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ABSTRACT Simultaneous Localization andMapping (SLAM) is the core technology of the intelligent robot
system, and it is also the basis for its autonomous movement. In recent years, it has been found that SLAM
using a single sensor has certain limitations, such as Inertial Measurement Unit (IMU) noise and serious
drift, and 2D radar can only detect environmental information on the same horizontal plane. In this regard,
this paper constructs a multi-sensor back-end fusion SLAM algorithm that combines vision, laser, encoder
and IMU information. Experiments have proved that compared with using a single sensor, the application
of a multi-sensor fusion system makes the edges of the constructed map clearer and the noise reduced.
Aiming at the problem of increased calculation caused by particle degradation and too many particles, this
paper improves the Gmappping algorithm, and uses the combination of selective resampling and Kullback-
Leibler Distance (KLD) sampling to complete resampling. It has been proved by experiments that compared
with the original algorithm of Gmapping, the application of the improved algorithm increases the particle
convergence speed by 39.85% in the process of indoor mapping. Aiming at the problems that the traditional
loop detection algorithm is easily affected by environmental factors, resulting in low detection accuracy, and
the loop detection algorithm based on deep convolutional neural network has a large amount of calculation
and takes a long time to detect. The main research of this paper is to apply a deep learning-based loop
detection algorithm on the multi-sensor fusion framework, and use the combination of high-dimensional and
low-dimensional features of the image for loop detection. This paper uses different algorithms to conduct
comparative experiments on the dataset CityCentre. The experimental results show that compared with the
traditional algorithmsBag ofWords (BoW), AlexNet algorithm,VGG19 algorithm, andResNet32 algorithm,
the accuracy of the algorithm proposed in this paper has increased by 31.26%, 14.21%, 3.05%, and 1.56%,
respectively. In addition, the comparison experiment results of SLAM mapping with the original Real-Time
Appearance-Based Mapping (RTAB-MAP) algorithm prove that the loop closure detection algorithm based
on deep learning proposed in this paper can enable the system to better build a globally consistent map,
including more environmental information.

INDEX TERMS Laser SLAM, Gmapping algorithm, multi-sensor fusion SLAM system, loop closure
detection.

I. INTRODUCTION
In recent years, intelligent robots have played an important
role in contactless services such as material distribution,
regional disinfection, and public area security patrols. Simul-
taneous Localization andMapping (SLAM) as the basic tech-
nology of intelligent robots has significantly benefited from
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the development of artificial intelligence. There are three
main types of SLAM [1] systems: laser-based SLAM sys-
tems, multi-sensor-based SLAM systems, and vision-based
SLAM systems.

The classic SLAM system includes five modules: sensor
data reading, front-end visual odometry, loop closure detec-
tion, nonlinear back-end optimization, and building maps.
Among them, loop closure detection is an essential link in
the visual SLAM system, and it is also an effective method
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to eliminate accumulated errors. Traditional loop closure
detection algorithms usually use artificially designed fea-
tures, and the problems mainly concentrate on unsatisfactory
accuracy and a large amount of calculation. In recent years,
the research of loop closure detection algorithms based on
deep learning has gradually emerged and has shown excellent
performance. In summary, this paper considers integrating the
deep learning-based loop closure detection algorithm into the
multi-sensor SLAM system, which could improve the sys-
tem’s overall performance. Therefore, this paper introduces a
deep learning-based loop closure detection algorithm into the
multi-sensor fusion SLAM system. We used this loop closure
detectionmethod to replace the traditional loopback detection
algorithm provided by Real-Time Appearance-Based Map-
ping (RTAB-MAP) [2] and respectively conducted SLAM
mapping experiments.

Although the lidar used in laser SLAM has the advantages
of high measurement accuracy, fast speed, and a simple mea-
surement error model, it has obvious shortcomings. 2D radar
[3] can only detect environmental information on the same
level, and the cost of 3D lidar is too high. For other sensors,
although the price of IMU is low and the frequency is high,
it has high noise and severe drift. The wheel encoder has
a significant error when the wheel slips or runs on uneven
ground; When the camera cannot obtain depth information,
there is a significant deviation in the estimation. Only using a
single sensor can only meet the needs of a specific scene and
cannot adequately deal with complex environments. There-
fore, multi-sensor SLAM technology [4] has become a hot
spot in the field of SLAM research. This technology inputs
the information obtained by various sensors into the SLAM
system, and uses the information fusion algorithm to use the
information fusion results as the pose estimation, trajectory
estimation and mapping of the mobile robot [5], so that the
mobile robot has a multi-dimensional environment. Informa-
tion acquisition capability, able to implement a robust SLAM
system in complex environments.

The classic laser SLAM [6], [7] algorithms include the
Gmapping algorithm, Cartographer algorithm, and Hec-
torSLAM algorithm. Among them, the Gmapping algorithm
based on particle filter has the following advantages:

• Ability to build indoor maps in real-time;
• When building a small scene map, the amount of com-
putation required is small, and the accuracy is high;

• Effective use of odometer information, Etc.
However, the disadvantages of the Gmapping Algorithm

will lead to particle degradation, the use of excessive par-
ticles, and an increase in the amount of calculation. The
disadvantages are as follows:

• Need information from odometer;
• Not suitable for drones and rough terrain;
• No loop closure detection module;
• When building a large scene, there are toomany particles
and a massive amount of calculation.

