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Abstract: Low back disorders (LBDs) are a leading occupational health issue. Wearable sensors, such
as inertial measurement units (IMUs) and/or pressure insoles, could automate and enhance the
ergonomic assessment of LBD risks during material handling. However, much remains unknown
about which sensor signals to use and how accurately sensors can estimate injury risk. The objective
of this study was to address two open questions: (1) How accurately can we estimate LBD risk when
combining trunk motion and under-the-foot force data (simulating a trunk IMU and pressure insoles
used together)? (2) How much greater is this risk assessment accuracy than using only trunk motion
(simulating a trunk IMU alone)? We developed a data-driven simulation using randomized lifting
tasks, machine learning algorithms, and a validated ergonomic assessment tool. We found that trunk
motion-based estimates of LBD risk were not strongly correlated (r range: 0.20–0.56) with ground
truth LBD risk, but adding under-the-foot force data yielded strongly correlated LBD risk estimates
(r range: 0.93–0.98). These results raise questions about the adequacy of a single IMU for LBD risk
assessment during material handling but suggest that combining an IMU on the trunk and pressure
insoles with trained algorithms may be able to accurately assess risks.

Keywords: risk assessment; lifting biomechanics; ergonomics overexertion injuries; work-related
musculoskeletal disorders

1. Introduction

Low back disorders (LBDs) are a leading occupational health issue, and commonly due
to overexertion. LBDs account for almost 40% of work-related musculoskeletal disorders in
the U.S. [1], resulting in financial and personal burdens due to healthcare costs, time off
work, lost productivity, physical pain, and psychological distress. Individuals working in
manual material handling jobs are at an elevated risk of LBDs due to overexertion experi-
enced by the back during repetitive lifting and bending [2,3]. Overexertion injuries result
from the accumulation of microdamage caused by repeated loading of musculoskeletal
tissues (e.g., muscles, tendons, ligaments, discs), and are consistent with a mechanical
fatigue failure process [4–6].

Ergonomic interventions have reduced work-related musculoskeletal disorder preva-
lence [7–9] by reducing physical strain on workers [10,11]. The hierarchy of controls is a
useful framework for implementing interventions after risks are identified [9].

Ergonomic assessments identify injury risk and play a critical role in informing and
prioritizing where ergonomic interventions are needed. Several ergonomic assessment
tools have been developed to identify LBD risk resulting from manual lifting tasks. The
Lifting Fatigue Failure Tool (LiFFT) is noteworthy because it is based on fatigue failure
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principles [12] and estimates cumulative damage of the low back. LiFFT works by counting
the number of lifting repetitions and using peak load moment (an indicator of back strain
due to the object lifted) to estimate damage inflicted on the person’s back each lift [12].
Gallagher et al. used mechanical fatigue failure principles to develop a relationship between
lumbar moment and tissue damage per cycle, which underlies LiFFT [12]. LiFFT was
validated against existing epidemiological databases [13,14] containing the peak load
moment for each lift, the number of lifts performed per day, and the incidence of LBD for
workers in diverse occupations [12,13].

However, ergonomic assessments can be time-consuming, costly, and inconsistent
in practice. For instance, approximately one in three assessments has been found to
contain errors, and in 13% of the assessments, the errors were substantial enough to
invalidate the evaluation [15]. To perform an ergonomic assessment with LiFFT, a trained
safety professional observes an individual worker during a shift, manually recording the
weight of each object lifted, the horizontal distance from the object to the lumbar spine (or
hip), and the number of repetitions of this task [12]. Due to the time-intensive nature of
these observations, continuous and personalized monitoring is often impractical or cost
prohibitive. This means that rather than assessments occurring over a long duration and
involving a variety of tasks across multiple workers, conclusions are drawn from limited
observations and may not be generalizable across a wide range of workers or tasks.

There is an opportunity to develop more efficient and consistent ways to assess er-
gonomic injury risk over a range of workers and workplace environments by providing
automated monitoring of overexertion risk (e.g., to the low back). Wearable sensors are one
type of emerging technology that could improve ergonomic assessments by monitoring
individuals remotely and for long durations, allowing for personalized injury risk assess-
ment to inform ergonomic interventions. This could reduce the time and effort burden on
safety professionals, while simultaneously enabling more widespread risk assessment.

Wearable sensor systems using inertial measurement units (IMUs) are already being
explored and adopted in industry to complement or expedite ergonomic assessment [16,17].
IMU systems provide kinematic information [18–20] and are beneficial for ergonomic
assessments that seek to capture data related to high-risk postures and bending frequency.
There are some reports from industry indicating that IMU systems are useful in identifying
and reducing musculoskeletal injury risks [16,17], and quantitative claims are now being
made by device manufacturers about the efficacy and capabilities of their IMU systems
for injury reduction. However, there is a dearth of formal, independent, or peer-reviewed
studies that have evaluated these IMU systems, or the scientific basis underlying their risk
assessment algorithms.

One known limitation of IMU systems is that they do not measure the weight of an
object lifted, which may limit their ability to identify injury risk due to physical overloading
or overexertion [21]. While IMU systems can identify when an individual has performed a
forward bend, they are unable to determine the weight of the object lifted or if an object
has been lifted at all. This limitation is significant because musculoskeletal loading is
dependent on forces and moments (kinetics), which require knowledge of the weight of an
object lifted. Manufacturers of these IMU systems have tried to implement workarounds,
such as manually inputting object weight, assuming a nominal object weight, or developing
algorithms that attempt to estimate object weight indirectly based on movement patterns
or other heuristics. However, the validity and efficacy of these workarounds is unknown.
Fundamentally, it remains unclear to what degree we should expect IMU systems to be
capable of assessing overexertion injury risk to the low back.

