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Abstract
In this study, the accuracy of estimation of the ship’s position and the heading angle using simultaneous localization and map-
ping (SLAM) with a light detection and ranging (LiDAR) at sea was verified. In general, the ship’s position and the heading 
angle are obtained using a global navigation satellite system (GNSS) such as global positioning system (GPS) positioning 
and a GPS compass. The quasi-zenith satellite system (QZSS) has also emerged in Japan with the centimeter-level position-
ing augmentation system (CLAS), but it does not always provide the best positioning accuracy, even at sea. In addition, 
while position information and the heading angle of ship are important for control of maritime autonomous surface ships 
(MASS), they are conventionally dependent on GNSS-based sensor systems. In considering sensor redundancy for safety 
of MASS, this study performed SLAM using the LiDAR to create a point cloud map of the coast. The point cloud map was 
compared with open map data, and it was confirmed that a highly accurate map was obtained. This point cloud map can 
be used for autonomous navigation such as automatic berthing. In order to evaluate the accuracy of estimating the ship’s 
position and the heading angle using LiDAR SLAM, we used the experimental ship to simultaneously take measurements 
with the marine GPS compass and the QZSS receiver for comparison, in addition to the IMU and the LiDAR, and compared 
the measurement accuracy by the three sensors. As a result, the position and the heading angle were estimated with higher 
accuracy using LiDAR SLAM at � = 1.4 m ( � = 1.2 m) for position estimation than the GPS with the QZSS data in the 
RTK-Fix condition as a reference.
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1  Introduction

Estimation of ship’s pose including the position and the 
heading angle is important for automatic control of a ship. 
For example, in automatic berthing control in [1], the dis-
tance from the floating pier at the time of berthing was set 
at 5 [m] for 4.38 [m] width of the ship hull. The positional 
accuracy required for control here is less than that, and for 
this purpose, positional information accuracy of approxi-
mately 1 [m] is required. Since the GPS conventionally used 
for ship operation cannot meet this accuracy, the authors 
used a receiver compatible with the quasi-zenith satellite 

system (QZSS) to measure the ship’s position ( [2]). The 
QZSS receiver used in this study is capable of using CLAS 
(Centimeter Level Positioning Augmentation System, [3]), 
which is capable of centimeter-level positioning. However, 
a common problem with GNSS (Global Navigation Satellite 
System) is that it does not always provide the best accuracy 
depending on reception conditions and satellite constella-
tions. Figure 1 shows the GNSS quality of the QZSS receiver 
during navigation in the test area of the experimental ship. 
As this figure shows, the QZSS receiver does not always 
obtain a fix solution during navigation, so the positioning 
accuracy is not always in the centimeter-level, even in open 
seas. The ship’s heading angle is also based on a GPS com-
pass, which uses two GPS antennas to measure the ship’s 
attitude by GPS positioning. The current means of estimat-
ing ship’s position and attitude relies strongly on GNSS. In 
building automated systems of ships, redundancy of sensors 
is important to guarantee the reliability of the system, and 
alternative means to GNSS should be considered.
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Recently, SLAM (Simultaneous Localization and Map-
ping) has been widely used in the fields of autonomous 
vehicles ( [4, 5]) and mobile robotics ( [6–9]). SLAM uses 
sensors such as cameras, image sensors, and LiDARs (Light 
Detection and Ranging) to measure environmental informa-
tion, which is then used to simultaneously create a map of 
the surrounding environment and estimate self-position. For 
self-position estimation, the horizontal position and orienta-
tion of a mobile object are usually estimated. Thus, it may be 
used as an alternative to GNSS-based methods such as GPS 
positioning and a GPS compass ( [10]). There are, however, 
few studies of SLAM at sea using a ship designed for use in 
MASS (Maritime Autonomous Surface Ship).

This study examines the availability of LiDAR-based self-
position estimation and mapping technology as a means of 
positioning and estimating the heading angles other than 
GNSS, especially for use during berthing, when high accu-
racy of localization is required. Specifically, we applied the 
LiDAR-based SLAM algorithm on the sea and verified the 
performance of point cloud mapping, positioning, and head-
ing angle estimation at the coast around a pier.

