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Abstract: Recent advances in hand gesture recognition have produced more natural and intuitive
methods of controlling unmanned aerial vehicles (UAVs). However, in unknown and cluttered
environments, UAV motion planning requires the assistance of hand gesture interaction in complex
flight tasks, which remains a significant challenge. In this paper, a novel framework based on hand
gesture interaction is proposed, to support efficient and robust UAV flight. A cascading structure,
which includes Gaussian Native Bayes (GNB) and Random Forest (RF), was designed, to classify
hand gestures based on the Six Degrees of Freedom (6DoF) inertial measurement units (IMUs) of the
data glove. The hand gestures were mapped onto UAV’s flight commands, which corresponded to
the direction of the UAV flight.The experimental results, which tested the 10 evaluated hand gestures,
revealed the high accuracy of online hand gesture recognition under asynchronous detection (92%),
and relatively low latency for interaction (average recognition time of 7.5 ms; average total time of
3 s).The average time of the UAV’s complex flight task was about 8 s shorter than that of the syn-
chronous hand gesture detection and recognition. The proposed framework was validated as efficient
and robust, with extensive benchmark comparisons in various complex real-world environments.

Keywords: IMU data glove; hand gesture detection; hand gesture recognition; UAV motion planning;
interaction efficiency

1. Introduction

Hand gestures can interact with human beings or machines in the real world. Com-
pared to speech interaction [1] and gaze-based interaction [2], gesture interaction is rela-
tively natural, private, and intuitive. There are numerous applications in the area of hand
gesture recognition, such as sign languages [3], interaction in the metaverse [4], and UAV
flights [5] and so on. In addition, hand gestures are usually used to interact with unmanned
systems in rescue operations, which contributes to efficient human–machine collaboration
in certain environments [6].

The latest development in hand gesture recognition is primarily based on multi-modal
sensing, which is called MGR (Multi-modal Hand Gesture Recognition). MGR can improve
the performance of hand gesture recognition by incorporating multisensor data. A pro-
totype system, including a three-axis accelerometer and four-surface electromyographic
(sEMG), has been developed, to realize gesture-based real-time interaction [7]. Accelerome-
ters can measure acceleration (ACC) from vibrations and gravity. In addition, sEMG signals
can indicate the activities of related muscles. Using the fusion of ACC and sEMG signals,
response time and recognition accuracy can be improved. Moreover, a real-time hand
gesture tracking and recognition system, based on inertial sensors and visual sensors, has
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been proposed [8]. Long-term error growth in the position and orientation estimation of
IMU can be compensated by the vision sensor. IMU can track fast motions much better than
the vision sensor does. The recognition time has been improved greatly. Traditional hand
gesture recognition is mostly based on unimodal sensing, which is called UGR (Unimodal
Hand Gesture Recognition). UGR uses a single sensor (e.g., IMU, sEMG, visual sensor)
and the data resource is unitary; therefore, the data alignment is not considered to fuse the
multichannel data. For example, using the sEMG signal on the forearm, a real-time hand
gesture recognition system was proposed [9]. Based on the best feature, the classification ac-
curacy was satisfying, but the sEMG signal was susceptible to noise interference. Through
the camera Kinect, the Histogram of Oriented Gradient (HOG) was used, to recognize the
palm gestures [10]: however, the vision sensor was limited by illumination, occlusion, and
space [11]; therefore, wearable IMU devices were designed, so that the sensor could capture
the motion of the fingertip and the postures of the hand [11]. Although hand gesture
interaction technology based on the IMU is maturing, efficient and robust recognition of
dynamic hand gestures from the continuous data stream is a challenging task.

The main problems solved in this paper are as follows:

(i) poor adaptability of hand gestures design can lead to a high rate of nonrecognition;
(ii) unsatisfying hand gesture detection and recognition results affect the real-time perfor-

mance and stability of the system;
(iii) UAV’s complex flight tasks assisted by hand gesture interaction in an unknown and

cluttered environment have not been considered well.

To address problem (i), a novel hand gesture set was designed. Hand gestures of high
accuracy were considered for further combination, and the adaptability of hand gestures
was improved. For problem (ii), a hierarchical structure of hand gesture detection and
recognition was adopted. The hand gesture detection classifier was used, to identify gesture
and non-gesture. When the hand gesture was detected as gesture, the specific label was
given by the hand gesture recognition classifier. Problem (iii) was overcome by integrating
online hand gesture detection and recognition into UAV motion planning. The commands
of online hand gesture detection and recognition could be abstracted as a series of discrete
points that indicated the direction of UAV flights; therefore, a novel method to guide UAV
motion planning using hand gesture interaction is proposed.

According to the core idea of closed-loop feedback in control theory, the proposed
system is presented in Figure 1.

A real-time hand gesture was generated by the user with the IMU data glove. The
hand gesture command was taken as the set point. The continuous data stream of dynamic
hand gestures was segmented by the hand gesture segmentation module. The segmented
data were sent to the hand gesture detection module and hand gesture recognition module.
The hand gesture was recognized and mapped onto the control command. The control
command was transferred to the navigation point. The UAV was considered as a controlled
object, which flew along navigation points. Through the service and topic communication
of the Robot Operating System (ROS), waypoint information was sent to the MAVROS
node, which translated into understandable orders for the UAV movement. Then, MAVROS
communicated with PX4 firmware based on the MAVLink (Micro Air Vehicle Link), and
the UAV flew in the direction provided by the hand gesture command. The mapping
(completed by D435i) and positioning (completed by T265) information of the UAV served
as feedback to the user’s front-end. The feedback information on mapping and position-
ing was used for the PID operation. Thus, a closed-loop negative feedback system was
constructed.
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Figure 1. The proposed system. Set Point: hand gesture command with IMU data glove. Controller:
hand gesture segmentation algorithm; hand gesture detection algorithm; hand gesture recognition
algorithm; the recognized result is transferred into the navigation point. Controlled Object: UAV
integrated with the motion planning framework of the ego-planner. Feedback of Measurement: the
depth camera (D435i) for mapping and the binocular camera (T265) for localization.