Combining pressure-sensing insoles with IMU sensors has the potential to overcome
this limitation and to provide more accurate ergonomic assessment of lifting tasks. We
previously found that lumbar moment, an indicator of low back loading, can be estimated
33% more accurately with combined signals from a trunk IMU and pressure insoles than
with trunk IMU signals only, based on an analysis using idealized wearable sensor sig-
nals [21]. However, material (e.g., tissue) damage is exponentially related to the peak load
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applied [4–6], meaning that modest errors in lumbar moment estimates [21–23] can result
in much larger errors in damage estimates, affecting estimates of injury risk. These prior
findings [21] suggest that improved accuracy from combining pressure-sensing insoles and
an IMU might meaningfully improve LBD risk assessment in the workplace. However, this
proposition requires further research and validation, and important open questions remain,
including:

1. How accurately can we estimate LBD risk with a trunk IMU combined with pressure
insoles?

2. How much greater is this risk assessment accuracy than using a trunk IMU alone?

The objective of this study was to address the two open questions above. To maximize
the generalizability of our results and study contributions, we used a data-driven simulation
approach to characterize and explore how accurately we could classify LBD risk using only
trunk motion (e.g., from a single trunk IMU) versus using trunk motion and forces under
the feet (e.g., from a single IMU combined with pressure insoles).

The first question is important because prior literature [21–23] only quantified the
accuracy of a biomechanical indicator of loading on the lower back (i.e., lumbar moment).
Ultimately, what safety professionals care about is how accurately they can classify injury
risk (not just estimate time-series biomechanical variables such as lumbar moment). LBD
risk assessment accuracy has not yet been studied for trunk IMU and pressure insole
systems. Furthermore, it is currently unclear what level of biomechanical load accuracy
is good enough for ergonomic assessment in practice, particularly given the nonlinear
relationships between musculoskeletal load, damage, and injury risk [6,12,24].

The second question is important because it is currently unclear whether improved
accuracy—which we expect using additional information from the pressure insoles—is
substantial enough to justify the extra cost and complexity of adding pressure sensors into
a user’s shoes. It is possible that processing IMU data alone may be sufficient for obtaining
reasonably accurate estimates of LBD risk over a full workday (e.g., hundreds of lifts). This
may be true even if the IMU-estimated accuracy is worse than the combined trunk IMU
and pressure insole accuracy on a lift-by-lift basis.

There were three possible conclusions from our study:

Possibility 1: Capturing under-the-foot force data (e.g., from pressure insoles) is unneces-
sary because trunk motion alone (e.g., from an IMU) can provide reasonably good accuracy
in estimating LBD risk over the course of a workday.

Possibility 2: Trunk motion data alone are insufficient to accurately estimate LBD risk, but
adding under-the-foot force data results in a substantial improvement and reasonably good
accuracy in LBD risk estimation.

Possibility 3: Neither trunk motion nor trunk motion combined with under-the-foot
fore data seems adequate to accurately assess LBD risk over a workday, suggesting that
alternative risk assessment tools may be needed.

Any one of these conclusions would be interesting, insightful, and actionable with
respect to the potential application of wearable sensors to automate ergonomic risk assess-
ment for the low back.

2. Materials and Methods

The study was accomplished in five stages. First, we analyzed an existing dataset [21],
which contains full-body 3D (three-dimensional) motion capture and bilateral ground
reaction force data from 10 individuals performing a range of lifting tasks to obtain lab-
based estimates of lumbar moment (an indicator of low back loading). Second, we trained
a machine learning algorithm to estimate peak lumbar moment during each lift using
only trunk motion signals (which we refer to as the Trunk signals and algorithm) and
then using trunk motion and force under the feet (Trunk+Force signals and algorithm).
For this analysis, we used idealized wearable sensor signals, meaning that data from
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laboratory instrumentation were converted into signals reasonably obtained from wearable
sensors (rationale detailed below). Third, we converted the peak lumbar moments into
peak load moments to use as inputs to the ergonomic assessment tool, LiFFT. Fourth, we
simulated 10,000 material handling workdays based on randomly selected lifts and used
LiFFT to compute LBD risk. Fifth, we evaluated the accuracy of the Trunk and Trunk+Force
approaches by comparing their estimates of LBD risk during each simulated workday to
lab-based (ground truth) estimates of LBD risk.

2.1. Data Collection and Processing

We reanalyzed a subset of an existing dataset [21] in which 10 participants performed
manual material handling tasks. For details of the experimental protocol and reasoning,
see Matijevich et al. [21]. We selected the 50 tasks involving symmetrical lifting of objects of
different weights (5–23 kg) from different heights (40–160 cm above the ground) to simulate
jobs of varying physical demands. Ground reaction forces and the center of pressure
under each foot were collected with force plates (Advanced Mechanical Technology Inc.,
Watertown, MA, USA). Full-body kinematics were collected simultaneously from a 3D
motion capture system (Vicon, Oxford, UK). Body segmental and joint kinematics were
estimated from the motion capture data and rigid-body inverse kinematics in Visual3D (C-
Motion, Germantown, MD, USA) software. Lab-based lumbar moment was estimated using
bottom–up inverse dynamics, which prior studies have found to be in good agreement
with top–down inverse dynamics during lifting [22,25]. We refer to these lumbar moments
as lab-based (or ground truth) estimates since we used comprehensive 3D kinetic and
kinematic data from laboratory instrumentation. In contrast, the Trunk and Trunk+Force
lumbar moment estimates (detailed below) only used a small subset of signals to reflect
wearable sensor measurement capabilities.

All participants gave written informed consent to the original protocol, which was
approved by the Institutional Review Board at Vanderbilt University (IRB #141697).