This paper is organized as follows: in the next section, 
we discuss previous research relevant to the present study, 
followed by an explanation of method including SLAM 
algorithms, sensors, software and measurement of data. In 
Sect. 4, we show results of mapping and localization using 
LiDAR SLAM and evaluate them by comparing them with 

GPS/QZSS data and open map data. We discuss the practical 
use of SLAM on an autonomous ship in Sect. 5. Finally, we 
conclude the paper.

2 � Related work

LiDAR and SLAM using LiDAR (LiDAR SLAM) are 
widely used for mobile robotics and autonomous driving of 
cars. On the other hand, there are few examples of LiDAR 
SLAM in ships due to several difficulties.

SLAM at sea has been conducted by Ødven [11]. In this 
example, 2D SLAM, Hector SLAM ( [12]), and two 3D 
SLAM algorithms, LOAM (LiDAR Odometry and Map-
ping, [13]) and BLAM (Berkeley Localization and Map-
ping, [14]), were applied to localization and mapping in 
a port using Velodyne VLP-16, which is 16 line LiDAR. 
This study shows the estimation error of the position and 
the heading angle when compared to RTK-GPS (Real-Time 
Kinematic GPS) positioning and the GPS compass heading 
angle. In the study, neither method has been able to produce 
a point cloud map with sufficient accuracy for navigation. 
As a result, Ødven reported that neither SLAM algorithm 
was sufficient to serve as a complete solution for operation 
of the autonomous ferry.

In another study, Shan et al. [15] used measurements 
taken during a three-hour cruise of Amsterdam’s canals as 
a dataset for validation of LIO-SAM. The canals are sur-
rounded by the shore on both sides of the navigation chan-
nel, and the measurement distance was small (the canal’s 
width is approximately 20–100 [m]). The present paper 
assumed the typical case of berthing at sea, and SLAM was 
performed by measuring the shore from offshore. In their 
study, Shen et al. point out that SLAM in canals is a difficult 
problem for several reasons. Indeed, despite the least vertical 
displacement and smaller maximum turning velocity than 
other land-based measured data sets, the SLAM success rate 
is the lowest, and three of the four SLAM algorithms com-
pared fail to produce meaningful results. One reason for the 
difficulty of SLAM on canals is that there are significantly 
fewer planar feature points on the water due to the absence of 
the ground, and the lack of planar feature points makes verti-
cal point cloud integration difficult. In this study, the match-
ing error of SLAM was reduced by adding a constraint to the 
coordinate transformation in the scan-matching calculation, 
which transforms the point cloud scanned with LiDAR into 
the coordinates of the point cloud map.

Zhou et al. [16] proposed S4-SLAM algorithm for multi-
scene environments including ground and water-surface. 
They showed results without GPS and the inertial naviga-
tion system (INS) for harbor dataset using S4-SLAM algo-
rithm. As reported in [15], LOAM fails on some harbor data 
here as well in this study. In their research, however, only 

Fig. 1   An example of measured GNSS quality data of the QZSS 
receiver around the test sea area
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the trajectory plots and final drift error are shown, and no 
evaluation of the heading angle estimation is made. The loop 
closure of S4-SLAM probably did not work because the tra-
jectories of the ship was not looped in any of the harbor 
datasets. The loop closure refers to the post-processing that 
is performed during SLAM to distort the entire map being 
created. The result was a drift of 0.56 to 0.93%, which was 
expressed as a percentage of deviation relative to the total 
displacement distance of the ship in the paper, for a few 
kilometers of measurements.

Based on the above previous research, we will conduct 
LiDAR and IMU (Inertial Measurement Unit) measurements 
in the test area from the Innoshima marina in Japan, where 
the experimental ship is berthed, to the area near the high-
speed boat terminal in the north to verify the availability of 
LiDAR SLAM at sea.

3 � Method

3.1 � Algorithms of SLAM

SLAM refers to a technology that simultaneously estimates 
the self-position of a mobile object and maps its environ-
ment. The process of SLAM can be divided into two main 
categories. The first is the front-end part that sequentially 
processes the data measured by the sensors such as a LiDAR. 
The other is the back-end part, which focuses on optimiza-
tion of the pose graph.