The main contribution of this paper is as follows:

• To improve the adaptability of hand gestures, an IMU data glove with a high signal-
to-noise ratio and high transmission rate was developed, and a public hand gesture
set was designed for interaction between hand gestures and UAV.

• To enhance the effectiveness and robustness of the system, a new asynchronous
hand gesture detection and recognition method was proposed, which cascaded two
high-precision classifiers.

• To overcome the problem of UAV’s complex flight tasks in unknown and cluttered
environments, an online hand gesture detection and recognition method was in-
novatively applied to UAV motion planning, which realized complex flight tasks
asynchronously.

The remainder of this paper is organized as follows. In Section 2, we discuss the
work as it relates to three aspects of the data glove and hand gestures, i.e., hand gesture
segmentation and recognition, and the interaction between hand gestures and UAV. Then,
in Section 3, the hardware structure of the IMU data glove, and the design method of the
hand gesture set is introduced. An online hand gesture detection and recognition method is
proposed for asynchronously interacting with the UAV. Extensive real-world experiments
are conducted, and the experimental results are analyzed in Section 4. The proposed work
is discussed in Section 5. Finally, in Section 6, the research work is summarized, and the
in-depth research ideas are proposed.

2. Related Work

Our research work is mainly related to three aspects: (1) data glove and hand gesture
set construction; (2) hand gesture segmentation and recognition; (3) hand gesture and
UAV interaction.

Recently, various wearable data gloves have been developed. For example, Mummadi
et al. introduced a new data glove equipped with Intel’s Edison module, which uses
Bluetooth or WiFi protocol, and connects serially with five IMUs at all fingers through the
multiplexer [12]. While the hardware components were designed to be miniaturized, the
cost of the entire equipment was relatively high, and the time of hand gesture detection
was relatively long; therefore, another low-cost and real-time embedded device, based
on Arduino Nano 33 BLE, was developed, and a hand gesture set was built. In a decod-
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ing task of eight hand gestures, online recognition accuracy of 95% was achieved [13].
Moreover, based on IMU, electromyographic (EMG), and finger and palm pressure data,
Zhang et al. [14] built a relatively larger database of 10 sequential hand gestures, which
consisted of 5 dynamic gestures and 5 air gestures collected from 10 participants. The
classification accuracy for the dynamic hand gestures and air hand gestures was 89.28%
and 76.86%, respectively, by long short-term memory (LSTM). Furthermore, Jiang et al. [15]
designed eight air gestures and four surface gestures with two distinct force levels, based
on a real-time gesture recognition wristband with sEMG and IMU sensing fusion. The
classification accuracy for the initial experiment was 92.6% and 88.8%, respectively, for air
and surface gestures. With respect to the first aspect, the current study proposes a data
glove integrating with six-axis IMU sensors for hand gesture design. The movement of
fingers can be detected by five relevant IMUs. Previous research on hand gesture recogni-
tion has typically classified single hand gestures, and the extensibility of the hand gesture
set has not been well-considered. This work proposes a multiple-hand-gestures set, which
corresponds to the commands set of UAV flights.

For hand gesture segmentation and recognition, a cascaded artificial neural network
(ANN) structure has been proposed, to recognize interactive and non-interactive gestures.
In addition, a high recognition rate of over 96% for 30 hand gestures was achieved [16].
However, the ANNs method requires more training time and computational resources;
therefore, Simao et al. [17] introduced an arm or gesture segmentation method, based on
an unsupervised threshold value: it could accurately divide a continuous data stream into
dynamic and static segments, which reduced the number of misclassified hand gestures
with an average over-segmentation error of 2.70%, and improved the quality of hand
gesture segmentation. In addition, Li Q et al. proposed a dynamic hand gesture spotting
algorithm based on the evidence theory, by which accurate and real-time dynamic hand
gesture spotting was realized. The experimental results showed that the accuracy of recog-
nition after spotting was higher than that of simultaneous recognition and spotting [18].
However, by the method based on the experience and threshold, it was hard to obtain
the best effect; therefore, a dynamic hand gesture spotting algorithm based on deep learn-
ing was proposed [19]. The start and end of the hand gesture sequence in a continuous
data stream were detected by a scalar value. The proposed system took about 12 ms to
recognize the complete hand gesture in real-time. Regarding the second aspect, based on
threshold detection, a certain interval of inactivity was considered, to ensure the clarity
of hand gesture segmentation. In addition, our proposed work considered cascading two
high-precision models, to complete hand gesture detection and recognition. Compared
with previous studies, the proposed system could realize lower recognition time, and be
more robust and efficient.