2.2. Algorithm Development

We trained a gradient boosted decision trees machine learning algorithm to estimate
lumbar extension moment using methods similar to Matijevich et al [21]. This algorithm
estimates the target metric by building a series of decision trees in stages. Each stage seeks
to optimize the final prediction by estimating the residual error of the predictions from the
previous stage. The final algorithms produced the lumbar moment estimates based on a
series of approximately 100 trees. We used scikit-learn library and Amazon SageMaker, a
cloud-based machine learning platform, for algorithm development, model training, and
evaluation.

The lumbar extension moment during lifting was chosen as the target metric because
it is an indicator of loading on the lower back and can be adapted to be an input to an
established ergonomics assessment tool, LiFFT (see Section 2.3), to estimate cumulative
damage and injury risk to the low back [6,12]. We estimated the time-series target lumbar
moment from lab-based data [21], as detailed in Section 2.1. This resulted in a lookup table
for each participant containing a lab-based peak lumbar moment estimate for each lifting
task completed.

We used idealized wearable signals as inputs to train each algorithm. Idealized wear-
able signals refer to motion lab data converted into time series signals that can be feasibly
obtained from wearable sensors [21,26]. Using idealized wearable signals enabled us to ad-
dress the questions outlined in the Introduction in the most fundamental and generalizable
way, without being limited by the quality of existing wearable sensor hardware or their
calibration methods, and without narrowly evaluating a single product. When using actual
wearable sensors—specifically pressure insoles—task- and hardware-specific calibration
methods are typically required to obtain accurate and reliable force estimates [27]. However,
developing these calibrations is complex and time-consuming. Therefore, our approach
was to first evaluate and understand the expected necessity of pressure insole data in this
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current study using idealized wearable signals. The results of this study would inform
which types of wearable sensors are needed and provide the basis for deciding whether to
invest time into developing custom pressure insole calibrations.

We trained two separate algorithms using two different sets of signals: the first algo-
rithm used Trunk signals as inputs, and the second algorithm used Trunk+Force signals
as inputs. IMU sensors estimate orientation in the global coordinate system. IMU angle
estimates are strongly correlated with angles obtained from 3D motion capture [28,29].
Therefore, Trunk input signals were composed of 3 directional orientation angles, accelera-
tions, and angular velocities in the global coordinate system, which were approximated
using 3D motion capture. Pressure insoles estimate ground reaction force and the center
of pressure in the foot’s coordinate system. These have been found to be correlated with
force plate data [30,31]. Thus, Force input signals were composed of a 1D force vector and
the center of pressure in the mediolateral and anteroposterior directions, approximating
signals that can be obtained from pressure insoles. The center of pressure from the force
plate was transformed into the foot’s coordinate system, and the 1D force vector under
each foot was obtained by projecting the 3D ground reaction force from the force plate onto
a vector normal to the foot.

To train each algorithm, we used cross validation by participant [32]. In other words,
the data from 9 participants were used to train the algorithm, and then the trained algorithm
was applied to the 10th participant’s data to estimate lumbar moment [32]. This process
was repeated for all 10 participants, resulting in two lookup tables per participant, one
for each wearable signal condition (Trunk, Trunk+Force), containing the lumbar moment
estimates for each lifting task. Cumulative damage and injury risk estimated from fatigue
failure models are driven by high load magnitudes [4,5,12]. Therefore, to improve estimates
of the larger lumbar moments and avoid overfitting lower lumbar moments (e.g., during
upright standing), we applied a minimum threshold of 100 Nm on the target metric when
training each algorithm. As such, only data points where lumbar moments were above 100
Nm were included in the training dataset, prioritizing trained algorithm performance at
the high lumbar moment magnitudes that occur during lifting.

Peak lumbar moment lookup tables were then converted into peak load moment
lookup tables. Peak load moment is another low back load metric and the specific input
required by LiFFT [12,24]. This conversion from lumbar moment to load moment was
achieved by subtracting out moment contributions from the upper body orientation and
acceleration, and calculations are explained in detail below.

2.3. Converting Lumbar Moment into Load Moment

The peak load moment (MLoad,i) was calculated during each ith lift [12,24] to assess
LBD risk using LiFFT. Load moment (MLoad) is defined as the time-series moment created
about the lumbar spine by the object lifted and calculated by multiplying the weight of
the object by the horizontal distance from the object to the lumbar spine (L5/S1). Peak
load moment refers to the maximum load moment during a lift. However, the machine
learning algorithm from Matijevich et al [21]. and summarized in Section 2.2 was trained to
estimate lumbar moment (MLumbar). Lumbar moment includes moment contributions due to
the weight of the lifted object (MLoad), the linear acceleration of the upper body and object
(MLinear ), and the rotational acceleration of the upper body (MRotation ). Thus, to estimate
load moment, we performed the following calculation:

MLoad = MLumbar − MLinear − MRotation (1)

MLinear = mHAT(a + g)L + mboxaL (2)

MRotation = Iα (3)

L is the horizontal distance from the lumbar spine to the center of the mass of the
head–arms–trunk (HAT), estimated using anthropometric tables [33]. The dataset did not
include markers on the box; thus, we assumed that the object lifted was accelerating at the
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same rate as the upper body and was being held close to the center of the mass of the upper
body. mHAT is the mass of the HAT, estimated using anthropometric tables [32]. mbox is
the mass of the object being lifted in the analyzed trial. a is the acceleration of the upper
body, estimated with the idealized trunk IMU signals. I is the moment of inertia of the
HAT, estimated using anthropometric tables [32], assuming that the HAT is a rectangular
prism. α is the angular acceleration of the upper body, estimated using the idealized trunk
IMU signals. These assumptions seemed reasonable for the lifting tasks performed because
the mass of the upper body is much larger than the mass of the box, meaning that the
contribution of the box to MLinear is expected to be small by comparison. See Section 4.4
for more discussion about this topic, including post hoc analyses that provided additional
support for these assumptions being reasonable.

