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Abstract: The article addresses the issue of mobile robotic platform positioning in GNSS-denied
environments in real-time. The proposed system relies on fusing data from an Inertial Measurement
Unit (IMU), magnetometer, and encoders. To get symmetrical error gauss distribution for the
measurement model and achieve better performance, the Error-state Extended Kalman Filter (ES
EKF) is chosen. There are two stages of vector state determination: vector state propagation based on
accelerometer and gyroscope data and correction by measurements from additional sensors. The error
state vector is composed of the velocities along the x and y axes generated by combining encoder data
and the orientation of the magnetometer around the axis z. The orientation angle is obtained from
the magnetometer directly. The key feature of the algorithm is the IMU measurements’ isolation from
additional sensor data, with its further summation in the correction step. Validation is performed by
a simulation in the ROS (Robot Operating System) and the Gazebo environment on the grounds of
the developed mathematical model. Trajectories for the ES EKF, Extended Kalman Filter (EKF), and
Unscented Kalman Filter (UKF) algorithms are obtained. Absolute position errors for all trajectories
are calculated with an EVO package. It is shown that using the simplified version of IMU’s error
equations allows for the achievement of comparable position errors for the proposed algorithm, EKF
and UKF.

Keywords: localization; EKF; data fusion; ESEKF; error state; odometry; IMU; encoder

1. Introduction

Despite the technological advancement in indoor positioning over recent years, real-
time localization in underground mining environments remains an important issue [1]. The
underground mining operation is an intensive process that requires constant updating of
the layout plan, as well as roof subsidence monitoring. Automation of this work with the
help of robotic equipment and novel technologies, such as computer vision [2], predictive
model control [3], machine learning [4] and neural networks [5,6], will increase the efficiency
of the mining process, in general, [7–10], and mine surveying, in particular, [11–13].

Sensor fusion is the de facto standard technique for outdoor and indoor localization
and mapping [14,15]. This method increases the reliability of the system along with the
accuracy of estimated parameters by merging information from a collection of sensors.
On the other hand, by providing redundant measurements this method results in signifi-
cant computational costs and requires the use of powerful CPUs or special optimization
techniques [16,17].

GNSS/IMU systems [18] are one of the most common solutions for outdoor positioning
as GNSS signals correct IMU observations prone to drift. This paper focuses on localization
in GNSS-denied environments, such as underground mine work. The absence of GNSS
signals leads to alternative sensor combinations for indoor positioning. There are three core
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categories of indoor sensor fusion techniques based on types of main sensors: LiDAR-based,
visual-based, and multi-sensor approach.

The work [19] proposes LiDAR-IMU data integration in real-time for UAVs local-
ization in environments with poor lighting conditions. In addition to IMU, LiDARs and
cameras [20] are often used together for IMU data correction in indoor environments. If the
primary objective is only localization IMU data can be corrected by means of magnetometer
and wheel encoder observation [21].

In [22,23], a scheme of a single-channel vertical with an adjustable pendulum based
on a three-axis accelerometer and one free gyroscope is proposed, which ensures the
unperturbation of navigation reckoning. The main difference between the proposed scheme
and the IMU is the accelerometers’ data compensation through an external linear speed
source (e.g., a log designed to measure the ship’s speed). The possibility of using the
proposed scheme to estimate the trajectory of dynamic objects seems scarcely probable for
the author [23].

EKF is the most prevalent method for position estimation through sensor fusion al-
though its convergence is not assured [24]. Issues of integrating data from IMU and encoders
using the extended Kalman filter are presented in the paper [25]. Another common solution
for localization is the sigma point approach which is the UKF algorithm [26,27]. UKF over-
comes EKF linearization errors using a deterministic sampling approach by representing the
state distribution as a set of sample points. Consequently, it achieves better accuracy [28].
However, study [29] is based on real data and shows that the performances of the EKF and
UKF are substantially identical.

Indirect formulation of the Kalman filter, error-state extended Kalman filter (ES EKF)
for attitude estimation is given in [30]. Several forms of ES EKF with GNSS and WiFi
data have been presented recently for outdoor [31] and indoor applications [32]. The
study [33] focuses on the ES EKF algorithm for orientation estimation by means of IMU and
magnetometer data. The proposed method provides accurate results even when magnetic
fluctuations occur. In [34], the authors combine ES EKF with the smooth variable structure
filter for attitude estimation based on IMU observations. Attitude estimation of IMU under
dynamic conditions using ES EKF is presented in [35]. Nevertheless, the amount of work
aimed at ES EKF implementation for indoor environments is relatively small compared to
EKF localization although it has significant potential. Low-cost indoor solutions based on
IMU, wheel encoders, and magnetometer observations are studied in [36,37].