In this study, two algorithms were used to verify SLAM 
performance. One is a simple algorithm, which consists of 
a front-end part of NDT (Normal Distributions Transform 
[17]) scan matching using PCL (Point Cloud Library, [18]) 
and a back-end part of graph-based SLAM using graph 
optimization with g 2 o (General Graph Optimization, [19]). 
NDT is one of the methods for matching two point clouds. 
In NDT, the reference point cloud is divided into voxels, the 
distribution of points in the voxels is approximated by a nor-
mal distribution, and matching is performed with the newly 
scanned point cloud data. The matching involves minimizing 
the following evaluation function:

where p = (tx, ty, �)
t is a coordinate transformation param-

eters, xi is i-th input scan point cloud data, xi is the trans-
formed scan point cloud data of xi using the parameter p , ∑

i and qi are the covariance matrix and mean coordinates of 
the transformed scan point cloud data xi , and N is the num-
ber of points. The advantage of NDT is that it is generally 
less computationally intensive than ICP (Iterative Closest 
Point, [20]), which evaluates the distance between all points, 
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because the amount of data can be reduced by dividing the 
reference point clouds into voxels. The back-end graph opti-
mization is mainly used to apply the loop closure removing 
map distortions. The loop closure corrects errors accumu-
lated due to sensor noise and sequential scan matching. The 
loop closure detects a loop when the measurement target 
(in this case, a ship) circles around in an environment and 
returns to its original position during the SLAM run, and 
corrects the entire map so that the measurement results point 
to the same location.

The other algorithm used in this study is LIO-SAM 
(tightly-coupled LiDAR Inertial Odometry via Smoothing 
and Mapping, [15]), which use an IMU to remove distortion 
of maps. LIO-SAM pre-integrates IMU measurements to 
motion estimation to de-skew point clouds and provides an 
initial guess for LiDAR odometry optimization. LIO-SAM 
uses code of LeGO-LOAM ( [21]) and adopts scan-match-
ing algorithm by [22]. LIO-SAM framework formulates the 
problem using factor graph ( [23]) and pre-integrates IMU 
measurements as the IMU pre-integration factor ( [24, 25]). 
The ship state x can be defined as

where R ∈ SO(3) is the rotation matrix, p ∈ ℝ
3 is the posi-

tion vector, v is the velocity, and b is the bias of the IMU 
measurement. The transformation T ∈ SE(3) from the world 
frame W to the body frame B is defined as T =

[
R|p].

The IMU measurements of angular velocity and accelera-
tion are defined as follows:

where 𝜔̂t and ât are the raw IMU measurements in the coor-
dinates B as time t. bt and nt are the bias and white noise. 
RBW
t

 is the rotation matrix from W to B . g is the constant 
gravitational acceleration vector in W . The pre-integration 
of IMU measurements proposed in [24] is applied using the 
relative body motion between two timesteps as follows:

where v , p and R are the velocity, position and rotation of the 
motion of the ship. This IMU pre-integration factor will be 
incorporated into the factor graph of LIO-SAM. Keyframes 
of LiDAR scans are associated with the transformations and 
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merged into a voxel map Mi . A voxel map consists of the 
LiDAR keyframes including the transformed edge and pla-
nar features ′Fe

i
 and ′Fp

i
 . The distance between the edge and 

planar features extracted from the scan point cloud can be 
calculated by the following equation:

where k, u, v, and w are the feature indices. pe
i+1,k

 is an edge 
feature in �Fe

i+1
 in W corresponding edge line consists of the 

points pe
i,u

 and pe
i,v

 . For planar feature pp
i+1,k

 in �Fp
i+1

 , pp
i,u

 , pp
i,v

 
and pp

i,w
 are the points from the corresponding planar patch 

in Mp

i
 . The optimal transformation Ti+1 is obtained by mini-

mizing as follows:

Using the transformation Ti , we can obtain the ship state as 
follows:

where the relative transformation ΔTi,i+1 = T⊤

i
Ti+1 . We refer 

the reader to the description from [15] for the detailed algo-
rithm of LIO-SAM. We set the noise and bias parameters 
for acceleration and gyro of LIO-SAM to 10 times those of 
the original to adjust to the IMU used in this study. Several 
parameters were adjusted and combinations were considered 
in running the SLAM. In particular, the tolerance settings of 
coordinates transformation of point clouds had a significant 
impact, especially in suppressing the drift during matching 
point clouds as described in the next section.