2.4. Simulated Workdays

We explored 1000 simulated workdays per participant using LiFFT and empirical
data from the peak load moment lookup tables. A simulated workday consisted of 800 to
2000 randomly selected lifts from the lookup table. For each lift (i), we extracted the peak
load moment (MLoad, i) from the lookup table (lab-based, Trunk, or Trunk+Force), then used
it as an input to LiFFT [12,24]. The cumulative damage over all lifts (D) was computed and
then used to estimate the LBD risk for a simulated workday [12,24].

D =
1

902416 ∑n
i=1 e0.038(MLoad, i)+ 0.32 (4)

LBD risk (R, Equation (5)) was computed using a binary logistic regression equa-
tion previously developed using epidemiological databases with injury prevalence cate-
gories [13,14]. The term LBD risk refers to the probability of being in a high-risk job (not the
probability of someone being injured). This definition originates from the epidemiological
databases used to validate LiFFT [13,14].

R =
eY

1 + eY (5)

Y = 1.72 + log10(D) (6)

For each simulated workday, LBD risk was computed separately from the lab-based,
Trunk, and Trunk+Force lookup tables. In total, this simulated workday analysis resulted
in a 1000 × 3 table of LBD risk results for each participant, where each row corresponded
to one simulated workday, and the three columns were three conditions (lab-based, Trunk,
and Trunk+Force). An overview of the lab-based data analysis, algorithm development,
and LBD risk assessment is provided in Figure 1.

2.5. Evaluation

To evaluate the accuracy of LBD risk estimates from Trunk and Trunk+Force algorithms
relative to lab-based LBD risk estimates (Figure 1), we calculated the root mean square
error (RMSE) for each participant across all workdays. We then calculated the between-
participant average RMSE.

To help answer the question of whether Trunk+Force signals improve injury risk
assessment accuracy relative to Trunk signals alone, we performed a statistical analysis to
compare RMSE results between conditions. First, a Kolmogorov–Smirnov test was used
to confirm normal distribution of the RMSE results. Subsequently, a dependent (paired-
samples) t-test was performed to compare RMSE from Trunk vs. Trunk+Force algorithms.
The p-value and effect size (Cohen’s d) were calculated. The Pearson correlation coefficients
(r) between the lab-based and Trunk LBD risks and between the lab-based and Trunk+Force
LBD risks were also computed.
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Figure 1. Lab-based and idealized wearable LBD risk analysis and evaluation overview. This
workflow shows how data were processed to estimate LBD risk from the lab-based and idealized
wearable (Trunk and Trunk+Force) signals. Blue (upper track) represents the lab-based signal
analysis. Orange (lower track) represents the idealized wearable signal analysis, which was completed
independently for Trunk and Trunk+Force signals. This workflow was first performed using only
idealized Trunk signals to develop an algorithm and compute error. Then the workflow was repeated
for idealized Trunk+Force data.

To gain insight into the practical significance of different levels of accuracy, we com-
puted an additional summary metric: the percentage of simulated workdays where Trunk
or Trunk+Force LBD risk estimates were within ±10% of the full-scale lab-based LBD risk
assessment. For instance, if lab-based (ground truth) LBD risk was 65%, then Trunk or
Trunk+Force estimates between 55% and 75% would be within ±10% based on this metric.

3. Results

Examples of idealized wearable Trunk and Force data during lifting are shown in
Figure 2. Using Trunk+Force signals, LBD risk was estimated with an average RMSE of
4.7% compared with lab-based estimates (Figure 3, Table 1). LBD risk estimated with
Trunk+Force signals was within ±10% of the lab-based estimates for 87.2% of all simulated
workdays (Figure 4, Table 2).

Table 1. Participant-specific results showing errors (RMSE) in LBD risk estimates during simulated
workday analysis. RMSE is shown for Trunk and Trunk+Force estimates compared with lab-based
estimates.

RMSE in LBD Risk Estimates

Participant Trunk Trunk+Force

1 12.3% 5.3%
2 20.7% 4.1%
3 15.8% 4.2%
4 14.3% 7.4%
5 19.9% 3.9%
6 18.5% 5.8%
7 16.3% 4.1%
8 13.7% 4.8%
9 11.5% 5.7%
10 16.4% 3.9%

Avg 15.8 ± 2.3% 4.7 ± 1.1%
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estimates. 

RMSE in LBD Risk Estimates  
Participant Trunk  Trunk+Force 

1  12.3%  5.3%  
2  20.7%  4.1%  
3  15.8%  4.2%  
4  14.3%  7.4%  
5  19.9%  3.9%  
6  18.5%  5.8%  
7  16.3%  4.1%  
8  13.7%  4.8%  
9  11.5%  5.7%  

10  16.4%  3.9%  
Avg  15.8 ± 2.3%  4.7 ± 1.1%  

Table 2. Participant-specific accuracy results showing how often LBD risk estimates from Trunk 
and Trunk+Force estimates were within 10% of lab-based LBD risk estimates. 

Within 10% of Lab-Based LBD Risk 
Participant  Trunk  Trunk+Force  

1  59.9%  90.0%  
2  37.8%  86.9%  
3  59.5% 90.7%  
4  39.5%  86.0%  
5  44.2% 86.2%  
6  39.8%  84.2%  
7  64.8%  78.5%  
8  40.6%  90.3%  
9  64.9%  89.7%  

10  58.5%  89.4%  
Avg 50.9 ± 11.5% 87.2 ± 3.8% 

Figure 4. The percentage of simulated workdays that had LBD risk estimates within ±10 of the
lab-based estimates (green) vs. overestimated (dark blue) or underestimated (light blue) by >10%.