Therefore, this paper improves the Gmapping algorithm
and changes the original sampling method to a method that

alternatively performs selective resampling and Kullback-
Leibler Distance (KLD) sampling.In summary, this paper
studies three multi-sensor fusion SLAM frameworks of laser
and encoder; laser, encoder, and Inertial Measurement Unit
(IMU) [8]; laser, encoder, IMU and vision, and conducts
related experiments.

This paper contributes to practical applications. On the one
hand, the Gmapping [9] algorithm can build indoor maps in
real time, and requires less calculation and higher precision
to build small scene maps. However, as the number of par-
ticles required increases as the scene grows, because each
particle carries a map, the amount of memory and calcula-
tion required to construct a large map will increase, and the
convergence speed will become slower and slower. Through
the improved method in this paper, the particle convergence
speed is increased, and the shortcomings of the Gmapping
algorithm in large scenes are effectively overcome. And for
indoor planar motion robots (such as sweepers, food delivery
robots, etc.), the effect will be better, and the particle conver-
gence speed will be faster, which can improve the cleaning
speed of the sweeper and the food delivery rate. Bring better
user experience to users. On the other hand, single sensors
have certain limitations in application. Single-sensor SLAM
systems based on lidar sensors often fail in unstructured
scenarios such as long corridors or flat open spaces. The
performance of vision-based single-sensor systems is sen-
sitive to initialization, light intensity, and changes. In this
paper, the fusion of lidar, camera and IMU can overcome such
problems, and effectively improve the robustness, accuracy
and reliability of the system. More and more multi-sensor
fusion frameworks are applied to the field of robotics and
autonomous driving.

In summary, the main contributions of this paper are as
follows:

• The particle filter-based Gmapping algorithm has two
main problems: particle degradation and excessive num-
ber of particles leading to an increase in the amount of
calculation. This paper makes the following improve-
ments to the Gmapping algorithm for the above two
problems. Selective resampling and KLD sampling are
alternately carried out. resampling stage. The exper-
iment proves that the particle convergence speed of
the improved Gmapping algorithm in this paper has
increased by 39.85%, and a better improvement result
has been obtained.

• Aiming at the limitations of a single sensor or a small
number of sensor fusions, this paper studies three types
of multi-sensor fusion SLAM frameworks. The exper-
iments have fully demonstrated that the overall perfor-
mance of the SLAM system with the fusion of vision,
laser, encoder and IMU [10] is superior.

• As an important part of the visual SLAM system, loop
detection is especially important for the SLAM system
of multi-sensor fusion. In this paper, instead of the origi-
nal traditional loop detection algorithm, a loop detection
algorithm based on deep learning is introduced into the
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multi-sensor fusion SLAM system. Experiments have
proved that the improved system can better construct a
globally consistent map.

The rest of this article is arranged as follows: the sec-
ond part mainly introduces the related work, including the
classic algorithm of laser SLAM, the current situation of
multi-sensor fusion, Etc.; the third part mainly introduces the
improved Gmapping method, multi-sensor fusion theory and
the loop closure applied in this paper Detection method; The
fourth part mainly introduces the relevant experiments and
the analysis of the experimental results in this paper, and the
fifth part is the conclusion.

II. RELATED WORK
A SLAM system that uses only lidar or a fusion of other
sensors with lidar is called a laser SLAMsystem. Classic laser
SLAM algorithms include: Gmapping algorithm, Cartogra-
pher algorithm and Hector SLAM. A visual SLAM system
uses a camera as the main sensor. The visual SLAM scheme
mainly studied in this paper is the RTAB-MAP algorithm.

A. CLASSIC ALGORITHM OF LASER SLAM
1) GMAPPING ALGORITHM
As we all know, the basic problem that SLAM needs to solve
is to complete the robot’s positioning and build a map of the
surrounding environment simultaneously. This problem used
the joint probability distribution model in probability theory
to describe:

P (x1:t ,m|z1:t , u1:t−1) (1)

where x1:t represents the pose sequence of the robot at time
1:t; m represents the map of the robot’s surrounding environ-
ment; z1:t represents the sensor measurement data of the robot
at time 1:t; u1:t−1 represents the control data of the robot at
time 1:t-1.

That is, on the premise of the current robot sensor measure-
ment value z1:t and robot control data u1:t−1, the robot pose
state x1:t and the robot’s surrounding environment mapm can
be expressed by the above formula get. From the relevant
knowledge of probability theory, deduce the above formula
as follows:

P (x1:t ,m|z1:t , u1:t−1) = P (m|x1:t , z1:t) ∗ p (x1:t |z1:t , u1:t−1)

(2)

Using Rao-Blackwellized Particle Filtering (RBPF) [11]
based on particle filtering, we decomposed the above prob-
lem into localization and mapping. Among them, the core
idea of particle filters is to use particle set characterization
probability. However, the RBPF algorithm has two defects.
The first point is that the algorithm uses many particles,
which will cause a large amount of calculation and memory
consumption. The second point is that performing resampling
frequently can cause particle degradation.

