the influence of accumulated
drift on the extrinsic parameters.

• The proposed calibration system is verified in both a simulation environment and a
real environment.

The rest of the paper is organized as follows: Section 2 is an overview of the system,
which describes the core calibration algorithm of the LiDAR-GPS/IMU calibration system,
which is divided into two parts to introduce our proposed algorithm and provide a detailed
introduction to the algorithm. Section 3 is the experimental results of the simulation and
real environment. Section 4 is the summary of this paper and future work. Table 2 is all the
abbreviations used in this article.
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Table 2. Table of abbreviations.

Abbreviation Meaning

LiDAR Light Detection and Ranging
GPS Global Positioning System
IMU Inertial Measurement Unit
SVD Singular Value Decomposition
ICP Iterative Closest Points

GICP Generalized ICP
LOAM Lidar Odometry and Mapping in Real-Time

L-M Levenberg–Marquard

2. Methods

This section introduces the architecture of the proposed LiDAR-GPS/IMU calibration
system, as shown in Figure 1. The system is mainly divided into two parts: parameter
initialization and parameter refinement. In the parameter initialization part, the feature-
based LiDAR odometry and the interpolated GPS/IMU relative pose were used to construct
the hand–eye calibration problem to solve the initial extrinsic parameters and construct the
map. In the parameter refinement part, LiDAR and IMU are tightly coupled by the initial
extrinsic parameters, and the extrinsic parameters were refined through the constraints of
the absolute pose in the map.

Figure 1. The pipeline of the LiDAR-GPS/IMU calibration system is presented in this paper. In the
parameter initialization part, the feature-based LiDAR odometry and the interpolated GPS/IMU
relative pose were used to construct the hand–eye calibration problem to solve the initial extrinsic
parameters and construct the map. In the parameters refinement part, the initial extrinsic parameters
were tightly coupled with the LiDAR and IMU, and the extrinsic parameters were refined through
the constraints of the absolute pose in the map. When the relative change in the extrinsic parameters
is less than the set threshold during the iterative refinement process, it is considered that the extrinsic
parameters are sufficiently convergent, and the refinement ends.

The core of the extrinsic parameter initialization is a hand–eye calibration algorithm.
When the vehicle is in motion, Figure 2 shows the relationship between relative and absolute
pose during hand–eye calibration of LiDAR and GPS/IMU, where the {W} is the first
frame of the GPS/IMU, and the {Lk} and {Ik} represent the kth frame of the LiDAR and
the GPS/IMU frame obtained by interpolation at this time, respectively. TW

Ik
is the absolute

pose of {Ik} relative to {W}. TIk
Ik+1

is the relative pose from {Ik+1} to {Ik}. TLk
Lk+1

is the
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relative pose from {Lk+1} to {Lk}. It is easy to see from Figure 2 that we have two ways to
obtain the relative pose from {Lk+1} to {Ik}, so we can obtain the formula as follows:

TIk
Ik+1

TI
L = TI

LTLk
Lk+1

(1)

Equation (1) constitutes the equation AX = XB for hand–eye calibration. The principle
of hand–eye calibration will be introduced in detail below.

Figure 2. This figure shows the pose relationship of hand–eye calibration. We use {W} as the world
coordinate system for mapping. Hand–eye calibration is mainly the relationship between extrinsic
parameter TI

L and two relative poses TIk
Ik+1

and TLk
Lk+1

, which denote the relative pose from {Ik+1} to
{Ik} and {Lk+1} to {Lk}, respectively.

2.1. Hand–Eye Calibration

Equation (1) is usually decoupled into two parts according to [24]: rotation and
translation. As the vehicle moves, the following equation holds for any k:

RIk
Ik+1

RI
L = RI

LRLk
Lk+1

(2)

(
RIk

Ik+1
− I3

)
tI
L = RI

LtLk
Lk+1
− tIk

Ik+1
(3)

2.1.1. Extrinsic Rotation

Equation (2) is expressed by a quaternion as follows:

qIk
Ik+1
⊗ qI

L = qI
L ⊗ qLk

LK+1

⇒
([

qIk
Ik+1

]
L
−
[
qIk

Ik+1

]
R
)qI

L = Qk
k+1qI

L

(4)

where ⊗ is the quaternion multiplication operator, and
[
qIk

Ik+1

]
L

and
[
qIk

Ik+1

]
R

are the
matrix representation of the left and right quaternion multiplication, respectively [25].
After stacking measurements at different times, we obtain an over-determined equation as
follows:
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 w1
2 ·Q1