Using Trunk signals only, LBD risk was estimated with an average RMSE of 15.8%
(Figure 3, Table 1), which was a significantly larger error compared with using Trunk+Force
signals (p < 0.01, d = 4.2). LBD risk estimated with Trunk signals was within ±10% of the
lab-based estimates for 50.9% of the simulated workdays (Figure 4, Table 2).

The Trunk+Force estimates of LBD risk were strongly correlated with lab-based es-
timates, with participant-specific correlation coefficients ranging from r = 0.93 to 0.98
(Figure 5B, Table 3). The Trunk LBD risk estimates were weakly or moderately correlated
with the lab-based estimates, with participant-specific correlation coefficients ranging from
0.20 to 0.56 (Figure 5A, Table 3).
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Figure 5. LBD risk estimates from (A) Trunk (r = 0.48) and (B) Trunk+Force (r = 0.97) each vs. lab-
based estimates of LBD risk. Each color represents a different participant (P), and each data point
a different simulated workday. The black line is a unity line representing perfect estimates of LBD
risk and is provided for visual reference. Participant-specific correlation coefficients are provided in
Table 3.
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Table 2. Participant-specific accuracy results showing how often LBD risk estimates from Trunk and
Trunk+Force estimates were within 10% of lab-based LBD risk estimates.

Within 10% of Lab-Based LBD Risk

Participant Trunk Trunk+Force

1 59.9% 90.0%
2 37.8% 86.9%
3 59.5% 90.7%
4 39.5% 86.0%
5 44.2% 86.2%
6 39.8% 84.2%
7 64.8% 78.5%
8 40.6% 90.3%
9 64.9% 89.7%
10 58.5% 89.4%

Avg 50.9 ± 11.5% 87.2 ± 3.8%

Table 3. Participant-specific results showing the correlation between LBD risk estimates from Trunk
and Trunk+Force estimates and the lab-based LBD risk estimates. Average correlation coefficients
were computed by transforming Pearson correlation coefficients (r) for each participant to Fisher
z scores. The average Fisher z score was computed and then transformed back into a Pearson
correlation coefficient for reporting.

r Compared with Lab-Based LBD Risk

Participant Trunk Trunk+Force

1 0.41 0.93
2 0.20 0.96
3 0.56 0.98
4 0.49 0.97
5 0.50 0.94
6 0.42 0.95
7 0.53 0.96
8 0.56 0.94
9 0.55 0.98
10 0.45 0.93

Avg 0.48 0.97

4. Discussion
4.1. Summary

We found that combining trunk motion with under-the-foot force data meaningfully
improved the accuracy of LBD risk estimates compared with using only trunk motion
data. Trunk estimates of LBD risk were not strongly correlated with ground truth LBD
risk estimates obtained using lab-based instrumentation (Figure 5A). Trunk motion may
inform injury risk due to high-risk postures but did not accurately estimate or correlate
with LBD risks due to repetitive lifting and musculoskeletal loading. For an individual
workday, it was a coin flip (50% chance) as to whether the Trunk-based estimate would be
within 10% of the lab-based LBD risk; however, by adding under-the-foot force data, this
increased to nearly 90% (Table 2, Figure 4). Furthermore, Trunk+Force estimates correlated
strongly with LBD risk across a large range of workday intensities (Figure 5B). Force under
each foot provides critical information that can distinguish if a person is lifting a heavier
vs. lighter object—which in turn improves LBD risk estimates. In practice, one way this
force information can be obtained is with pressure-sensing insoles. These results highlight
the potential for combining pressure-sensing insoles with a single IMU on the trunk to
accurately perform remote and/or automated ergonomic assessment of LBD risks during
lifting-intensive material handling jobs.
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4.2. Insights on LBD Risk Accuracy and Wearable System Complexity

A key contribution of this study is that the analysis and simulations provided insight
into which sensor signals are needed to accurately assess LBD risks. As discussed in
the Introduction, it was unknown what level of biomechanical (e.g., lumbar moment)
accuracy would be sufficient for workplace risk assessment. Furthermore, it was difficult
to determine what might be good enough until we understood the impact on LBD risk
estimates, which we quantified for the first time in this study. Our interpretation of the
results is that Trunk motion signals alone are not sufficient to provide accurate estimates or
reliable indicators of LBD risk when assessed using LiFFT. In contrast, the Trunk+Force
estimates are promising because they provide more accurate estimates of LBD risk (Table 1)
that are strongly correlated with lab-based LBD risk estimates (Figure 5B).

Adding pressure insoles to a wearable system does introduce additional implementa-
tion complexities and practical considerations. The current state of ergonomic assessment
typically involves a safety professional with a clipboard and a tape measure, or a video
camera (often still with oversight by a safety professional), or one or more IMU sensors
worn by workers. Pressure insoles add some practical challenges relative to an IMU alone,
for instance, related to needing a range of insoles that fit different shoe sizes and shapes
and additional battery power and data storage demands. However, many commercial-
off-the-shelf pressure insole products already exist, indicating that these challenges are
manageable during product development and commercialization. Pressure insoles also
add a few technological challenges. Most notably, pressure insole measurement accuracy
and precision are common challenges [34]. Previous work has explored a variety of ways
to improve pressure insole force estimates through advanced calibration techniques and
processing methods, such as using transfer functions [35], neural networks [36], or mul-
tistage linear regressions [27]. Nonetheless, there continues to be room for innovation
and advances in pressure insole calibration and signal processing to further improve force
estimation accuracy and precision.