In terms of hand gesture recognition interacting with UAV, most studies have only ver-
ified the interaction performance between hand gesture recognition and simple UAV flight.
For example, the wearable device’s 9-axis IMU is used to recognize the user’s hand gesture
commands, and to control UAV flight in real-time [20]. In addition, using the open-source
visual library, a robust algorithm was designed to distinguish nine hand gestures for multi-
UAV control [21]. Recently, to manipulate the UAV speedily and flexibly with the hand
gesture, Yu C et al. proposed an end-side hand gesture recognition for real-time and stable
control of the UAV. The trained model was deployed on a wireless data glove based on the
STM32 microcontroller, in which the back propagation (BP) network was used for static
gesture recognition, and the bidirectional gated recurrent unit (Bi-GRU) network was used
for dynamic gesture recognition [22]. However, most of the research has not considered the
scenario of complex flight tasks, and the UAV motion planning methods have only used the
onboard computing resources to complete real-time trajectory planning and optimization,
without considering external intervention to assist flight. For example, in order to solve
the problem of autonomous navigation of UAV in an unknown and complex environment,
a robust and efficient quadrotor motion planning system was proposed [23]. To find a
safe, kinodynamic-feasible and collision-avoidance trajectory, a Euclidean Signed Distance
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Field (ESDF)-free gradient-based planning framework was proposed, which significantly
reduced computation time [24]. About the third aspect, this research was innovative, in that
hand gestures were used to guide the UAV motion planning, rather than simply controlling
the UAVs, as in most previous studies. The collision avoidance of the UAV flight was
considered throughout the hand gesture interaction.

3. Materials and Methods
3.1. IMU Data Glove

The IMU data glove is designed to consider the requirements of limb movement and
practical applications [13]. As shown in Figure 2, the hardware structure of the IMU data
glove is divided into the following modules.

Figure 2. The hardware structure of the IMU data glove. Five IMU modules (IMU0∼IMU4) are
located at the distal fingertips, and one IMU module (IMU5) is located at the metacarpal of the back
of the hand. A battery supplies power. MCU is the microcontroller. Bluetooth and USB are the
communication interfaces. Vibration provides force feedback.

3.1.1. Central Control and Wireless Transmission Module

The IMU data glove mainly includes a microcontroller (MCU, STM32L151CCT), a
Bluetooth module (FSC-BT826B), a power management unit (AP2112-3V3 and LP5907),
and a Universal Serial Bus (USB)-to-Serial Peripheral Interface (SPI) module. The battery
supplies power to the regulator (LDO), which then supplies power to other modules. The
battery can be charged via USB. The microcontroller writes and reads the register of the
sensor, and communicates with the IMU and vibration sensor through the SPI protocol. The
collected data are transmitted to the external personal computer (PC) through Bluetooth or
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USB in hexadecimal formats. The start point and end point are distinguished by the 5-byte
header and the 1-byte flag of each frame, respectively. Consequently, the output data of the
IMU data glove are 78 bytes.

3.1.2. Distributed Multi-Node IMU Module

It is integrated with six 6-axis IMU modules (ICM20648). Five of the IMU modules
are located at the distal fingertips, and one IMU module is located at the metacarpal
of the back of the hand. Each IMU combines a 3-axis accelerometer (range: ±2 g; res-
olution: 16,384 LSB/g) and 3-axis angular velocity (range: ±2000 deg/s; resolution:
16.4 LSB/(deg/s)). The internal data transmission adopts an SPI interface. The IMU data
of the wrist and each finger include 3-axis acceleration and 3-axis angular velocity values
of 12 bytes.

3.1.3. Vibration Motor Module

The module consists of a vibration motor and a driver chip A1442. The A1442 is a
full-bridge motor driver for driving a low-voltage bipolar brushless direct current (DC)
motor. The vibration motor can provide force feedback for each hand gesture.

3.2. Hand Gesture Set Design

Considering users’ habits and the accessibility of the UAV control, a single-hand-
gestures set was designed for UAV’s complex flight tasks, which is shown in Table 1. All
hand gestures corresponded to the direction of the UAV flight as closely as possible, and
were easy to perform and remember.

Table 1. Single-hand-gestures set.

ID Hand Gesture Comment ID Hand Gesture Comment

S1 LD 1 S2 RD 2

S3 UM 3 S4 DM 4

S5 HF 5 S6 CF 6

S7 TU 7 S8 OS 8

S9 LF 9 S10 RS 10

1 LD: Left Deflection; 2 RD: Right Deflection; 3 UM: Upward Diagonal Move; 4 DM: Downward Diagonal Move; 5 HF:
Half-Clenched Fist; 6 CF: Clenched Fist; 7 TU: Thumbs Up; 8 OS: OK Sign; 9 LF: Little Finger; 10 RS: Rock Sign.

Furthermore, the multiple-hand-gestures set was designed, as shown in Table 2, in order
to reduce the rate of hand gesture misoperation [25], and to improve the adaptability of hand
gesture interaction. A number of practical hand gestures were selected and combined into the
multiple-hand-gestures set. The initial hand gesture of HF was performed first, followed by a
direction hand gesture (i.e., LD, RD, UM, DM), to determine the direction of the UAV flight. The
extensibility and adaptability of hand gestures can be improved by the way of combination.
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Table 2. Multiple-hand-gestures set.

ID Hand Gesture Comment

C1 HF+LD 1

C2 HF+RD 2

C3 HF+UM 3

C4 HF+DM 4

1 HF+LD: Half-Clenched Fist and Left Deflection; 2 HF+RD: Half-Clenched Fist and Right Deflection; 3 HF+UM:
Half-Clenched Fist and Upward Diagonal Move; 4 HF+DM: Half-Clenched Fist and Downward Diagonal Move.