Aiming at Two Defects of the RBPF Algorithm, the
RBPF-based Gmapping algorithm has made two significant

improvements to the RBPF algorithm. On the one hand,
an improved proposal distribution is adopted to reduce the
number of particles used during the run. On the other hand,
selective resampling is used to reduce the resampling fre-
quency.

• Improved proposal distribution
Sampling can be done from a distribution to obtain the
pose estimation of the robot at the next moment, which
is the proposed distribution. The proposed distribution is
just a surrogate for the target distribution. The difference
between the two is the weight values of the particles.
In order to solve the problem of too many particles
and particle degradation, the Gmapping algorithm pro-
poses to use the latest lidar observation data to improve
the proposal distribution, then the proposal distribution
becomes:

P
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• Selective resampling
Resampling also determines the performance of parti-
cle filtering. The Gmapping algorithm uses an iterative
calculation to make the particles approach the target
distribution. The resampling stage determines whether
particles with high-weight values can effectively replace
particles with low-weight values. In general, the number
of effective particles is used as the standard to measure
the degradation degree of particle weight value, and its
calculation formula is as follows:

Neff =
1∑N

i=1 (ω̃(i))2
(4)

Among them, ω̃(i) represents the normalized weight of
particle i, that is, the ratio of the target distribution and the
proposed distribution. By adopting this constraint method,
the number of resampling can be effectively reduced, and the
particle degradation process can be slowed down.

2) CARTOGRAPHER ALGORITHM
Cartographer [12] is a classical laser SLAM algorithm based
on graph optimization developed by Google. The difference
between this algorithm and the particle filter-based Gmap-
ping algorithm is that the Cartographer algorithm not only
estimates the mobile robot’s current pose state xt but also
the trajectory of the entire environment map construction
process x0:t . The algorithm framework uses two parts of Local
SLAM and Global SLAM.

The content of Local SLAM includes: ① use the data of
odometer and IMU to calculate the trajectory, and give the
estimated value of the pose of the robot; ② use the estimated
value of the pose of the robot as the initial value, match the
data of the lidar, and update The value of the pose estimator;
③ Each frame of lidar data is superimposed after motion
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FIGURE 1. Cartographer algorithm framework.

filtering, and then forms a submap (Submap). The content
of Global SLAM includes: ① loop detection; ② back-end
optimization, using all sub-graphs to form a complete and
usable map.

3) HECTORSLAM ALGORITHM
The HectorSLAM algorithm [13] is very straightforward:
to ‘‘align’’ the laser points with the existing map, that is,
Scan matching. Scan matching refers to constructing an error
function between the current frame and the acquired map data
and using the Gauss-Newton method to obtain the optimal
solution and deviation. The main work of the algorithm is
to convert the laser points to the raster map. That is to say,
for the matching to be successful, all laser points need to be
transformed into the raster map.

B. MULTI-SENSOR SLAM
Multi-sensor SLAM usually refers to inputting the informa-
tion obtained by various sensors into the SLAM system and
using the results obtained by the information fusion algorithm
as the pose estimation, trajectory estimation, and mapping of
the mobile robot.

Hong Kong University of Science and Technology Shen
Shaojie et al. [14] proposed an algorithm based on the fusion
of monocular vision and IMUVisual-Inertial SystemMonoc-
ular (IMU - VINS-Mono). This method can calibrate the
external parameter information between the camera sensor
and the IMU online, and use the IMU information as the
prior information of the visual odometry, and use the non-
linear sliding window optimization method to solve the pose
information. The front-end odometer uses the Kanade-Lucas-
Tomasi (KLT) optical flow method to track visual features,
which is one of the classic algorithms for mapping and
positioning algorithms based on visual-inertial navigation.
Wan et al. [15] used the Error State Kalman Filter (ESKF)
to fuse the IMU information from the strapdown inertial nav-
igation solution, the lidar odometer information and Global
Navigation Satellite System (GNSS) information based on
the prior map. Xue et al. [16] used the fused data of IMU and
wheel speedometer as the prior value of motion estimation,
and then used Extended Kalman Filter (EKF) to fuse the data
of laser odometer and IMU. Wisth et al. [17] proposed an
efficient odometry model that fuses vision, lidar, and IMU
sensors. This method proposes a new method for extracting
laser features. By extracting line features and surface features
in laser point clouds Meta-features, this method solves the
problem that the traditional point cloud matching between

frames can only obtain sub-optimal pose information, and
uses factor graph optimization to jointly optimize the residual
information of lidar, vision and IMU, so as to obtain pose
trajectory information and create a laser point cloud map.
Meng et al. [18] proposed a tight coupling of monocular
vision methods and lidar odometry to extract 3D features
from lidar and vision information. In this system, the monoc-
ular camera and 3D LIDAR measurement are close together
for joint optimization, which can provide accurate data for
Six-Degrees of Freedom (6-DOF) pose estimation prepro-
cessing, and use the Iterative Closest Point (ICP) method to
construct closed-loop constraints, and perform global pose
optimization to obtain high-frequency and high-precision
pose estimation.