It is helpful to acknowledge that combining pressure insoles and a single IMU sensor is
not technologically complex when compared with technologies commonly used in material
handling environments, such as autonomous mobile robots, automated storage and re-
trieval systems, robotic arms, advanced forklifts, autonomous inventory robots, warehouse
management systems, and wearable mobile computers. Likewise, from a biomechanics
research and wearable sensor perspective, a two-sensor system is relatively sparse and
simple compared with most alternative and previously used sensor sets [21–23]. Common
challenges exist for all wearable sensor systems, including single IMU systems, such as
wearability, ease of donning/doffing, fit (e.g., onto different body shapes), compatibility
with work gear and environment, and consistent placement on the body. However, the
recent growth and adoption of workforce wearable technologies indicates that these chal-
lenges can be managed [37]. Thus, we expect that there are various environments and
use cases where Trunk+Force signals, such as obtained with an IMU and pressure insoles,
would be practical to collect and could be beneficial in terms of automating ergonomic risk
assessment.

4.3. Benefits and Drawbacks to Single IMU Systems

A single IMU system is simpler to don and doff, has lower battery power requirements,
and does not need to accommodate different foot/shoe sizes as with pressure insoles.
Several commercial wearable systems (e.g., StrongArm Fuse, Soter Analytics Clip&Go,
Kinetic Reflex) take advantage of this relative simplicity using a single IMU mounted on
the trunk or waist to provide useful insight and/or feedback on high-risk postures.

Matijevich et al. (2021) found that single trunk IMU systems can provide moderate
accuracy for estimating time-series lumbar moments but tend to perform worse during
higher musculoskeletal loading, which are often the instances of highest ergonomic interest.
The current study results corroborate this limitation of trunk IMU systems by demonstrating
the impact on LBD risk estimation. For instance, in Figure 5A, an LBD risk of 40% as
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estimated by the Trunk algorithm corresponded to ground truth (lab-based) LBD risks
during a workday ranging anywhere from 17% to 78%. Thus, the Trunk system might
identify two workdays as having similar risk when a worker experienced much different
risks. Such large variance could potentially negate or limit the benefit of personalized,
wearable monitoring of LBD risk using a single IMU.

This observation also highlights another issue: although machine learning and ad-
vanced algorithms receive much attention in the scientific literature and popular press, they
are fundamentally limited by the signals they are given during training and use. Selecting
an appropriate subset of sensors for a given application is paramount and provides the
foundation on which successful algorithms are built and actionable insights are gleaned.
This exemplifies why in our research progression (i.e., Matijevich et al., 2021, followed by
this current study) we have initially focused our efforts on identifying the critical subset of
sensor signals for LBD risk assessment while trying to balance accuracy and practicality of
the wearable solution.

We dug deeper into the results and discovered that for lifting-intensive work, the main
function and benefit of a trunk IMU for monitoring LBD risks may simply be estimating
(counting) the number of bends or lifts performed each day. This is analogous to how a
pedometer (step counter) counts steps per day as a rough proxy or indicator of physical
activity, but without capturing or elucidating differences in speed or intensity (e.g., running
vs. walking). In postprocessing, we found that the Trunk LBD risk estimates were strongly
correlated with the number of lifts completed during each simulated workday (Figure 6B,
r = 0.78) and weakly correlated with the average bend angle during lifting (Figure 6A, r
= 0.33). To further explore the potential predictive value of a “lift-counter”, we reran the
simulated workday analysis (detailed in Methods) but assumed that the damage from each
lift was constant. This effectively assumed that every lift was of the same nominal weight
(corresponding to a peak load moment of 75 Nm). This algorithm counted the number of
lifts performed each workday, then computed the cumulative damage and LBD risk. With
this “lift-counter” algorithm, we found an average LBD risk RMSE of 20% compared with
lab-based estimates, which was only slightly higher than the 16% error seen when using
Trunk signals.
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whereas the average bend angle was weakly correlated (r = 0.33). Each color represents a different
participant (P), and each data point a different workday.
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4.4. Limitations

The limitations of this work should be considered and understood within the context
that this study is one within a progression of experimental and computational studies.
Collectively, these studies aim to develop science-based wearable sensor systems that are
sufficiently accurate for remote ergonomic risk assessment and sufficiently practical to be
translated into real-world use, ultimately to help reduce workplace injuries. Each individual
study is limited in scope to address specific questions and to motivate next steps in research
and technology development. Previously, Matijevich et al. (2021) identified the minimum
sensor set (Trunk+Force) recommended to accurately estimate biomechanical load (time-
series lumbar moment). This current study builds upon the prior work by evaluating the
accuracy of this sensor set in terms of quantifying LBD risk over a full workday, which further
informed and validated the potential of Trunk+Force wearable systems. Future work in this
research progression is expected to implement and operationalize these algorithms in fully
wearable systems (e.g., field-testable prototypes, commercial-grade products) to develop
hardware-specific calibrations for pressure insoles and to evaluate algorithm performance
during workplace studies or ergonomic assessments on workers.

The first limitation of this study is that we used idealized wearable signals to develop
and evaluate the algorithms. Idealized wearable signals were beneficial for this early-
stage research because they allowed us to explore the effects of different sensor signal
combinations without being limited by the quality or accuracy of a single exemplary
wearable sensor (e.g., a single product make/model) [26] or its default calibration. Actual
wearable signals (from real wearable sensors) are expected to exhibit noise, errors, or drift
that are not present in these idealized signals, but these can be managed or calibrated. In
our previous work using wearable pressure insoles and an IMU on the foot to estimate tibial
bone force during running [27], we initially obtained poor results from real wearable sensors
and default (manufacturer) calibrations. Had we stopped there, we would have concluded
that a system comprising a pressure insole and IMU could not accurately estimate tibial
bone force. However, because we first analyzed idealized wearable sensor signals, we knew
that the reason we were obtaining inaccurate results was not the combination of signals but
rather the noise and variability in the real wearable sensor signals. We therefore created
custom calibrations for the pressure insoles, which improved our estimation accuracy to a
level close to that of idealized wearables [27] and ultimately led us to conclude that tibial
bone forces can be monitored accurately using real, shoe-worn wearable sensors.