3.3. Dataset Generation

Ten healthy subjects (5 male/5 female, average age: 25 years) participated in this
experiment. During the collection, the image of each hand gesture was shown on the screen
for 2 s, to prompt the subjects to perform the corresponding hand gesture, followed by
a rest of 2 s. Considering the time difference of the hand gesture data set, session 2 and
session 3 were collected one hour later and one day later, respectively [15]. Each subject
performed each gesture ten times for three sessions, of which 3300 samples (10 subjects *
3 sessions * 10 trials * 11 hand gestures) of hand gestures were collected. The experiment
protocol is shown in Figure 3.

Trial1 Trial10 Trial1 Trial10 Trial1 Trial10…

One 

Day

Later

One 

Hour

Later

Session1 Session2 Session3

1st

Gesture

2nd

Gesture

Final 

GestureRest Rest Rest

0 2 4 6 8 36 38 40 t(s)

···

Figure 3. Experiment protocol of hand gesture data collection.
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A right-hand IMU data glove was worn by each subject, and connected to the PC
through a USB port. The subjects maintained a standing position, with their palms perpen-
dicular to the ground, and their arms parallel to the ground. After turning on the glove,
the hand gesture data collection program started to run, and the subjects were required to
perform hand gestures according to the prompts on the screen. Afterwards, an IMU hand
gesture data set was generated, by extracting both accelerated velocity and angular velocity
at a sampling rate of 200 Hz.

According to the requirements of the UAV’s complex flight task, the hand gesture
commands were mapped onto the UAV flight motions, as listed in Table 3.

Table 3. Hand gestures mapped onto UAV flight motions.

ID Hand Gesture Flight Motion

S1 LD Move Left
S2 RD Move Right
S3 UM Move Up
S4 DM Move Down
S5 HF Wait for Combination
S6 CF Disarm
S7 TU Take off on High
S8 OS Arm
S9 LF Hover
S10 RS Forced Land
C1 HF+LD Move Forward
C2 HF+RD Move Backward
C3 HF+UM Turn Left
C4 HF+DM Turn Right

3.4. Hand Gesture Detection and Recognition

In Figure 4, the details of model training and online recognition are presented. In
terms of the model training of hand gesture detection, ten dynamic hand gestures were
labeled as 0, and one static hand gesture was labeled as 1. For the hand gesture recognition,
ten hand gestures were labeled as 0 to 9. Due to the fact that the IMU signals were subjected
to interference and extra slight movement of the hand, a Butterworth filter was designed
during the data processing. The variance was extracted as the feature to characterize the
hand gesture movement information. Finally, the feature matrix was readjusted to adapt
to the training model. In order to distinguish the gesture and non-gesture, an imbalanced
two-classifier was trained. Afterwards, a balanced ten-classifier was trained to recognize
the specific categories of hand gestures. In the online recognition phase, the hand gestures
were recognized based on the cascaded model, and the recognized results were transferred
into control commands.
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Figure 4. The proposed model architecture. In the model training phase, the model of hand gesture
detection was trained to detect gesture and non-gesture. The model of hand gesture recognition was
trained to recognize specific categories of predefined hand gestures. In the online recognition phase,
the hand gestures were recognized in real-time by cascading hand gesture detection model and hand
gesture recognition model.

The key steps of the online hand gesture detection and recognition are presented in
Algorithm 1. Multithreading was used to implement online hand gesture detection and
recognition. In the child thread (lines 1–16), the sliding window data were the global
variable W, with the fixed frames of f , and the IMU observation data O were received
from the IMU data glove per frame. When the child thread was running, W was initialized
by the O of f frames (lines 2–4). Then, the sum of angular velocity and the difference of
T(j) and T(j− 1) were always calculated (lines 6 and 7). If the GS(i) was greater than the
threshold value of the angular velocity GT, and the time interval between the two hand
gestures was greater than the threshold value TT, then the current time was updated (line
9) and W was returned (line 10). GT was set to segment the continuous data stream of
dynamic hand gestures, and TT was set to ensure that there was only one hand gesture in
a time window; otherwise, W would be continuously updated (lines 12–13). In the parent
thread (lines 17–30), updated W was filtered by the Butterworth filter, and the variance
was extracted as the feature (lines 19–21). W̃ after feature extraction was inputted into
the hand gesture detection classifier (line 22). If the output of the hand gesture detection
classifier was gesture, then W̃ was inputted into the hand gesture recognition classifier, and
the specific label of the hand gesture was returned; otherwise, the non-gesture was returned
(lines 23–28).
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Algorithm 1 Online Hand Gesture Detection and Recognition

Input: O: IMU observation data; f : fixed frame length; W: sliding window data; T: current
time clock; GT: threshold value of angular velocity; TT: threshold value of time interval
between two hand gestures;

Output: recognized result m;
1: function CHILDPTHREAD(W, O)
2: for i ∈ [0, f − 1] do
3: W(i)← O(i);
4: end for
5: while TRUE do
6: GS(i)← SUM OF ANGULAR VELOCITY;
7: ∆T ← T(j)− T(j− 1);
8: if GS(i) > GT and ∆T > TT then
9: T(j− 1) = T(j);