C. DEEP LEARNING-BASED LOOP CLOSURE DETECTION
METHOD
Loop closure detection is an essential link in the visual SLAM
system and is an effective method to eliminate accumulated
errors. Traditional loop closure detection algorithms usually
use artificially designed features with poor accuracy and
a large amount of computation. Research on loop closure
detection algorithms based on deep learning has gradually
emerged and performed well in recent years.

Li et al. [19] proposed a monocular visual odometry
system—UnDeepVO. Able to estimate the 6-DoF pose of
a monocular camera and its depth of view by using a deep
neural network. The system utilizes spatial loss and temporal
loss between stereoscopic image sequences for unsupervised
training. During testing, the system can perform pose estima-
tion and dense depth map estimation on monocular images,
andwhat differentiates this system from other model-based or
learning-based monocular visual odometry (VO) methods is
that it restores scale during the training phase. Chen et al. [20]
proposed a monocular visual odometry framework based on
convolutional long short-term memory network (LSTM) and
convolutional neural network (CNN), called LSTM visual
odometry (LSTMVO). It uses an unsupervised end-to-end
deep learning framework to simultaneously estimate the 6-
DoF pose and depth of view of a monocular camera. It effec-
tively solves the problem that the supervised visual odometry
method requires high training data and the current unsuper-
vised learning method fails to effectively integrate context
information into pose estimation. Future system optimiza-
tion can consider extending it to the visual SLAM system,
and reducing the global pose drift by introducing a wider
range of closed-loop constraints. Southeast University Yu
Yu et al. [21] aimed at the problem that traditional loop-
back detection uses artificially designed features to sharply
reduce the detection accuracy in complex environments, and
combined convolutional neural networks with local sensi-
tive hashing algorithms to propose a loopback algorithm
based on deep learning. Detection method. Zhou et al. [22] of
Shandong University proposed a new method based on deep
learning-based Local 3D Depth Descriptor (L3D) to solve
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problems related to loop closure detection in SLAM. L3D
is an emerging compact representation of patches extracted
from point clouds learned from data using deep learning
algorithms. The authors propose a new overlap metric for
loop closure detection, a novel approach capable of accu-
rately loop detecting and estimating six degrees of free-
dom poses in the presence of small overlaps. The future
optimization research direction can make a breakthrough by
fusing 2D visual cues extracted from images with 3D local
descriptors to deal with scenes lacking geometric structures,
and focusing on the optimization of descriptor calculations.
Daniele Cattaneo et al. [23] propose a novel loop closure
detection(LCD)Net architecture for loop closure detection
and point cloud registration, which efficiently detects Loop
closures in LiDAR point clouds. LCDNet consists of a shared
feature extractor based on a Point-Voxel RCNN (PV-RCNN)
network, a position recognition head that captures discrimina-
tive global descriptors, and a novel differentiable relative pose
head based on imbalanced optimal transfer theory, which can
operate without any Effectively aligning two point clouds
without prior information about their initial misalignment,
experiments show that this architecture has good generaliza-
tion ability.

D. RTAB-MAP
The visual SLAM scheme mainly studied in this paper is
based on the RTAB-MAP algorithm [24], which is essen-
tially a time- and scale-independent graph-based optimiza-
tion algorithm, which focuses on solving the online loop
detection problem when running in a large environment.
At present, RTAB-MAP supports the use of various sensors
to complete 2D or 3D SLAM tasks. It is a relatively complete
and effective SLAM open source library.

Its core idea is that when the number of positioning points
in the map makes the time to find a positioning match exceed
a certain set threshold, the RTAB-MAP algorithm transfers
the positioning points in the Working Memory (WM) that
are less likely to form a closed loop to the LTM Long -
Term Memory (LTM), the transferred positioning point will
no longer participate in the next closed-loop detection cal-
culation, and the Short-Term Memory (STM) module in the
WM module is used to observe the temporal similarity of
consecutive images and update the positioning accordingly
Point weight. There are two key points in the loopback detec-
tion part, that is, the first key point is to take out the anchor
points from the LTMmodule and put them back into the WM
module, and the second key point is to transfer the anchor
points in the WMmodule that meet the transfer criteria to the
LTM module. RTAB-MAP uses the EKF-based multi-sensor
loosely coupled data fusion method. The overall flowchart of
RTAB-MAP is shown in FIG.2.

III. METHOD
This section will elaborate on the improved Gmapping algo-
rithm, the SLAM framework for three sensor fusions, and the

FIGURE 2. Overall flow chart of RTAB-MAP.

deep learning-based loop closure detection algorithm applied
in this paper.