3.2 � SLAM for few horizontal planar features

SLAM at sea is considered difficult because the water depth 
near the shore is often shallow, and the measurement dis-
tance from the shore tends to be long, reducing the number 
of LiDAR scan points that can be measured. Furthermore, 
SLAM at sea has the fatal feature that point clouds of the 
ground surface and sea surface can be hardly acquired, 
and thus horizontal planar features cannot be sufficiently 
obtained. This is not merely a matter of having fewer point 
clouds available. Even when a sufficient scanned point cloud 
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is available, while coordinate transformations of the hori-
zontal position and yaw angle can be calculated, the lack of 
horizontal planar features results in matching errors in the 
vertical and roll and pitch directions. Figures 2 and 3 show 
typical examples of scan-matching failures in SLAM at sea. 
Figure 2 shows a point cloud matching error in the verti-
cal z-axis direction. Because of the map matching failure, 
the estimated trajectory of the ship also took an improb-
able trajectory in the vertical direction. In Fig. 3, a matching 
error occurs in the roll direction relative to the measure-
ment direction, resulting in a point cloud map that appeared 
to be doubly overlapped. This error can also occur in the 
pitch direction. Figure 4 illustrates the causes of these scan-
ning errors: in examples (b) and (c) of Fig. 4, the heave 
displacement and roll angle of the ship cannot be determined 
because horizontal planar features cannot be obtained. The 
LIO-SAM used in this study utilizes IMU observations to 
optimize LiDAR odometry, which removes distortion of 
scanned point cloud and provides an initial guess of scan 
matching. The IMU measurements thus only affect the initial 
value of the optimization and do not fundamentally solve the 
problem of matching failures described in Fig. 4 as a result 
of the optimization.

In this study, the following coordinate transformation 
constraints were introduced in the SLAM calculation to 
suppress matching errors due to missing horizontal planar 

X
Z
Y

z-axis drift

Estimated ship position

Estimated trajectory

Fig. 2   Z-axis drift of scan matching on the sea

Measurement
Direction

The angle error of 
scan matching 

Fig. 3   The error in angular transformation of scan matching in the 
roll direction of the ship
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features at sea: (1) for the z-axis coordinate transformation 
Tz , Tz < 1.0 [m]; (2) for coordinate transformations of roll 
angle Troll and pitch angle Tpitch , Troll, Tpitch < 10 [deg]. The 
parameters of constraints were determined by trial and error 
for the measurement data. We tested these constraints with 
smaller values than above, which did not affect the accuracy 
of the results. Furthermore, the point cloud of 30 [m] around 
the LiDAR was excluded so as not to include the point cloud 
of the own ship and ship wake that would be noise during 
the scan matching of the point cloud.

3.3 � Sensors, software, measurement

We used the experimental ship “Shinpo” to collect data for 
this study (Fig. 5). The LiDAR sensor used in this study was 
a Velodyne VLP-32C LiDAR and installed on deck using 
a tripod. The IMU used to correct the LiDAR values was 
a sensor by WitMotion with a 9-axis sensor (3-axis accel-
eration + 3-axis gyro + 3-axis magnetometer). The output 
frequency of the 9-axis sensor was set to 50 Hz. To meas-
ure the motion of the LiDAR body using the 9-axis sensor, 
a PLA (Polylactic Acid) resin mount was made using an 
FDM (Fused Deposition Modeling) 3D printer instead of 

using a metal mount, considering the effect on the IMU’s 
geomagnetic sensor. The mount was successfully fixed to 
the LiDAR. Figure 6 shows the installation of the sensor in 
the experiment. To evaluate the results of LiDAR SLAM, we 
prepared the marine GPS compass and the QZSS receiver for 
this study as shown in Fig. 7. The marine GPS was installed 
on the roof of the cockpit to provide GPS positioning and 
heading. The QZSS receiver was connected to two anten-
nas, one near the GPS compass and one near the bow of the 
experimental ship, to enable measuring the ship’s position 