10: return W;
11: else
12: W(0 : f − 1)←W(1 : f );
13: W( f − 1)← O;
14: end if
15: end while
16: end function
17: function PARENTPTHREAD(W)
18: while TRUE do
19: process the data W with the Butterworth filter;
20: compute the variance of the filtered data;
21: W̃ ← DATA OF FEATURE EXTRACTION;
22: input W̃ into the hand gesture detection classifier;
23: if the output of hand gesture detection classifier is gesture then
24: input the W̃ into the hand gesture recognition classifier;
25: return m← speci f ic gesture;
26: else
27: return m← non-gesture;
28: end if
29: end while
30: end function

4. Experimental Results and Analysis

To verify the performance of the proposed asynchronous detection method, many
comparative experiments were conducted. For the synchronous detection method, the sub-
jects were required to perform hand gestures according to the screen prompts, which were
used as the starting flags as well. The data were recorded for 2 s after the starting points,
and then directly fed into the hand gesture recognition classifier. For the asynchronous
detection method, the subjects were required to perform hand gestures according to the task
requirement. The proposed hand gesture segmentation algorithm automatically detected
the starting points according to the threshold value of angular velocity and the time interval
of two hand gestures. The data for 2 s after the starting points were captured, to decide
whether the current hand gesture was gesture or non-gesture. When it was detected as
gesture, the specific category of the current hand gesture was determined by the hand
gesture recognition classifier.

4.1. Comparison of Classification Accuracy for Different Classifiers and Hand Gestures

Model selection is of great importance for the performance of hand gesture detection
and recognition. The Naive Bayes model is based on the Bayes theorem and the indepen-
dence assumption of feature condition; therefore, it can be assumed that the variables (IMU
data) follow the Gaussian distribution. Consequently, the GNB model for hand gesture



Machines 2023, 11, 210 11 of 20

detection was adopted. During the online hand gesture detection, the label probabilities
of the input sample were calculated, and the label corresponding to the maximum proba-
bility was used as the basis for the differentiation between gestures and non-gestures. As
shown in Table 4, compared with the performance of Random Forest (RF), Support Vector
Machine (SVM) [26,27], k-Nearest Neighbor (kNN) [28], and Linear Discriminant Analysis
(LDA) [29], the average classification accuracy of 10 hand gestures by the GNB model
achieved 98.45 %, leading other methods by 3.15 % on average.

Table 4. The balance accuracy for gesture and non-gesture by different classifiers. GNB: Gaussian
Native Bayes; RF: Random Forest; SVM: Support Vector Machine; KNN: K-Nearest Neighbor; LDA:
Linear Discriminant Analysis.

Subject GNB RF SVM KNN LDA

Subject 1 100.00 100.00 99.14 100.00 99.14
Subject 2 96.55 90.83 84.91 100.00 55.39
Subject 3 100.00 100.00 100.00 100.00 100.00
Subject 4 99.14 82.50 80.39 99.14 96.55
Subject 5 100.00 100.00 100.00 100.00 100.00
Subject 6 92.24 91.67 72.41 88.58 93.10
Subject 7 100.00 100.00 100.00 100.00 99.14
Subject 8 98.28 100.00 98.28 98.28 97.41
Subject 9 98.28 98.33 93.75 98.28 96.55
Subject 10 100.00 98.33 100.00 100.00 100.00

Avg. 98.45 96.17 92.89 98.43 93.73

On the other hand, the RF [30] model, which originates from ensemble learning,
integrates a number of decision trees into a random forest. There are N classification results
(corresponding to N trees) for one input sample. Through a multi-class voting strategy,
the category with the most votes is determined as the final recognition result. In addition,
the RF model is suitable for small hand gesture datasets, and is adaptable to the noise of
IMU data during online experiments. Therefore, the RF [31] model was used for hand
gesture recognition. As shown in Table 5, compared with the performance of the SVM [32],
kNN, LDA [33], and GNB, the average classification accuracy of 10 hand gestures by the
RF model achieved 95.83%, leading other methods by 5.29 % on average.

Table 5. The accuracy for 10 specific hand gestures by different classifiers. RF: Random Forest; SVM:
Support Vector Machine; KNN: K-Nearest Neighbor; LDA: Linear Discriminant Analysis; GNB:
Gaussian Native Bayes.

Subject RF SVM KNN LDA GNB

Subject 1 98.33 93.33 71.67 93.33 88.33
Subject 2 85.00 91.67 91.67 88.33 83.33
Subject 3 100.00 100.00 96.67 96.67 100.00
Subject 4 95.00 86.67 83.33 90.00 90.00
Subject 5 98.33 98.33 98.33 95.00 98.33
Subject 6 93.33 81.67 86.67 86.67 80.00
Subject 7 98.33 95.00 90.00 95.00 95.00
Subject 8 100.00 95.00 88.33 96.67 95.00
Subject 9 96.67 90.00 83.33 78.33 78.33
Subject 10 93.33 93.33 90.00 96.67 91.67

Avg. 95.83 92.50 88.00 91.67 90.00

The raw IMU dataset of gesture and non-gesture, collected by 10 subjects, were di-
vided into the training set and test set. The offline classification accuracy of gesture and
non-gesture was compared, based on the GNB model, as shown in Figure 5a. It can be
seen that the average hand gesture detection accuracy for gesture was 100.00%, and that
for non-gesture was 96.51% on the test set. Similarly, the confusion matrix of 10 specific
hand gestures was obtained. As shown in Figure 5b, the average classification accuracy
for 10 kinds of hand gestures (LD, RD, UM, DM, HF, CF, TU, OS, LF, RS) was over 90% on
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the test set, except for the hand gesture of RD, which was only 89.39%. Furthermore, the
classification accuracy of the hand gesture of RS could reach 100%. The results indicate
that the design of the hand gesture set was relatively reasonable, and the adaptability was
relatively strong.