2
...

wk
k+1 ·Q

k
k+1


4K×4

qI
L = QKqI

L = 04K×4 (5)

where K is the number of rotation pairs of the over-determined equation, and wk
k+1 is the

robust weight to better handle outliers. The angle of the current rotation pair difference in
the angular axis is calculated by Equation (4) and taken as the parameters of Huber loss,
whose derivative is the weight:

wk
k+1 = ρ′(θ), θ = 2 arccos(qw)

q = (qIk
Ik+1
⊗ qI

L)
∗ ⊗ qI

L ⊗ qLk
LK+1

(6)

where ρ() is Huber loss, qw is the real part of the quaternion q, and ()∗ means taking the
inverse of the quaternion. We use SVD to solve the over-determined Equation (5), whose
closed solution is the right unit singular vector corresponding to the minimum singular
value. Meanwhile, according to [26], to ensure sufficient rotation constraints, we need to
ensure that the second smallest singular value is large enough, which needs to be larger
than the artificial threshold. With the rapid increase of Qk

k+1, the priority queue is used to
remove the constraint with the smallest rotation. Until the second smallest singular value
exceeds the threshold, we can obtain a reliable initial extrinsic rotation.

2.1.2. Extrinsic Translation

When the extrinsic rotation R̂I
L is obtained, translation can be solved by the least

square approach according to Equation (3).
RI1

I2
− I3
...

RIk
Ik+1
− I3


3K×3

tI
L =


R̂I

LtL1
L2
− tI1

I2
...

R̂I
LtLk

Lk+1
− tIk

Ik+1


3K×1

(7)

However, the vehicle motion is usually a three degrees of freedom plane motion, so
the translation of the z axis, tz, is not reliable. At the same time, since the acceleration of
IMU is coupled with gravity, it is related to rotation, so it is also not reliable to calculate the
initial translation value through the initial rotation. We can make the plane assumption
as [10] and rewrite Equation (7) as follows:

Rk+1

[
tx
ty

]
−
[

cos(γ) − sin(γ)
sin(γ) cos(γ)

]
t1
k+1 = −t2

k+1 (8)

Equation (8) is the plane motion constraint generated by the k + 1th relative pose,
where γ is the yaw rotation, tx and ty are the translation of the x and y axes, respectively,

Rk+1 is the 2x2 block matrix in the upper left corner of
(

RIk
Ik+1
− I3

)
, and t1

k+1 and t2
k+1 are

the first two elements of the column vectors RI
LtLk

Lk+1
and tIk

Ik+1
, respectively.

Equation (8) can be rewritten in the form of the matrix equation AX = b:

[
Rk+1 J

]︸ ︷︷ ︸
Ak+1


tx
ty

− cos(γ)
− sin(γ)

 = −t2
k+1 (9)

where J =

 [
t1
k+1

]
1
−
[
t1
k+1

]
2[

t1
k+1

]
2

[
t1
k+1

]
1

,
[
t1
k+1

]
i

denotes the ith element of the column vector[
t1
k+1

]
. As in Equation (5), by stacking measurements at different times according to
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Equation (9), we can obtain the final matrix equation AX = b, which can be solved by the
least-squares approach:  A2

...
AK+1


︸ ︷︷ ︸

A2K×4


tx
ty

− cos(γ)
− sin(γ)


︸ ︷︷ ︸

x4×1

= −

 t2
2
...

t2
K+1


︸ ︷︷ ︸

b2K×1

(10)

The obtained yaw rotation, according to Equation (10), is fused with the original
calculated extrinsic rotation R̂I

L to obtain the new initial rotation. We can manually measure
the value of the extrinsic parameters about the z-axis. Suppose the calculated translation of
the extrinsic parameters about the Z-axis differs too much from the measured value. In that
case, we can set the translation of the Z-axis to the measured value and refine it through
the absolute pose constraint in the refinement part; see Section 2.2.2.