Fig. 4   Examples of SLAM failures at Sea. a is an example where 
horizontal planar features are obtained with LiDAR scan, in which 
case the position and angle of the ship (LiDAR) in the vertical plane 
can be determined. b and c are examples where horizontal planar 
features aren’t obtained. In b, the heave displacement of the ship 

(LiDAR) cannot be determined because the true height of the object 
is not known from the acquired point clouds. In c, it is not possible 
to determine whether the object being measured is tilted or the ship 
(LiDAR) is tilted because it is not known how much the obtained 
point cloud is tilted in the space-fixed coordinates

Fig. 5   Experimental ship “Shinpo” used for measurement data

Fig. 6   Sensor configuration of LiDAR and IMU

Fig. 7   Sensor configuration of GNSS (GPS and QZSS)
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and heading angle. LiDAR and IMU data were recorded as 
rosbag, a ROS (the Robot Operating System) data log for-
mat, for use in SLAM. GPS and QZSS measurement data 
were also logged using the onboard PLC (Programmable 
Logic Controller) system ( [1]).

SLAM algorithms in this paper were run on ROS, which 
is widely used to develop robotics. The NDT-based SLAM 
was run on ROS 2 Galactic. LIO-SAM was run on ROS 1 
Noetic. Both were run on the laptop with Ubuntu 20.04 LTS 
and equipped with the Core i7-9750 H processor and 16 GB 
RAM. Figure 8 shows a screenshot of LIO-SAM running on 
the laptop. The screen outputs the computation logs for scan 

matching and graph optimization, and the current map crea-
tion is shown on the Rviz visualization software. In this case, 
we manually sent commands to output the created map and 
the results of self-position estimation for analysis. The map 
was created along a route starting from the floating pier to 
the beach north of the floating pier where the dock is located 
and back as shown in Fig. 9. The average speed over ground 
of the ship during the measurement was 4.2 [kt].

4 � Results

4.1 � Mapping

SLAM with the NDT-based algorithm and LIO-SAM was 
performed on the data measured using the experimental 
ship. The point cloud map created in this study is shown 
in Figs. 10 and 11. For comparison, the point cloud map 
is superimposed on the aerial image derived from Google 
Earth. The two cases SLAM performed in Figs. 10 and 11 
are different measurement data, one without the IMU and 
one with the IMU, and the measurement paths are the almost 
same as those shown in Fig. 9. In the NDT-based algorithm 
without the IMU, the map distortion increases after leaving 
the floating pier where the Innoshima Marina is located at 
the starting point of measurement. In this example, the loop 
closure to remove the distortion of the map was also not 
performed because the map creation failed in the middle of 
the process due to the significant distortion. The result of 
SLAM using LIO-SAM is shown in Fig. 11. In this exam-
ple, the loop closure worked many times during the SLAM 
computation, indicating that the map distortion was appro-
priately removed. A closer look reveals a slight distortion as 
the distance from the floating pier, the starting point of the 
mapping, increases compared to the aerial image. Although 
the two algorithms cannot be easily compared because they 
use different cartographic methods other than with and with-
out the IMU, the LIO-SAM produced more accurate maps.

Fig. 8   Screenshot of LiDAR SLAM (LIO-SAM)