Figure 5. The confusion matrix of hand gesture detection model and hand gesture recognition model:
(a) the confusion matrix of gesture and non-gesture; (b) the confusion matrix of 10 specific hand
gestures (CF, UM, DM, RD, LD, LF, RS, HF, OS, TU).

4.2. Comparison of Online Hand Gesture Recognition Performance under Different Hand Gesture
Detection Methods

To verify the performance of the proposed asynchronous detection method, the online
recognition accuracy, recognition time, and total time were tested. The recognition time
refers to the respective times taken to recognize the hand gesture by the two hand gesture
detection methods. The total time (from the execution of hand gestures to the response
of the UAV) was calculated, to test the performance of the two hand gesture detection
methods respectively in a systematic way.

As shown in Table 6, the average recognition accuracy under the asynchronous hand
gesture detection method was 92%, which was higher than that under synchronous hand
gesture detection. Moreover, the average recognition time was 7.5 ms, and the total time of
one hand gesture was about 3 s of the asynchronous detection method, both of which were
shorter than the respective times of the synchronous detection method. This means that
the time interval between the publication of the hand gesture command and the UAV’s
response was about 1 s.

Table 6. The comparison of online recognition accuracy, recognition time, and total time for different
hand gesture detection methods.

Detection Method Subject Recognition
Accuracy (%)

Recognition Time
(ms) Total Time (s)

Syn 1

Subject 1 87 8.0 3.0488
Subject 2 87 7.9 3.0533
Subject 3 100 8.0 3.0485
Subject 4 63 7.9 3.0485
Subject 5 80 7.3 3.0119

Avg. 83 7.8 3.0422

Asyn 2

Subject 1 83 7.6 3.5267
Subject 2 77 7.5 2.4560
Subject 3 100 8.5 2.8597
Subject 4 100 6.8 3.1599
Subject 5 100 7.2 2.8525

Avg. 92 7.5 2.9710
1 Syn: synchronous hand gesture detection and recognition. 2 Asyn: asynchronous hand gesture detection
and recognition.
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The differences in average recognition time and total time of different hand gestures
under two hand gesture detection methods were compared, as shown in Figure 6. Under
the asynchronous detection method, the variations of average recognition time and total
time were more dramatic than under the synchronous hand gesture detection method.
Paired t-test was performed for the two hand gesture detection methods (p > 0.05). The
results indicated that there were no significant differences in the average recognition time
and total time between the two hand gesture detection methods.

(a) (b)

Figure 6. The differences in average recognition time and total time of different hand gestures
under the synchronous and asynchronous detection methods: (a) the difference in the average
recognition time of different hand gestures; (b) the difference in the average total time of different
hand gestures. Syn: synchronous hand gesture detection and recognition. Asyn: asynchronous hand
gesture detection and recognition.

4.3. Comparison of Online Interaction Performance under Different Hand Gesture
Detection Methods

To verify the online interaction performance using the asynchronous hand gesture
detection and recognition method, UAV flight experiments were conducted in a real-world
environment. Users performed different hand gestures to publish the flight direction, and
then the mobile workstation would process the IMU data of real-time hand gestures. The
recognized result would be transferred into UAV flight waypoint information, and the
initial optimal path would be searched by the UAV. During the flight, the UAV would
replan and optimize the trajectory in real time, according to the distribution of surrounding
obstacles, and would finally fly to the target waypoint. The computing resource included a
mobile workstation with a dual-core 2.6 GHz Intel i7-9750H processor, 16 GB RAM, and
1TB SSD. The online hand gesture detection and recognition module was implemented in
Python3.8, and the UAV interaction module was implemented in C++11. The interaction
experiments were implemented on Ego-Planner, which is an open-source UAV motion
planning framework, and were conducted in a closed environment of 5.4 m * 5.4 m * 2.5 m.

Five subjects with no flight experience were invited to participate in our experiment,
which was a square loop flight task consisting of 12 navigation points (corresponding to
12 hand gesture commands). The number of errors was recorded for both synchronous
and asynchronous interaction experiments. As shown in Figure 7, the 3D scatter figure
was plotted to show the number of errors when different hand gesture commands were
executed by different subjects. The axial of Subject presents the different subjects, and the
axial of Waypoint presents the take-off point (S) and 11 navigation points (N0, . . . , N10). It
manifests that the asynchronous method can effectively reduce the number of errors.
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(a) (b)

Figure 7. The number of errors in the UAV’s complex flight experiments: (a) the number of
errors in the synchronous interaction experiment; (b) the number of errors in the asynchronous
interaction experiment.

The time consumed for the square loop flight task is recorded in Figure 8. The time was
calculated from the take-off of S to the land-point S, which passed through 11 navigation
points (N0, . . . , N10).
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Figure 8. The time of the UAV’s complex flight task. Syn: synchronous interaction experiment. Asyn:
asynchronous interaction experiment.

In the synchronous interaction experiment, the mean flight time was 153.8 s, which
was longer than that of the asynchronous interaction experiment (146.4 s). The standard
error (SE) of the asynchronous interaction was smaller, especially in the case of complex
flight tasks. This implies that the real-time performance and stability of the asynchronous
interaction were better than those of the synchronous interaction.