2.2. Methods

This section details the procedure for calculating the initial values of extrinsic pa-
rameters by GPS/IMU measurements and LiDAR measurements. First, the GPS/IMU
measurements were interpolated against the LiDAR timestamp; then, the LiDAR odometry
was estimated as in [27]. The extrinsic parameters were initialized by hand–eye calibration;
see Section 2.1. We integrate loop closure into the system by using a factor graph and
completing the map construction. Then, we tightly coupled LiDAR and IMU through the
initially obtained extrinsic parameters, obtained the LiDAR odometry through scan-to-
map feature-based registration, and refined the extrinsic parameters by constructing the
constraints of the extrinsic parameters through the obtained absolute pose.

2.2.1. Extrinsic Parameters Initialization

As for LiDAR odometry, there are two methods to calculate the relative transformation
of two consecutive frames: 1. based on direct matching, such as ICP [28] and GICP [29],
2. feature-based methods, such as LOAM [27], do not need to calculate all the point clouds
but only need to calculate representative points, which not only improves accuracy but
also reduces computing efficiency. We use the feature-based method in [30] to obtain the
LiDAR odometry.

However, since there are no extrinsic parameters between the LiDAR and IMU, we
cannot use the IMU pre-integration as the guess pose of the LiDAR odometry as in [30].
Because offline calibration does not require real-time performance like SLAM, we can add
more constraints to make the estimated relative motion more accurate. We first need to
compute a predicted pose to prevent the optimization algorithm from converging to a local
optimum. With the increase in time, the registration between consecutive frames tends to
have a larger drift on the Z-axis than other axes. Therefore, we first use the constant velocity
model as the predicted pose and then extract the ground points and calculate the centroid
of the ground point to optimize roll, pitch angle, and z-translation, respectively. Since
LiDAR is basically installed horizontally, we first extract ground points using geometric
features in [31], and then filter the outliers by RANSAC so that the ground points obtained
can reach a high accuracy and the guess pose is relatively accurate.

When we obtain the latest scans of the raw LiDAR point cloud, firstly, we de-skew
the point cloud to the moment of the first LiDAR point by guess pose and project the
skewed point cloud into the range image according to the resolution. We extract the two
feature points, edge feature and planar feature points, through the curvature. We distribute
the feature points uniformly and remove the unstable feature points as [27]. We denote
Fk =

{
Fe

k, Fp
k

}
as all feature points of kth LiDAR point cloud, and Fe

k and Fp
k are denoted as

edge feature points and planar feature points, respectively. We can obtain the distances of
point-to-line and point-to-plane through the following:
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dek =

∣∣∣(pe
k+1 − pe

k,2

)
×
(

pe
k+1 − pe

k,1

)∣∣∣∣∣∣pe
k,1 − pe

k,2

∣∣∣ (11)

n =
(

pp
k,1 − pp

k,2

)
×
(

pp
k,1 − pp

k,3

)
(12)

dpk =

∣∣∣ (pp
k+1 − pp

k,1

)
· n

∣∣∣
|n|

(13)

where pe
k+1 ∈

′Fe
k+1, pp

k+1 ∈
′Fp

k+1. ′Fk+1 =
{
′Fe

k+1, ′Fp
k+1

}
is the feature points de-skewed

to the first point of the current point cloud.
(

pe
k,1, pe

k,2

)
are the two edge feature points

of Fe
k corresponding to pe

k+1.
(

pp
k,1, pp

k,2, pp
k,3

)
are the three planer feature points of Fp

k

corresponding to pp
k+1. Fk =

{
Fe

k, Fp
k

}
is the feature points de-skewed to the last point

of the previous point cloud. The moment of the last point of the previous point cloud
is equal to the moment of the first point of the current point cloud, so the edge feature
points at the same moment are on the same line, and the planner points are on the same
surface. Thus, we can obtain the constraint of Equations (11)–(13) and use point-to-line
and point-to-surface distances as cost functions. The relative pose can be calculated by
minimizing the cost function by using the Levenberg–Marquardt algorithm. The LiDAR
odometry algorithm is shown in Algorithm 1.

Algorithm 1 LiDAR Odometry.

Input: Fk =
{

Fe
k, Fp

k

}
,Fk+1 =

{
Fe

k+1, Fp
k+1

}
, TW

Lk
from the last recursion

Output: Fk+1 =
{

Fe
k+1, Fp

k+1

}
, TW

Lk+1

1: Through the constant velocity model, guess pose TW
Lk+1

is calculated from TW
Lk

2: for each edge point in Fk+1 do
3: Extracting ground points through geometric features and RANSAC
4: end for
5: Calculate the three degrees of freedom z-translation, roll, and pitch through ground

point optimization to obtain a new guess pose TW
Lk+1

.
6: De-skew the point cloud Fk+1 to the moment of the first LiDAR point by guess pose.