Floating Pier

Path of Measurement

Start

End

Innoshima
N

Innoshima Marina
Sanwa Dock

Fig. 9   Location and trajectory of measurement

Fig. 10   Point cloud map 
generated using the NDT-based 
algorithm without an IMU. The 
background aerial photograph is 
referred to Google Earth
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In the case of automatic ships, maps are used to monitor 
the ship’s position and course on a monitoring screen. For 
standard vessels, the electronic navigational chart (ENC) 
such as the ECDIS (Electronic Chart Display and Informa-
tion System) and radar (radio detecting and ranging) are 
used for navigation For automatic berthing control naviga-
tion, we have developed a GUI for automatic berthing con-
trol, converting map data created with OpenStreetMap into a 
3D map in a previous study. Here, a point cloud map created 
by LIO-SAM is superimposed on this 3D map, and they are 
compared. Figure 12 shows a screenshot of the automatic 
berthing GUI, and below it is a magnified image of the area 
around the floating pier. As can be seen from the screenshot, 
overall, the point cloud and the 3D map are generally con-
sistent. However, when looking at the point cloud around the 
floating pier, the location is out of alignment with the map. 
Also, the position of the girder for bringing the ship ashore, 
which protrudes to the left of the floating pier, is also dif-
ferent. These mapped shapes are out of alignment not only 
with OpenStreetMap but also with other map data, such as 
Google Maps and maps made by GSI (Geospatial Informa-
tion Authority of Japan). In both cases, the floating pier is 
not on the map in the first place. Electronic navigational 
charts are not open data, making it difficult to use them for 
autonomous ships tasks such as obstacle avoidance and path 
planning, for example. Open map data are easy to use for 
path calculation and monitoring GUI, but has accuracy prob-
lems; if LiDAR can be used to create highly accurate maps, 
applications such as path planning that takes into account 
port geometry, as in [26], can be expected.

In the next section, we compare the ship’s position and 
the heading angle estimated by LIO-SAM with data meas-
ured using GPS and QZSS.

4.2 � Localization

This section compares the self-position estimation of LiDAR 
SLAM (LIO-SAM) and positioning performance of GPS 
and QZSS. The trajectories of the measurement is shown 

in Fig. 13. The QZSS positioning information during the 
measurement was always state of a fix solution of RTK 
(Real-Time Kinematic) positioning. The position shown in 
the figure represents the ship’s midship position, which was 
calculated from the onboard locations of the LiDAR and 
GPS/QZSS antennas. The ship’s heading angle information 
in the following figures was obtained from the localization 

Fig. 11   Point cloud map 
generated using the LIO-SAM 
algorithm. The background 
aerial photograph is referred to 
Google Earth

Fig. 12   a The point cloud map created using LIO-SAM superim-
posed on the 3D map data in the automatic berthing control GUI. b 
Enlarged image of the area around the floating pier. The original map 
data of 3D map is referred to OpenStreetMap
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results for SLAM, the GPS compass for GPS, and the QZSS 
compass for QZSS, respectively. Consequently, it should be 
noted that the accuracy of the heading angle data from these 
sensors affected the error in the midship position estimation. 
Within the latitudinal displacement of 600 [m] or less, the 
trajectories obtained by the three methods agree well. How-
ever, an enlarged view of the area near the pier in Fig. 13 
shows some sections where the GPS trajectories deviates 
significantly from the other two. In contrast, trajectories of 
SLAM and QZSS appear to be almost identical. In addition, 
the overall trajectory using GPS is not smooth, while SLAM 
and QZSS trajectories are smooth.

Next, the time series of latitude and longitude displace-
ment and the heading angle estimated or measured with 
SLAM, GPS, and QZSS are shown in Fig 14. The head-
ing angle is shown in a range of ± 180 degrees with north 
as zero degrees, east as positive, and west as negative, for 
ease of reading the graph. In Fig. 14, it can be seen that the 
values obtained by the three methods are generally consist-
ent in most sections. However, Fig. 14 reveals that SLAM 
had a more significant error than GPS/QZSS, in particular 
for the heading angle at the beginning of the measurement. 
This error in the heading angle estimation is assumed to 
be due to incomplete mapping just after the start of SLAM 
computation.

Since a simple comparison of the time series makes it dif-
ficult to understand the error of each estimate, Fig. 15 shows 
the difference based on the value from QZSS with RTK fix. 
This figure clearly shows the difference between GPS and 
SLAM against QZSS. The difference in the displacement 
estimated using SLAM seen in Fig. 15 is larger in the lon-
gitude direction than the difference in the latitude direction. 
The results of GPS is noisier than SLAM and QZSS, and 
the positioning results are more varied. Looking at the dis-
placement in the latitudinal direction, it can also be read that 
GPS errors occur in the opposite direction of movement and 
this indicates that the GPS positioning results are delayed. 
Regarding the heading angle, it is surprising that SLAM was 