A. IMPROVED GMAPPING ALGORITHM
This paper chooses to improve the Gmapping algorithm as
follows:

Particle filtering is an iterative calculation. Each particle
carries a map, so corresponding computing power is required
to support it. When building a map in a small indoor environ-
ment, the quality of the map can be guaranteed by optimizing
the resampling stage, and the particles’ convergence speed
can be accelerated simultaneously. Particle filtering uses par-
ticles to approximate the posterior distribution; that is, the
more the number of particles in the area, the more likely the
actual state of the robot will fall in this area. In order to better
reflect the actual situation of the robot, a large number of
particles is required. So, how many particles are needed in an
actual scene to be considered to reflect reality? The following
calculation formula can be used to calculate the difference
between the estimated probability distribution p() and the
actual probability distribution q(), namely KL-distance, and
the formula is specifically:

K (p, q) =

∑
x
p (x) log

p (x)
q (x)

(5)

Usually, the target distribution is unavailable, but the χ2

distribution can approximate the distance between the esti-
mated distribution and the true target distribution. Aiming at
the two problems of particle degradation and the increase in
calculation amount caused by too many particles, this paper
proposes to complete the resampling stage by alternatively
performing selective resampling and KLD sampling. The
improved Gmapping algorithm is described in Table 1 below.

B. MULTI-SENSOR FUSION FRAMEWORK
The multi-sensor fusion frameworks studied in this paper are
as follows:

1) LASER AND ENCODER FUSION SLAM FRAMEWORK
The SLAM framework based on the fusion of laser and
encoder is traditional. The following figure shows the spe-
cific framework. The principles of the Gmapping algorithm,
Cartographer algorithm and HectorSLAM algorithm have
been briefly studied in the previous section [25]. Among
them, only the Cartographer algorithm includes loop closure
detection. However, it only performs a graph optimization
of all Submaps at intervals of a certain number of scans.
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TABLE 1. Improved gmapping algorithm.

It uses the errors estimator as a constraint to optimize the
estimator, which is challenging to elute with its estimation
to optimize its suspicion. Neither the Gmapping algorithm
nor HectorSLAM has a loop closure detection module [26].
Therefore, the loop closure detection and the subsequent
calculation constraints in FIG.3 are represented by dashed
line graphs.

FIGURE 3. SLAM framework based on the fusion of laser and encoder.

The framework mainly uses the data provided by the lidar
scan frame and the mileage data provided by the wheel
encoder for positioning. Then it estimates the optimal pose
of the mobile robot after fusion with the extended Kalman
filter. Then, use this information to complete the subsequent
mapping and optimization work, in which the drawn map is
a raster map [27].

2) LASER, ENCODER AND IMU FUSION SLAM FRAMEWORK
The SLAM framework based on laser, encoder, and IMU
adds the IMU to the system to provide acceleration and angu-
lar velocity information based on the previous section [13],
as shown in FIG.3 below for a specific framework diagram.
Among the three algorithms studied above, the Cartogra-
pher algorithm and HectorSLAM do not require odometry

information to complete the SLAM function. In contrast, the
particle filter-based Gmapping algorithm relies heavily on
the information provided by the odometer. In the subsequent
experiments, we use all the sensor information to complete
the mapping experiment.

The framework uses the displacement, acceleration and
angular velocity information provided by the wheel encoder
and the IMU. It fuses the data in a loosely coupled man-
ner through the extended Kalman filter algorithm and then
derives the robot’s pose information through the track. Then,
the pose estimated from the data provided by the lidar scan-
ning frame is also fused by the extended Kalman filter to
estimate the current optimal pose of the robot. Finally, use
this information to complete subsequent mapping and opti-
mization work, and the drawn map is a raster map.

FIGURE 4. SLAM framework based on the fusion of laser, encoder and
IMU.

3) FOUR TYPES OF SENSOR FUSION SLAM FRAMEWORK
The SLAM framework based on the fusion of vision, laser,
encoder and IMU adds an RGB-D camera [28] based on
the previous section, as shown in FIG.5 for the specific
framework.

The framework is a back-end fusion algorithm, which
essentially perceives the multi-dimensional comprehensive
data after fusion. The back-end fusion algorithm is loose and
is also called a loosely coupled algorithm [29]. All sensors
are independent before the results are obtained, and there
is no sensor-to-sensor constraint. The data from the RGB-D
camera and 2D lidar are subjected to the corresponding per-
ception algorithm to obtain the result and then aggregated and
fusedwith the estimation results of the encoder and IMU [30].
Then the results obtained after the aggregation and fusion
are transmitted to the loop closure detection and graph opti-
mization module [31]. Finally, the system framework outputs
OctoMap, point cloud, 2D occupancy raster map, map data,
Map Graph and TF [32].

C. A DEEP LEARNING-BASED LOOP CLOSURE DETECTION
TECHNOLOGY ADOPTED
A deep learning-based loop closure detection algorithm is
adopted in this paper, which can improve the accuracy and
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FIGURE 5. SLAM framework base on the fusion of vision, laser, encoder
and IMU.

efficiency of loop closure detection, eliminate the accumu-
lated error in the process of robot motion, and enhance
the robustness of SLAM in complex environments. The
algorithm includes unified image specification, keyframe
selection, high-dimensional feature vector library and low-
dimensional feature vector library construction, Etc [33].

The schematic diagram of the loop detection algorithm
proposed in this paper is shown in Figure 6, and the specific
algorithm steps are described in Table 2. Among them, high-
dimensional image features are extracted by MobileNetV3-
Large, while low-dimensional image features are extracted
by AlexNet.

The specific steps of the loop closure detection algorithm
are as follows:

• Unify the image specifications of the moving process
images obtained by the RGB-D camera to obtain con-
tinuous images p0 → pn.