Detect edge points and planar points in ′Fk+1
7: for a number of iterations do
8: for each edge point in ′Fe

k+1 do
9: Find an edge line as the correspondence, then compute point to line distance

based on (11)
10: end for
11: for each edge point in ′Fe

k+1 do
12: Find a planar patch as the correspondence, then compute point to plane distance

based on (13)
13: end for
14: Using distance as a cost function for nonlinear optimization, update TW

Lk+1
15: if the nonlinear optimization converges then
16: Break
17: end if
18: end for
19: Reproject Fk+1 to the moment of the last LiDAR point according to TW

Lk+1
to get Fk+1

20: return TW
Lk+1

,Fk+1
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After completing the registration between two consecutive frames, we optimize the
estimated pose again through scan-to-map point cloud registration. We obtain the keyframe
through the relative pose transformation amount greater than the threshold value that
is considered to be set and save it. The local point cloud used for the current point
cloud registration is obtained through the following two methods: 1. It is formed by
superimposing several keyframes adjacent in time. 2. It is formed by superimposing
several keyframes adjacent in position. The search for adjacent positions uses a KD-tree
and adds the position of each keyframe as a point to the KD-tree, and then the keyframes
with adjacent positions are obtained through the nearest neighbor search of the KD-tree.
In order to reduce the drift of cumulative errors, we combined the obtained relative pose
with z-translation, roll, and pitch angle obtained by ground point optimization to make the
relative pose more accurate and robust.

After obtaining the relative pose of LiDAR, the initial calibration parameters can be
obtained by hand–eye calibration through the relative pose constraints of the LiDAR odom-
etry and the relative pose constraints of the interpolated GPS/IMU data; see Section 2.1.
We denote

(
qLk

LK+1
, tLk

LK+1

)
and

(
qIk

IK+1
, tIk

IK+1

)
as the relative pose constraint pair of LiDAR

data and GPS/IMU data, respectively. We can construct the following cost function with
extrinsic parameters:

minqL
I ,tL

I

{
∑k∈N

∥∥∥(qIk
Ik+1
⊗ qI

L)
∗ ⊗ qI

L ⊗ qLk
LK+1

∥∥∥2

xyz
+

∑k∈N

∥∥∥(RIk
Ik+1
− I3

)
tI
L − RI

LtLk
Lk+1

+ tIk
Ik+1

∥∥∥2
} (14)

where ‖‖xyz represents the imaginary part of the quaternion, and there are a total of
N relative pose constraint pairs. If we make a planar assumption, the residuals of the
translation part can be constructed by Equation (10). After multiple optimizations, the
initial value of the calibration parameters can be obtained. The global consistency map is
constructed by a loop closure.

2.2.2. Extrinsic Parameters Refinement

In this section, the process of extrinsic parameter refinement is introduced in detail.
First, the absolute pose is obtained through the registration of the global map obtained
from Section 2.2.1. The LiDAR odometry and IMU and tightly coupled by the initial
extrinsic parameters, and the cost function of the calibration parameters was constructed
by the absolute pose. After nonlinear optimization, the refined extrinsic parameters can
be obtained.

From Section 2.2.1, we can obtain the initial extrinsic parameters, the global map, and
the world frame. The global map is built under the world frame. Since we have the initial
extrinsic parameters, we can tightly couple the IMU during the construction of the LiDAR
odometry. Firstly, the pre-integration is used to de-skew the LiDAR point cloud and serve
as the guess pose of the LiDAR odometry. The bias of the IMU is corrected by the optimized
LiDAR odometry based on the factor graph.

First, we obtain the local map by filtering the global map and obtain the LiDAR
odometry by registration with the local map, TW

Lk
. Through Figure 3, we can construct

constraints with extrinsic parameters through the following formula:

TW
Lk

= TW
Ik

T̂I
L (15)

where TW
Ik

is the GPS/IMU pose corresponding to the current LiDAR timestamp.
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Figure 3. This figure shows the pose relationship during the refinement of extrinsic parameters,
where TLk and TW

Ik
are the absolute pose of LiDAR and GPS/IMU, respectively, and T I

L is extrinsic
parameters. The coordinate system of the sensor is indicated in red.