Fig. 13   Comparison of trajecto-
ries acquired by SLAM, QZSS 
and GPS. The point cloud map 
in this figure was downsampled 
for plotting

Fig. 14   Time series of the displacement estimated using SLAM 
(LIO-SAM) and GPS/QZSS positioning and the heading angle esti-
mated using SLAM(LIO-SAM) and the GPS/QZSS compass

Fig. 15   Error of the displacement using SLAM (LIO-SAM) and GPS 
positioning versus QZSS positioning, and error of the heading angle 
estimated using SLAM (LIO-SAM) and the GPS compass versus the 
QZSS compass
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able to output more stable estimates to the values output by 
marine GPS compass. In particular, during the three turning 
during the measurement, both SLAM and GPS had noise in 
the heading angle data, but SLAM estimated with the same 
level of accuracy as the marine GPS compass. However, the 
deviation at the beginning of the measurement is up to about 
20 degrees, and it is recommended not to use SLAM until 
estimation of the heading angle is stabilized.

To further compare the accuracy of position estimation, 
Fig. 16 compares the errors of GPS and SLAM results based 
on the QZSS positioning data with the distance from the 
origin of the coordinates as the horizontal axis. The fact that 
the position error of SLAM is constant with respect to the 
distance from the origin on the way there and on the way 
back of the measurement indicates that the self-position esti-
mation with SLAM itself is stable. In the section within 600 
[m] of the origin, the error of the SLAM position compared 
with the QZSS position is mostly within the range of 1.3 
[m]. As for GPS, when the trajectories were superimposed in 
Fig. 13, the GPS and QZSS trajectories seemed to agree well 
overall, but in fact, the position data acquired at each time 
point contained a large error, with the mean and variance of 
the error being 3.0 [m] and 1.5 [m] for the entire interval. 
Compared to GPS location data, SLAM-based self-position 
estimation tends to produce smaller variations in position 
data.

Finally, we will look at the distribution of errors for each 
data set. As usual, we will compare the GPS and SLAM 
results with respect to the QZSS data. Figures 17, 18, 19, 
and 20 show the density distribution of error of the longi-
tude displacement, the latitude displacement, the position, 
and the heading angle for SLAM and GPS compared with 
QZSS, respectively. First, for latitude displacement, the dis-
tribution of GPS errors clearly shows two peaks, suggesting 
that the delay in estimation is the cause; compared to GPS, 

the variance of SLAM latitude displacement is very small. 
The distribution of longitude displacement has a single peak 
thanks to the path of the measurement in this case. In con-
trast, error of SLAM distribution is hemmed on the positive 
side due to errors caused by map distortion. Comparing the 
two errors in terms of position, SLAM is affected by the 
error in longitude displacement, but the distribution is closer 

Fig. 16   Position error of SLAM and GPS vs QZSS

Fig. 17   Probability density of longitude displacement error of SLAM 
and GPS versus QZSS

Fig. 18   Probability density of latitude displacement error of SLAM 
and GPS versus QZSS
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to the origin than that of GPS. For heading angle, the error 
distribution of GPS is more spread out than that of SLAM, 
indicating that SLAM is more accurate. The distribution of 
SLAM shows a slight negative bias. Table 1 summarizes 
the statistics of error of GPS and SLAM compered with 
QZSS for the longitude/latitude displacement, position, and 
heading angle. The values in bold represent the better one 

of the GPS and SLAM results. In more categories, SLAM 
estimates were more accurate than GPS. In actual berthing 
control, accuracy of position data near the pier is critical. 
Hence, SLAM results were also analyzed for data within 
600 [m] of the pier. The average position error within 600 
[m] of the pier was 0.79 [m] with the standard deviation of 
0.36 [m]. For latitudinal displacement, the error averaged −
0.63 [m] with the standard deviation of 0.51 [m] within 600 
[m] of the pier. These results indicate that LiDAR SLAM 
can satisfy the accuracy required for the automatic berthing 
control described in the introduction of the paper.