Second, there are other tools and models that can be used to evaluate LBD risk due
to repetitive lifting, such as the NIOSH lifting equation. However, the NIOSH lifting
equation [38] requires additional inputs that are more difficult to ascertain or collect with
wearable sensors, such a coupling factor detailing the grip on the object. To capture this
coupling factor would require a more complex system with additional sensors, which could
be impractical to implement, and we wanted to maximize practicality for real-world use.
LiFFT was therefore selected as a LBD risk assessment tool that we believed would be more
directly compatible and implementable with wearable sensors and algorithms, and which
has potential utility for the evaluation of other workforce wearable technologies, such as
exoskeletons [24].

Third, the algorithms and simulations presented were for a finite subset of lifting tasks.
However, these lifting tasks were relatively broad and selected because of their relevance
to many material handling jobs (e.g., in warehouses, distribution, or fulfillment centers),
where low back overexertion due to repetitive lifting is expected to be the dominant
contributor to cumulative damage and fatigue of the lower back [21,39]. For other jobs
where the weight of objects lifted, lifting techniques (symmetrical vs. asymmetrical) or
frequency of lifts differs substantially from those evaluated in this study; then it may be
beneficial to repeat workday simulation analysis or retrain LBD risk estimation algorithms
using those different parameter ranges or lifting techniques.

Fourth, peak load moment was estimated based on the assumption that the object
position and acceleration tracked with the motion of the participants’ trunk (Section 2.3). To
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assess whether this was reasonable and appropriate, we performed two sub analyses. One
is presented in Appendix A, where we reran our analysis using lumbar moment instead of
load moment. The lumbar moment calculation does not include any assumptions about box
motion, yet this analysis resulted in the same main findings and conclusions as when using
load moments. Next, we performed a supplemental analysis on a subset of lifting data
using the position and acceleration of the hands as a surrogate for the box’s motion. Thus,
we did not assume the box distance and acceleration tracked with the trunk. We found that
using hand motion resulted in a minimal change (<5%) in peak load moment, as compared
with using the approach summarized in Section 2.3. Collectively, these additional analyses
suggest that the assumptions used to compute load moment in this study were reasonable,
since even when they were removed, they had minimal effect on load moment estimates
and did not alter the main conclusions.

5. Conclusions

In conclusion, combining trunk motion with under-the-foot force data markedly
improved the accuracy of LBD risk estimates compared with using only trunk motion
data. These results indicate that a wearable system composed of a single IMU on the trunk,
pressure-sensing insoles in shoes, and trained algorithms could be valuable for remote
and/or automated ergonomic assessment of low back injury risks during material handling.
The results also raise fundamental questions and concerns about the adequacy of using
trunk motion data alone for LBD risk assessment during material handling.
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Appendix A

In the main text, peak load moment was used to estimate low back loading during
lifting, as opposed to the total lumbar moment. The benefit of using load moment is that it
was the input used to validate LiFFT against epidemiological databases [12–14]. However,
the drawbacks are that this metric only captures back loading from the weight and location
of the object being lifted and is obtained through manual measurement or anthropometric
generalizations. In contrast, lumbar moment is a more complete estimate of low back
loading because it captures loading due to the object weight, torso weight and posture,
and lifting dynamics. However, the drawback of using lumbar moment is that it has not
been validated against epidemiological databases, though it is reasonable to expect that
a similar estimate of LBD risk could be derived from lumbar moments (pending future
epidemiological databases sufficient to train and test such a relationship).

LBD risk estimates derived from peak lumbar moment inputs (as opposed to peak
load moment) corroborated the findings and conclusions in the main text, specifically that
the Trunk+Force algorithm performs substantially better than the Trunk algorithm. LBD
risk estimates using the lumbar moment based on Trunk signals produced an average
RMSE of 19.4% across all participants (Figure A1, Table A1). LBD risk based on Trunk
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data was only estimated within ±10% of the lab-based (ground truth) estimates on 32%
of the workdays simulated (Table A2). LBD risk using Trunk+Force data estimated using
the lumbar moment based on Trunk+Force signals produced an average RMSE of 8.5%
(Figure A1, Table A3). LBD risk was estimated within ±10% of the lab-based (ground truth)
estimates on 76% of the workdays simulated (Table A2). See the Section 4.4 Limitations
section of the manuscript for the motivation behind this supplementary analysis.

Table A1. Participant-specific results showing errors in LBD risk estimates during simulated workday
analysis using peak lumbar moment. RMSE is shown for Trunk and Trunk+Force estimates compared
with lab-based estimates.

RMSE in LBD Risk Estimates

Participant Trunk Trunk+Force

1 17.6% 6.4%
2 22.8% 8.7%
3 19.5% 10.3%
4 18.7% 7.7%
5 22.3% 9.1%
6 21.2% 9.6%
7 17.8% 11.9%
8 19.1% 8.6%
9 17.4% 5.9%
10 18.6% 6.8%

Avg 19.4 ± 1.6% 8.5 ± 1.5%

Table A2. Participant-specific results showing how often LBD risk estimates from Trunk and
Trunk+Force estimates were within 10% of lab-based LBD risk estimates using lumbar moment.