As per Section 2, we can also decouple Equation (15) into the rotation part and the
translation part to obtain the following two constraints [24]:

q̂W
Lk

= qW
Ik
⊗ qI

L,

t̂W
Lk

= tW
Ik
+ RW

Ik
tI
L.

(16)

The construction of the over-determined equation about rotation and translation is the
same as Section 2.2.1, but the assumption of plane motion is not required here, the extrinsic
translation parameters can be optimized by the absolute pose, directly.

We can refine the extrinsic parameters by constructing the cost function of the absolute
pose and extrinsic parameters according to Equation (16):

minqI
L ,tI

L

{
∑k∈N

∥∥∥(qW
Li
)∗ ⊗ qW

Ii
⊗ qI

L

∥∥∥2

xyz

+∑k∈N

∥∥∥RW
Ik

tI
L + tW

Ik
− tW

Lk

∥∥∥2
} (17)

When the cost function is optimized by L-M optimization, the final precise extrinsic
parameters can be obtained when the iteration converges.

3. Results and Discussions
3.1. Validation and Results

In this section, we validate the proposed LiDAR-GPS/IMU calibration system in the
simulation and real environments, respectively. The simulation environment adopted
the Carla simulation platform and was equipped with the required sensors to record
multiple data sets under the empty urban road scene. In the real environment, ouster-128
LiDAR and FDI-integrated navigation systems were used to record corresponding data
sets in outdoor road scenes, and CAD assembly drawing was used as the ground truth for
comparison and verification. In addition to the above hardware configuration, the software
configuration in Table 3 is also required. Data communication was performed through ROS
in the Ubuntu operating system, the received LiDAR point cloud was processed through
PCL, and nonlinear optimization was performed through Ceres Solver. Upon playing
the pre-recorded data set, the system receives LiDAR, GPS, and IMU messages through
ROS and obtains the global map and initial extrinsic parameters through the method of
extrinsic parameters initialization in Section 2.2.1. After the initialization of the extrinsic
parameters is completed, the global map and the initial extrinsic parameters are loaded
through the method of refining the extrinsic parameters described in Section 2.2.2 to carry
out the refinement operation so that the final result of the experiment can be obtained.
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Table 3. Software configuration list.

Software Function

Ubuntu18.04 or 16.04 operating system (OS)
ROS robot operating system
PCL Point Cloud Library

Ceres Solver C++ optimization library

3.1.1. Simulation

As shown in Figure 4, there is the scene diagram built by the Carla simulation plat-
form. Carla [32] is an urban driving simulator and has an ROS interface to support the
sensor suite. Carla can be installed through Carla’s official website tutorial. Note that
installing Carla requires about 130GB of disk space and at least a 6GB GPU. The vehicle is
equipped with LiDAR and GPS/IMU, and the ground truth and noise model size are given
through the configuration file. After completing the hardware configuration and setting
the configuration file, data sets can be recorded in different scenarios. After comparing the
data sets in different scenarios, the experimental data were recorded in Table 4. Figure 5
shows the variation trend of the error values of rotation and translation. Both the rotation
part and the translation part can achieve high precision. Regarding the rotation part, the
error of raw angle and pitch angle is within 0.1 degrees, the error of yaw angle is relatively
large, the error of scene 2 and scene 3 is within 0.2 degrees, and the error of scene 1 is about
0.8 degrees. Regarding the translation part, all errors are within 0.1 m.

Figure 4. Outdoor scene diagram of the Carla simulation platform.

Table 4. Carla simulation environment calibration results.

Simulation Data
Experiment Result

Rotation (deg) Translation (m)

Row Pitch Yaw x y

ground truth 0.000000 0.000000 45.00000 1.000000 −0.500000
scene 1 0.064391 0.023962 44.20480 1.042260 −0.556855
scene 2 0.058780 0.050686 44.93890 0.974243 −0.523805
scene 3 0.014632 0.021158 44.83500 0.984068 −0.502618

average error 0.045934 0.031935 0.340433 1.903333× 10−4 0.027759
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Figure 5. The line chart of the extrinsic parameter error value of the simulation environment. The
three broken lines of different colors in the figure represent the error data of extrinsic parameters
under three different scenarios. Regarding the rotation part, the error of raw angle and pitch angle is
within 0.1 degrees, the error of yaw angle is relatively large, the error of scene 2 and scene 3 is within
0.2 degrees, and the error of scene 1 is about 0.8 degrees. Regarding the translation part, all errors are
within 0.1 m.