• The low-dimensional and high-dimensional feature vec-
tors of p0 → pn are simultaneously extracted in parallel,
in which low-dimensional feature vectors are extracted
by AlexNet, and high-dimensional feature vectors are
extracted by MobileNetV3-Large, and Data (L) and
Data (H) are established respectively.

• Use Data (L) to determine the key frame and its frame
number used in loop closure detection through its pro-
posed key frame selection algorithm, and record the
high-dimensional feature vector corresponding to the
number of keyframe frames.

• Compare the high-dimensional feature vector of the cur-
rent frame pc and the keyframe. If it is found that the
similarity result compared with a keyframe is greater
than α, find the previous key frame and the next key

frame of this keyframe to determine the range of frames
in which possibly exists the loop closure is.

• According to the range of frame numbers that may have
loop closures, use the high-dimensional feature vector
of pc to compare with the corresponding feature vector
of the range of frame numbers that may have loopbacks
inData (H). If there is a frame whose comparison result
is more excellent than γ , it is determined to form a loop
closure.

Description: Data (L) is a low-dimensional feature vec-
tor database; Data (H) is a high-dimensional feature vector
database of keyframes; α is a preset value for the possibility
of a preliminary judgment of loop closure; γ is a preset
reliability parameter threshold.

Unified image specification process: ① Unify image spec-
ifications after continuous video information is processed;
② Input 227∗227 and 224∗224 images to AlexNet and
MobileNetV3-Large respectively.

Key frame selection algorithm process:

TABLE 2. Key frame selection algorithm.

This deep learning-based loop closure detection algorithm
is introduced into the multi-sensor SLAM system to replace
the traditional loop closure detection algorithm provided by
RTAB-MAP. The introduced framework is shown in FIG.7.
Due to the limitation of the computing power of the mobile
robot itself, it is necessary to share part of the computing
pressure on the deep learning server mentioned above and use
the topology to disperse the computing pressure.

IV. EXPERIMENT AND ANALYSIS
This section is the experiment and analysis part. Above
all, the hardware and software platforms required for the
experiment are introduced. First, the improved Gmapping
algorithm proposed in this paper is compared with the orig-
inal algorithm, and the experimental results are analyzed.
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FIGURE 6. Schematic diagram of the deep learning loop detection algorithm proposed in this paper.

FIGURE 7. Multi-sensor SLAM framework with loop closure detection
algorithm.

Second, a comparative experiment of SLAM of the three
multi-sensor fusion frameworks studied above is carried out
on the improvedGmapping algorithm and analyzed the exper-
imental results. Finally, a comparison experiment of SLAM
mapping between the original RTAB-MAP algorithm and
the deep learning-based RTAB-MAP loop closure detection
algorithm is carried out, and the experimental results are
analyzed in detail.

A. EXPERIMENTAL PLATFORM AND EXPERIMENTAL
ENVIRONMENT
1) EXPERIMENTAL PLATFORM
FIG.8 below shows the Mecanum kinematics princi-
ple mobile robot, equipped with NVIDIA Jetson Nano

motherboard, using the STM32F405 control board as the
motion master to control the motion of the robot. In terms
of sensors, it is equipped with Silan RPLIDAR A1 lidar,
which has a measurement radius of 12M and a scanning
frequency of 16HZ. IMU accelerometer gyroscope sensor is
used to measure the three-axis attitude angle (or angular rate)
and acceleration of the object. 520 encoder geared motor,
accumulating mileage from the moment the robot starts to
move. LeTV LeTMC-520 RGB-D depth camera with RGB
pixels is 1080P, a depth resolution of 640× 480, and a video
frame rate of 30FPS.

FIGURE 8. Mecanum Kinematics principle of mobile robot.

All software of the Mecanum robot runs in the Ubuntu
system, and the version used in this paper is Ubuntu18.04.
The robot’s operating system is ROS Melodic, which can run
in the Ubuntu18.04 environment. Moreover, many third-party
libraries are used in the experiments, such as Pangolin, Eigen,
nanoflann, PCL, OpenCV, Octomap, G2O, and Sophus, Etc.
After the connection between the PC (Personal Computer)
side and the robot side is established through the LAN, the
software rviz can be used on the PC to inspect the robot’s
SLAM process visually, and the software Gazebo can be used
to simulate the robot’s running experiments.

The experimental platform is a server for the deep learn-
ing laboratory. The hardware configuration includes two
Intel Xeon processor E5 series CPUs, four RTX 2080 Ti
graphics cards, one 1TB SSD solid state drive, and two
DDR4 32G memories. The software environment is a 64-
bit Ubuntu18.04 operating system, which is configured
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with CUDA10.0 and cuDNN7.5 provided by NVIDIA. The
PyTorch deep learning framework is used as the basic
framework of the experiment, and the development tool is
Python3.7.

2) EXPERIMENTAL ENVIRONMENT
In order to better compare the SLAM effects of different
multi-sensor fusion frameworks, the experimental environ-
ment is selected in a closed room, which can reduce the
impact of drastic environmental changes on the experiment.
FIG.9 shows the central part of the experimental environment.