The efficiency of interaction E of each UAV flight task ti was defined as follows [34]:

E(ti) = Eval(T, R) = [0.5× R
100

+ (1− 0.5)× 1
T + 1

] (1)

where T (the difference between the end time and the start time of the UAV’s flight task)
was the required time of completing the UAV’s flight task, R (the ratio of the number
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of successful experiments to the total number of experiments) was the success rate of
completing the UAV’s flight task, and R and T were given the same weight value of 0.5.
Eval(T, R) ∈ (0, 1) was the evaluation of the interaction performance. As shown in Table 7,
the interaction evaluation of the UAV’s complex flight task was computed for the five
participants. In the square loop flight task, the mean E under the asynchronous interaction
was 0.4692, which was a little higher than that of the synchronous interaction (0.4564).

Table 7. The interaction evaluation of the UAV’s complex flight task.

Subject The Efficiency of
Synchronous Interaction

The Efficiency of
Asynchronous Interaction

Subject 1 0.4323 0.4027
Subject 2 0.4655 0.5037
Subject 3 0.5038 0.5043
Subject 4 0.3771 0.4314
Subject 5 0.5036 0.5039

Avg. 0.4564 0.4692

Under asynchronous hand gesture detection and recognition, the interaction effect
in the real-world experiment is presented in Figure 9. The figure shows that a UAV can
complete a complex flight task according to the direction provided by hand gestures,
and that discrete hand gesture commands can be successfully transferred into a series of
waypoints. The flight trajectory can be constantly replanned and optimized. A relative
video has been released to the community (https://www.bilibili.com/video/BV14g411
W7xq/, accessed on 1 December 2022). The hand gesture data set and implemented codes
used in this work have been released as an open-source package (https://github.com/
flytohign/HandGestureEgoPlanner.git).

Figure 9. Real-world square loop experiments. The UAV takes off at S, passes through 11 navigation
points 0©, . . . , 10©(N0, . . . , N10) and lands at S again. The arrows represent the flight directions. The
red boxes represent that the UAV has arrived at the navigation point.

https://www.bilibili.com/video/BV14g411W7xq/
https://www.bilibili.com/video/BV14g411W7xq/
https://github.com/flytohign/HandGestureEgoPlanner.git
https://github.com/flytohign/HandGestureEgoPlanner.git
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5. Discussion

This study proposes an IMU data glove integrated with six-axis IMU sensors for hand
gesture recognition. Ten single hand gestures and four combined hand gestures were
designed to interact with a UAV. An asynchronous hand gesture detection and recogni-
tion method is proposed, to complete the interaction. In the study, if the current action
was recognized as a hand gesture, further recognition would be performed. Meanwhile,
the online recognition performance of our proposed method was validated. The results
demonstrated the adaptability of the hand gesture set, and showed high online recognition
accuracy and real-time performance. In addition, the proposed asynchronous hand gesture
detection and recognition method was integrated into the framework of the UAV motion
planning. By establishing a wireless data channel between hand gesture and UAV, efficient
and robust interaction was realized. Furthermore, in actual scenarios, the results of various
complex flight experiments and interaction efficiency evaluation verified the feasibility of
the framework.

Detailed comparison of our data glove to previous studies is listed in Table 8. With the
increase in the number of IMUs, and the implementation of deep learning, the recognition
performance will be significantly improved. For example, Lin et al. [35] proposed a data
glove system integrating 27 IMUs for hand function evaluation: the average hit rate was
70.22%, based on the machine learning algorithm. Xu et al. [36] proposed a convolutional
neural network (CNN) model on the terminal, which realized 98.79% for 53 hand gestures.
The reasons for the equivalent or even better performance of the proposed data glove
with fewer IMUs were probably the design of the hand gestures and the application of the
cascading structure of the algorithm.

Table 8. Comparison of the proposed data glove to previous ones. MLP: multilayer perceptron; RNN:
recurrent neural networks; CNN: convolutional neural network.

Research [35] [12] [13] [36] This Work

Components MSP430, 27 IMUs,
Bluetooth

Intel’s Edison, 5
IMUs, Bluetooth and

WiFi

Arduino Nano
33BLE, 5 IMUs,

Bluetooth and USB

STM32F103RCT6, 15
IMUs, Bluetooth

STM32L151CCT, 5
IMUs, USB and

Bluetooth

Model k-means clustering Naïve Bayes, MLP,
RF RNN CNN GNB + RF

Offline average
recognition accuracy

70.22% for three tasks
from 15 healthy

subjects and 15 stroke
patients

92% for 22 distinct
hand gestures from

57 participants

95% for 8 classes
decoding task from 3

subjects

98.79% for 53 hand
gestures from 22

subjects

98.45% for gesture
and non-gesture;

95.83% for 10 hand
gestures from 10

subjects

Table 9 presents the comparison of methods and performance for hand gesture
recognition. Previous studies reported using data frame analysis, unsupervised threshold
detection, and scalar value estimation for hand gesture segmentation: however, there
were disadvantages, such as long computational time, large segmentation delay, and long
recognition time, and it was difficult to balance between real-time performance and recog-
nition accuracy. Although previous studies applied hand gesture segmentation based
on threshold detection, most of them considered the difference in amplitude variation
of IMU signals, and ignored the impact of the threshold setting on segmentation perfor-
mance. In addition, in the current study, a certain interval of inactivity was considered in
threshold detection, which contributed to better real-time performance and higher online
recognition accuracy, along with the cascading structure of algorithm. A balance between
real-time and recognition accuracy was achieved, to ensure that the proposed system was
efficient and robust.
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Table 9. Comparison of methods and performance. ANN: artificial neural network; HMM: hidden
Markov model; LSTM: long short-term memory.