3.1.2. Real-World Experiments

We assembled the sensors, as shown in Figure 6, to collect data, respectively, in the
outdoor scene. The ouster-128 Lidar outputs the point cloud at a frequency of 10 Hz , and
the FDI-integrated navigation system outputs the GPS/IMU measurement at a frequency
of 100 Hz. Since there is no ground truth of LiDAR-GPS/IMU in the real scene and there is
also a lack of an open source LiDAR-GPS/IMU calibration algorithm, we adopted the truth
value provided by CAD assembly drawing for verification and checked the repeatability
and correctness of calibration results through many experiments. The experimental results
are shown in Table 5. Figure 7 shows the variation trend of the error values of rotation
and translation. It can be seen that in the real world, the calibration system we proposed
can still reach high accuracy. Regarding the rotation part, the errors of the pitch angles
of the three scenes are all within 0.2 degrees, the errors of the raw angles are all within
0.45 degrees, and the errors of the yaw angles are all within 0.6 degrees. Regarding the
translation part, all errors are within 0.05 m. Comparing the extrinsic parameters errors
obtained in the simulation environment and the real environment, the errors of the pitch
angle and the translation part are relatively small, and the errors of the yaw angle are
relatively large. The difference is that the error of the raw angle in the real environment is
larger than that in the simulation environment.

Table 5. Calibration results of our own real data.

Real Data
Experiment Result

Rotation (deg) Translation (m)

Row Pitch Yaw x y

ground truth 90.0000 173.000 −180.000 −0.25000 −0.600000
scene 1 90.3050 173.092 −179.432 −0.25099 −0.585795
scene 2 89.5824 173.054 −179.556 −0.24924 −0.607548
scene 3 90.2324 172.824 −179.724 −0.26456 −0.611476

average error 0.03990 0.25670 −0.42933 0.004930 0.0016063
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Figure 6. Illustration of our car equipped with the ouster-128 LiDAR and FDI integrated navigation sys-
tem.

Figure 7. The line chart of the extrinsic parameters error value of the real environment. The three
broken lines of different colors in the figure represent the error data of extrinsic parameters under
three different scenarios. Regarding the rotation part, the errors of the pitch angles of the three scenes
are all within 0.2 degrees, the errors of the raw angles are all within 0.45 degrees, and the errors of the
yaw angles are all within 0.6 degrees. Regarding the translation part, all errors are within 0.05 m.

3.2. Discussions

Many existing calibration methods require specific vehicle movement, such as eight-
shaped trajectories, or manually marked scenes so that different sensors can measure the
same marker for calibration, resulting in low automation and high labor costs. For multi-
sensor fusion, it is crucial to calibrate the extrinsic parameters between sensors. This paper
proposes a motion-based self-calibration method, which can complete the calibration in the
surrounding natural scenes, such as outdoor roads, urban streets, etc., only requiring the
completion of data set recording in advance, and then the extrinsic parameters of LiDAR
and GPS/IMU can be obtained through two-step offline calibration. However, due to the
plane movement of the vehicle, even if the LiDAR odometry and GPS/IMU odometry are
accurately estimated from coarse to fine, the z-axis translation of the extrinsic parameters
cannot be well estimated. There is still no good solution to this difficulty. It may be due to
the large z-axis drift in the registration algorithm of the LiDAR odometry itself. Perhaps
this problem can be better solved by studying a new point cloud registration algorithm.
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4. Conclusions and Future Work

In this paper, we propose a self-calibration system of LIDAR-GPS/IMU, which can
achieve high-precision calibration of extrinsic parameters between LiDAR and GPS/IMU
in natural outdoor scenes. The two-step offline self-calibration method was adopted.
Firstly, the initial extrinsic parameters were calibrated by hand-eye calibration, and the
accumulated drift was removed by loop closure to complete the map construction. Then,
the absolute pose, which was obtained by map-based registration, and extrinsic parameters
constructed the cost function, and the extrinsic parameters were refined by the optimization
algorithm. It has been verified in many experiments in the simulation environment and
real environment and has good robustness and accuracy. Since hand–eye calibration is
applicable to any calculation of rigid transformation between two sensors, future work
involves the calibration of extrinsic parameters between any two sensors between camera,
LiDAR, and GPS/IMU.
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