FIGURE 9. The central part of the experimental environment.

B. IMPROVED GMAPPING ALGORITHM EXPERIMENT
When using the original and improved algorithms in this
paper to conduct a comparative experiment, the displacement
distance is the same, which can ensure that the experimental
results are more strongly compared. When using the original
Gmapping algorithm, the state of the particles during the
robot’s forward process is shown in FIG.10(a)(b).

When using the improved Gmapping algorithm, the state
of the particles in the forward process of the robot is shown
in FIG.11(a)(b).

The time used to run the original Gmapping algorithm
and the improved Gmapping algorithm in this paper to make
the particles reach the same convergence state is shown in
Table 2.

TABLE 3. Time for particles to converge to the same state for the two
algorithms.

By observing FIG.10(a)(b), it can be concluded that when
the Gmapping algorithm is used, the state of the particles has
roughly converged after the robot moves about twomap units.
When again observed in Fig. 11(a)(b) using the improved

Gmapping algorithm in this paper, the particles converge after
the robot moves the same distance as the original algorithm
experimental process. Then, according to Table 3, it can
be concluded that the particle convergence speed of the
improved Gmapping algorithm in this paper is increased by
39.85%. To sum up, the experiment proves that the particle
convergence speed of the improved Gmapping algorithm in
this paper is faster than the original algorithm, and a better
improvement result is obtained.

Yan et al. [34] made two improvements based on the
Gamping algorithm and conducted related experiments. The
first improvement is to combine the Gmapping algorithm
with AF (Firefly Algorithm) to increase its speed by 7.32%;
the second improvement is to combine the Gmapping algo-
rithm Combining with AF (firefly algorithm) and AS (adap-
tive sampling), the speed is increased by about 14%, and
the improved method proposed in this paper increases the
speed by 39.85%, which fully proves the effectiveness of the
improved method proposed in this paper.

C. MULTI-SENSOR FUSION SLAM EXPERIMENT
The primary purpose of the experiments in this subsection
is to compare the three multi-sensing SLAM frameworks
studied in the previous section. In this part of the experiment,
the improved Gmapping algorithm in this paper is used.

The primary purpose of the experiments in this subsection
is to compare the three multi-sensing SLAM frameworks
studied in the previous section. In this part of the experiment,
the improved Gmapping algorithm in this paper is used.

• The first part is the SLAM experiment of laser and
encoder fusion. The experimental results are shown in
FIG.12(a)(b)(c).

• The second part is the SLAM experiment of the fusion
of laser, encoder and IMU. The experimental results are
shown in FIG.13(a)(b)(c).

• The third part is the SLAM experiment of the fusion of
vision, laser, encoder and IMU. First, FIG.14(a)(b)(c)
is the colour image, depth image and depth-point cloud
data map captured by the camera. The images captured
by these cameras can provide much information for the
system to complete the SLAM function. The experimen-
tal results are shown in FIG.15(a)(b)(c), which shows
three perspectives of the mapping results.

First, comparing the experimental results in FIG.12 and
FIG.13, it can be concluded from observation that when the
IMU data is not fused, the edge contours of the 2D grid maps
constructed by the three algorithms are blurred and noisy.
The 2D raster map constructed after the system integrates the
IMU data has more apparent edges and reduced noise. Then,
comparing the experimental results of FIG.13 and FIG.14,
after the system integrates the data provided by the RGB-D
camera, it can reconstruct the surrounding scene in 3D based
on building a 2D grid map. The map constructed in this way
can contain more environmental information.

It can be seen from the horizontal comparison experi-
mental results that the edge contour of the map constructed
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FIGURE 10. Particle state of the original algorithm. (a) The particle state at the initial position of the robot in the
original algorithm; (b) The particle state after the robot moves forward in the original algorithm.

FIGURE 11. Particle state of the improved algorithm. (a) The particle state at the initial position of the robot in the
improved algorithm; (b) The particle state after the robot moves forward in the improved algorithm.

FIGURE 12. Experimental results of laser and encoder fusion SLAM. (a)Gmapping experimental result; (b)Cartographer experimental result;
(c) HectorSLAM experimental result.

by the Cartographer algorithm based on graph optimization
is relatively blurred. The construction of the HectorSLAM
algorithm will contain more noise at the edges of the map.
The Gmapping algorithm, with more explicit map boundaries
and less noise, is better than the HectorSLAM algorithm
and the Cartographer algorithm in the performance of indoor
mapping.

In addition, from the experimental results, it can be con-
cluded that the information obtained by the 2D lidar, encoder
and IMU can only build a 2D grid map and cannot build a 3D
environment map. Moreover, because the laser-based multi-
sensor SLAM system is challenging to complete the loop
closure detection, it will lead to poor global consistency of
the constructed map. According to the experimental analysis,
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FIGURE 13. Experimental results of laser and encoder fusion SLAM. (a)Gmapping experimental result; (b)Cartographer experimental result;
(c) HectorSLAM experimental result.

FIGURE 14. Image captured by the camera. (a) Color image; (b) Depth image; (c)Depth point cloud data graph; (d) Depth-point cloud data graph
at runtime.

it can be concluded that the overall performance of the SLAM
system integrated with vision, laser, encoder and IMU is
better.