5 � Discussion

This section provides a discussion of the application of 
SLAM to the actual operation of autonomous ships. In the 
previous section, we noted that LiDAR estimates are stable 
because of the small changes in estimates during the round-
trip of measurements. In the actual positioning system using 
QZSS for automatic berthing control, the ship’s position is 
measured while the ship is moored, and the position during 
automatic control is calculated using this as the zero point 
[1]. For LiDAR SLAM, the reliability of position measure-
ment around the pier can be improved by setting the zero 
point before the start of control.

Considering the practical application of SLAM to auto-
matic ships, performance under various weather conditions 
is important. Carballo et al. [27] tested LiDAR, but not 
SLAM, measurements of stationary targets under conditions 
of fog, rain, and intense light (simulating sunlight) using 
the Japan Automobile Research Institute’s (JARI) weather 
experiment facility. In this study, for example, in a situation 
simulating fog, all LiDARs used in the experiment produced 
toroidal-shaped noise due to reflections from the fog and 
caused a reduction in reflection intensity. They also report 

Fig. 19   Probability density of position error of SLAM and GPS ver-
sus QZSS

Fig. 20   Probability density of error of heading angle estimated using 
LIO-SAM and the GPS compass versus the QZSS compass

Table 1   Statistics of error of GPS and SLAM compared with QZSS

Bold numbers indicate that the corresponding method is superior to 
the other

Subject Average � Standard 
devia-
tion �

Displacement
Longitude (GPS) [m] 0.90 3.1
Longitude (SLAM) [m] − 0.34 0.59
Latitude (GPS) [m] − 0.50 1.6
Latitude (SLAM) [m] 0.32 1.67
Position (GPS) [m] 3.3 1.5
Position (SLAM) [m] 1.4 1.2
Heading angle (GPS) [deg] − 0.19 2.0
Heading angle (SLAM) [deg] − 0.90 1.5
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that in a rain situation, LiDAR sensors detect sprinkler water 
as a rain column. The effect of these noises of LiDAR under 
challenging weather conditions on the SLAM should also be 
discussed. For example, using only a certain range of point 
clouds for noise, or using only data with a certain intensity 
of reflection, could be a way to reduce SLAM errors under 
these weather conditions.

Some SLAM algorithms, including the ones used in this 
study, perform loop closure to correct distortion of the map. 
This is to correct the gap in localization that occurs when a 
ship is regarded as having returned to its original position 
after having moved some distance from the position it was 
in during the measurement. Loop closure is important in 
removing map distortion, but on the other hand, it is det-
rimental to control using outputs of localization because it 
causes the estimated self-position to jump. SLAM is there-
fore not used for real-time localization in actual autono-
mous ship applications, but rather the scan matching, which 
matches LiDAR-measured point clouds with pre-made maps 
in real time, is used for automatic control. In this paper, we 
have done the mapping and localization using SLAM algo-
rithm for measured LiDAR scan. The real-time localization 
using scan matching and its application to automatic control 
will be our future work.

6 � Conclusion

In this study, we performed SLAM using LiDAR at sea on 
the experimental ship with a view to applying it to autono-
mous ships.

We examined two algorithms for SLAM mapping, one 
using the IMU and the other not, and compared the maps 
created using these algorithms with the aerial image and 
the map of open data. The IMU mount was created with a 
3D printer for stable measurements using the IMU and the 
LiDAR, and measurements with the QZSS receiver equipped 
with two antennas and the marine GPS compass were taken 
using the experimental ship for comparison.

The NDT-based algorithm failed to produce a map, but 
LIO-SAM, which integrates IMU measurements on map-
ping, was able to generate a map. Compared to open maps, 
the geometry of the floating piers and other features differed 
from actual conditions, indicating the importance of point 
cloud maps using LiDAR SLAM.

The accuracy of localization by SLAM was compared 
and evaluated using the marine GPS compass and the QZSS 
receiver. Although there were some estimation errors due 
to map distortion and incomplete maps at the start of the 
measurement, the positions and the heading angle estimated 
by LiDAR SLAM were both acceptable. In particular, within 
600 [m] of the floating pier, LiDAR SLAM was able to 

estimate the position and the heading angle with the accu-
racy required for automatic berthing control.
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