Research [16] [17] [18] [19] This Work

hand gesture
segmentation

analyze each frame
from the glove

sensors

unsupervised
threshold-based

segmentation

based on
Dempster–Shafer

theory

detect the start/end
of a hand gesture

sequence by
estimating a scalar

value

threshold detection
and interval of

inactivity

hand gesture
recognition two ANNs in series HMM based on two LSTM

layers
GNB cascading with

RF

real-time
performance

computational time is
about 9 min for 10

hand gestures

average
segmentation delay is

263 ms

based on the
evidence reasoning,
the delay between

spotting and
recognition is

eliminated

no more than 12 ms
to recognize the
completed hand

gesture in real-time

about 7.8 ms to
recognize the

completed hand
gesture

segmentation or
recognition accuracy

over 99% for a library
of 10 gestures and

over 96% for a library
of 30 gestures

segmentation
accuracy can rise to
100% at a window

size of 24 frames and
average

oversegmentation
error is 2.70%

the recognition
accuracy (95.2%)
after spotting is
higher than the

accuracy (96.7%) of
simultaneous

recognition with
spotting

offline recognition
accuracy is 100%

online recognition
accuracy up to 92%

Previous studies have generally focused on basic UAV flight commands based on hand
gesture recognition, and the collision avoidance problems have not been well-considered.
The comparison of hand gesture commands and UAV flight actions is shown in Table 10.
Hu et al. [37] developed a real-time dynamic hand gesture recognition system for UAV
flight control, and a Leap Motion Controller to collect the skeleton data of dynamic hand
gestures. Based on the 8-layer convolutional neural network, an average accuracy of 96.9%
was achieved on non-scaled datasets. Yu et al. [22] designed basic control commands
and mode-switching commands for UAV control. Wireless data gloves incorporating
flex sensors and inertial sensors were used to build hand gesture datasets. The average
recognition accuracy of 10 static hand gestures and 5 dynamic hand gestures was 100% and
98.4%, respectively. Although research progress has been made regarding the interaction of
hand gestures and UAV flights, most dynamic hand gestures are essentially a combination
of static hand gestures and transition processes, which affects robustness and real-time
performance. Therefore, the designed hand gesture set takes full account of hand features,
and is reasonably mapped to UAV flight motions. Single hand gestures of high accuracy
are combined, to ensure stability of interaction. Additionally, various studies have only
used hand gestures to avoid obstacles during UAV flights, rather than to achieve collision
avoidance in complex environments by integrating a motion planning framework.

Undoubtedly, limitations exist in the current study. The IMU-based data glove com-
municates with the remote processing terminal via wired links, while the terminal commu-
nicates with the UAV wirelessly within a Local Area Network (LAN). The communication
mode between the glove and UAV is expected to be improved, and outdoor scenarios will
be developed for more applications.
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Table 10. Comparison of hand gesture commands and UAV flight actions.

Research [20] [21] [37] [22] This Work

hand gesture
command

forward, backward,
left, right, ascent,

descent, hovering,
rotating clockwise,

rotating
anticlockwise

take off, land, height
down, hover, height

up, pilot

move forward, move
backward, turn left,
turn right, move up,

move down, turn
clockwise, turn

anticlockwise, special
movement 1, special

movement 2

basic commands:
throttle up, throttle
down, pitch down,

pitch up, roll left, roll
right, yaw left, yaw

right, flag, no
command; mode

switching commands:
arm, disarm, position

mode, hold mode,
return mode

move left, move right,
move up, move
down, wait for

combination, disarm,
take off on high,

hover, forced land,
move forward, move
backward, turn left,

turn right

UAV flight basic action flight basic action flight basic action flight
simple flight mission,

artificial collision
avoidance

complex flight task,
automatic collision

avoidance

6. Conclusions and Future Work

In this paper, a novel hand gesture detection and recognition method was proposed,
based on the IMU data glove for UAV motion planning. The cascaded classifier was
designed to recognize the generated hand gestures asynchronously, through which, higher
online recognition accuracy, shorter online recognition time, and the shorter total time of
one hand gesture were obtained. Afterwards, the online gesture detection and recognition
module was integrated with the open-source UAV motion planning module, and extensive
real-world experiments of complex flight tasks were conducted. The real-time performance
and stability of the asynchronous interaction were better than those of the synchronous
interaction. The experimental results show that the proposed method can support UAV
motion planning efficiently and robustly.

In future work, in-depth research will be conducted on the following three aspects: (i) to
adapt to the requirements of different scenarios, cross-scene hand gesture recognition can be
proposed with the transfer learning method, and the cost of data acquisition will be reduced;
(ii) to realize the fine-grained finger gesture recognition onboard, the construction of a hand
gesture network structure could be considered, which would abstract the relative position
between different fingers into ‘0’/‘1’ (char type) values, with each hand gesture corresponding
to a unique ‘0’/‘1’ matrix; (iii) to solve complex collision avoidance problems, hand gesture
interaction could be integrated into every control point of UAV motion planning. Based on the
task learning method, the trajectory of the UAV flight would be modified by the hand gesture
interaction, to adapt to unknown and complex environments.
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