D. COMPARATIVE EXPERIMENT OF LOOP CLOSURE
DETECTION ALGORITHM BASED ON DEEP LEARNING
The loop closure detection experiment in this paper uses
the dataset CityCentre from Oxford University, a total
of 2474 outdoor scene images, the size is 640∗480,
and the format is.jpg. The indicators for evaluating the
loop closure detection algorithm in this paper mainly

include the Precision-Recall (P-R) curve and the Average
Precision, (AP).

In this section, AlexNet is selected as the network
for extracting low-dimensional features, and MobileNetV3-
Large is used as the network for extracting high-dimensional
features. Both networks are pre-trained on ImageNet. Use the
cosine similarity to judge the similarity of the output features
to perform loop closure detection. The experimental results
show that when α = 0.8, β = 0.6, γ = 0.95, the accuracy of
loop closure detection is the highest, and the detection effi-
ciency is improved with the reduction of calculation amount.
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FIGURE 15. Experimental results of vision, laser, encoder and IMU fusion
SLAM. (a) Due south; (b) Diagonal direction; (c) Due east.

FIGURE 16. Line diagram of loop closure detection experiment.

In the comparison experiment, the traditional loop closure
detection algorithm is the SIFT-based Bag of Words (BoW)
algorithm, and the deep learning-based loop closure detection
algorithm includes AlexNet, VGG19, ResNet32 and the deep
learning-based loop closure detection algorithm proposed in
this paper. By observing the P-R curve shown in FIG.17,
it can be seen that when the recall rate is lower than 0.4,
the accuracy of the algorithm proposed in this paper is 1.
In comparison, the loop closure detection algorithm proposed
in this paper has the best effect. From the average accuracy

FIGURE 17. Experimental results using the CityCentre dataset.

FIGURE 18. RTAB-MAP mapping result. (a) Due south; (b) Diagonal
direction; (c) Due east.

rate shown in Table 4, the accuracy rate of the algorithm
proposed in this paper is 31.26% higher than that of the
traditional algorithm BoW; compared with the deep learning-
based AlexNet algorithm, VGG19 algorithm, ResNet32 algo-
rithm, the accuracy rates Increased by 14.21%, 3.05%, and
1.56%. In contrast, the overall performance of the loop clo-
sure detection algorithm proposed in this paper is the best.
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FIGURE 19. RTAB-MAP mapping results after replacing the loopback
detection algorithm. (a) Due south; (b) Diagonal direction; (c) Due east.

E. TWO TYPES OF LOOP CLOSURE DETECTION
ALGORITHM’s COMPARISON EXPERIMENTS
RunRTAB-MAP original algorithm on the experimental plat-
form for the SLAM mapping experiment, and the results are
shown in FIG.18.

TABLE 4. Experimental algorithm loop closure detection accuracy.

In the experimental platform, the loop closure detection
algorithm introduced above is used to replace the traditional
loop closure detection algorithm provided by RTAB-MAP
to conduct the SLAM mapping experiment. The results are
shown in FIG.19.

RTAB-MAP can build a 3D map of the surrounding envi-
ronment. Comparing the experimental results, at the red cir-
cle mark in FIG.18 and the green circle mark in FIG.19,

after using the loop closure detection algorithm proposed in
this paper to replace the loop closure detection algorithm in
RTAB-MAP, it can be clearly observed that the constructed
Environment maps are more regular. FIG.19 does not produce
the distortion at the red circle in FIG.18, which means that a
globally consistent map can be better constructed.

Moreover, the environment map constructed by the latter
can reproduce added environmental information.

V. CONCLUSION
In this paper, we propose a multi-sensor fusion SLAM algo-
rithm framework based on improved Gmapping. Through
theoretical research and experimental verification, it is proved
that the framework applied to mobile robots can make it
work indoors with high robustness and precision. We see
that the SLAM system integrated by vision, laser, encoder
and IMU is generally more stable and accurate. Secondly,
the improved Gmapping algorithm is significantly better than
the Cartographer algorithm and HectorSLAM algorithm in
terms of indoor mapping performance, and the particle con-
vergence speed is 39.85% higher than the original Gmapping
algorithm, which significantly reduces the memory and cal-
culation amount occupied by the algorithm. Finally, the loop
closure detection algorithm proposed in this paper is superior
to the traditional algorithmBoW,AlexNet algorithm, VGG19
algorithm, and ResNet32 algorithm in terms of accuracy, and
is superior to the original RTAB-MAP algorithm in terms of
the construction effect of the environment map.

To address the shortcomings of this paper in future
research, first, we will test our system in more complex
scenarios, and improve the test analysis to compare more
different algorithms to achieve better results. Second, a multi-
geometry-based dynamic object detection method will be
added to cooperate with image processing algorithms to fur-
ther improve the adaptability and robustness of the system
in dynamic environments. Third, on this basis, explore the
multi-sensor fusion SLAM and multi-frame fusion Gmap-
ping algorithm based on the tightly coupled method of
extended Kalman filtering to further improve the perfor-
mance of SLAM.
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