Within 10% of Lab-Based LBD Risk

Participant Trunk Trunk+Force

1 30.2% 83.1%
2 34.8% 75.7%
3 34.5% 56.6%
4 32.9% 83.7%
5 32.1% 71.7%
6 32.9% 63.8%
7 33.5% 67.3%
8 33.8% 76.9%
9 21.8% 90.9%
10 36.4% 87.2%

Avg 32.2 ± 3.3% 75.7 ± 10.8%

Table A3. Participant-specific results showing the correlation between LBD risk estimates from Trunk
and Trunk+Force estimates and the lab-based LBD risk estimates using lumbar moment. Average
correlation coefficients were computed by transforming Pearson correlation coefficients (r) for each
participant to Fisher z scores. The average Fisher z score was computed and then transformed back
into a Pearson correlation coefficient for reporting.

Compared with Lab-Based LBD Risk

Participant Trunk Trunk+Force

1 0.57 0.97
2 0.24 0.93
3 0.44 0.97
4 0.44 0.96
5 0.26 0.94
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Table A3. Cont.

Compared with Lab-Based LBD Risk

Participant Trunk Trunk+Force

6 0.19 0.96
7 0.58 0.95
8 0.42 0.95
9 0.61 0.97
10 0.41 0.96

Avg 0.42 0.96
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Figure A1. LBD risk estimates from (A) Trunk (r = 0.42) and (B) Trunk+Force (r = 0.96) each vs. lab-
based estimates of LBD risk using peak lumbar moment. Each color represents a different partici-
pant, and each data point a different simulated workday. The black line is a unity line representing 
perfect estimates of LBD risk and is provided for visual reference. 

References 
1. Bureau of Labor Statistics. Back Injuries Prominent in Work-Related Musculoskeletal Disorder Cases in 2016: The Economics Daily; U.S. 

Bureau of Labor Statistics: Washington, DC, USA. 
2. Coenen, P.; Kingma, I.; Boot, C.R.L.; Twisk, J.W.R.; Bongers, P.M.; Van Dieën, J.H. Cumulative Low Back Load at Work as a 

Risk Factor of Low Back Pain: A Prospective Cohort Study. J. Occup. Rehabil. 2013, 23, 11–18. https://doi.org/10.1007/s10926-012-
9375-z. 

3. Punnett, L.; Prüss-Üstün, A.; Nelson, D.I.; Fingerhuf, M.A.; Leigh, J.; Tak, S.W.; Phillips, S. Estimating the Global Burden of Low 
Back Pain Attributable to Combined Occupational Exposures. Am. J. Ind. Med. 2005, 48, 459–469. 

4. Currey, J.D. Bones: Structure and Mechanics; Princeton University Press: Princeton, NJ, USA, 2013; Volume 9781400849505. 
5. Carter, D.R.; Caler, W.E. A Cumulative Damage Model for Bone Fracture. J. Orthop. Res. 1985, 3, 84–90. 

https://doi.org/10.1002/jor.1100030110. 
6. Gallagher, S.; Schall, M.C. Musculoskeletal Disorders as a Fatigue Failure Process: Evidence, Implications and Research Needs. 

Ergonomics 2017, 60, 255–269. https://doi.org/10.1080/00140139.2016.1208848. 
7. Kim, S.E.; Chun, J.; Hong, J. Ergonomic Interventions as a Treatment and Preventative Tool for Work-Related Musculoskeletal 

Disorders. Int. J. Caring Sci. 2013, 6, 339. 
8. Mehrparvar, A.H.; Heydari, M.; Mirmohammadi, S.J.; Mostaghaci, M.; Davari, M.H.; Taheri, M. Ergonomic Intervention, Work-

place Exercises and Musculoskeletal Complaints: A Comparative Study. Med. J. Islam. Repub. Iran 2014, 28, 69. 
9. Centers for Disease Control and Prevention. NIOSH Hierarchy of Controls. Available online: https://www.cdc.gov/niosh/top-

ics/hierarchy/default.html (accessed on 2 Feb 2021). 
10. Goggins, R.W.; Spielholz, P.; Nothstein, G.L. Estimating the Effectiveness of Ergonomics Interventions through Case Studies: 

Implications for Predictive Cost-Benefit Analysis. J. Safety Res. 2008, 39, 339–344. 
11. Wurzelbacher, S.J.; Lampl, M.P.; Bertke, S.J.; Tseng, C.Y. The Effectiveness of Ergonomic Interventions in Material Handling 

Operations. Appl. Ergon. 2020, 87, 103039. https://doi.org/10.1016/j.apergo.2020.103139. 
12. Gallagher, S.; Sesek, R.F.; Schall, M.C.; Huangfu, R. Development and Validation of an Easy-to-Use Risk Assessment Tool for 

Cumulative Low Back Loading: The Lifting Fatigue Failure Tool (LiFFT). Appl. Ergon. 2017, 63, 142–150. 
https://doi.org/10.1016/j.apergo.2017.04.016. 

13. Zurada, J.; Karwowski, W.; Marras, W.S. A Neural Network-Based System for Classification of Industrial Jobs with Respect to 
Risk of Low Back Disorders Due to Workplace Design. Appl. Ergon. 1997, 28, 49–58. https://doi.org/10.1016/S0003-6870(96)00034-
8. 

14. Marras, W.S.; Lavender, S.A.; Leurgans, S.E.; Rajulu, S.L.; Gary Allread, W.; Fathallah, F.A.; Ferguson, S.A. The Role of Dynamic 
Three-Dimensional Trunk Motion in Occupationally-Related Low Back Disorders: The Effects of Workplace Factors, Trunk 
Position, and Trunk Motion Characteristics on Risk of Injury. Spine 1993, 18, 617–628. https://doi.org/10.1097/00007632-
199304000-00015. 

15. Diego-Mas, J.A.; Alcaide-Marzal, J.; Poveda-Bautista, R. Errors Using Observational Methods for Ergonomics Assessment in 
Real Practice. Hum. Factors 2017, 59, 1173–1187. https://doi.org/10.1177/0018720817723496. 
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