A comprehensive description of quaternion kinematics for the error-state Kalman
filter is provided by [24]. Its findings served as a reference point in the formulation of
the proposed approach. Previously, authors implemented a system for integrating data
from IMU and encoders for a robotic platform using EKF and assessed linear and angular
trajectory displacements [38]. The main contributions of this paper are as follows. The ES
EKF is adapted to provide localization in a GNSS-denied environment by means of IMU,
encoders, and magnetometer data fusion. In addition, tightly-coupled integration of en-
coders and magnetometer data is introduced to calculate the errors between prediction and
measurements. An extensive description of the algorithm is also provided. Furthermore,
the approach is verified through Gazebo simulation by obtaining trajectories from the ES
EKF, EKF, and UKF localization algorithms based on the same sensors data.

2. Simulation Methodology
2.1. Reference Frame Decomposition

Before localization algorithm designing, the correlative coordinate frames should be
described. According to Figure 1, there are four main coordinate frames which are commonly
used for localisation purposes:

• Body frame B,
• Local frame L,
• Earth-North-UP frame ENU,
• Earth-Centered, Earth-Fixed frame ECEF
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ECEF is a cartesian coordinate frame with the origin at the center of the Earth’s mass.
The X-axis in this frame represents the intersection of the Earth’s equator at zero degrees
latitude and longitude accordingly. The Z-axis is orthogonal to X and points to the north
pole. The Y-axis is orthogonal to X and the Z-axis is according to the right-hand rule. ENU
is a coordinate system with the origin at a specified point from the ECEF frame, where
the X and Y axes point to geodesic east and north respectively. The Z-axis faces upward
according to the right-hand rule. L is a local frame of reference with an origin at the starting
point of system movement. B is the local coordinate system fixed to the vehicle’s center
of gravity. Therefore, all measurements from sensors, which are mounted on the robotic
platform, must be transformed into the body frame. Then, to obtain sensor data in L, ENU,
ECEF reference frames, it must be converted by transformation matrices TL

B , TENU
L ,TECEF

ENU
which are explicitly presented in [39,40].
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As a matter of convenience in our system, the IMU is firmly attached to the platform
and its coordinate frame is aligned to the body frame B, consequently, they have the same
orientation and origin and are considered as ENU convention. Data from encoders are
aligned to the body frame origin as well. Therefore, in the considered system frame L is
equal to ENU frame.

2.2. ES EKF with IMU and Encoder Data Fusion

The main concept of the Error-state Extended Kalman filter (ES EKF) consists of the
separation of the state vector into two parts: nominal state x and error state δx.

xt = x + δx

2.3. Nominal State

The nominal state is represented by a motion model and in most cases composed
of IMU observations. Errors related to process noise accumulation and motion model
imperfections constitute the error state vector. Therefore, the nominal state vector has the
following components:

x =
[
p v q

]T ,

where p =
[
px py pz

]
—represents position of the platform; v =

[
vx vy vz

]
—platform’s

velocity; q =
[
qw qx qy qz

]
—orientation in the form of quaternion. They can be obtained
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with high-frequency IMU data. The IMU contains a collection of three-axis accelerometers
and three-axis gyroscopes whose output data is linear acceleration a =

[
ax ay az

]
and

angular velocities ω =
[
ωx ωy ωz

]
accordingly. Integration of the linear acceleration

yields the velocity of the platform and angular velocity represents the orientation. With the
known initial values of velocity, position, and orientation, the coordinates and attitude of
the platform can be evaluated at any time. However, integration of the biases and sensor
noise inherent to IMU measurements leads to the unlimited growth of errors with time [41]
and as a consequence of this fact, position and orientation estimates are not precise. Hence,
applying only mechanization equations does not guarantee satisfactory results in terms
of accuracy.

The continuous motion model based on IMU observations, according to [24] is de-
scribed by the following equations:

ṗ = v, v̇ = a, q̇ =
1
2

q⊗ω, (1)

where ⊗—quaternion product operator.
Because of IMU sensor signal frequency limitations, Equation (1) need to be discretized

according to the transmitting time interval ∆t. Therefore, the discrete-time motion model can
be defined by the equations:

pk = pk−1 + vk−1 · ∆t + (R{qk−1} · ak + g) · ∆t2

2
,

vk = vk−1 + (R{qk−1} · ak + g) · ∆t,

qk = qk−1 ⊗ q(ωk · ∆t),

(2)

where k, k− 1—indexes of current and previous sample step; g =
[
0 0 −9.81

]
—gravity

vector; R{q}—quaternion to rotation matrix conversion which can be defined as:

R =




q2
w + q2

x − q2
y − q2

z 2(qxqy − qwqz) 2(qxqz + qwqy)

2(qxqy + qwqz) q2
w − q2

x + q2
y − q2

z 2(qyqz − qwqx)

2(qxqz − qwqy) 2(qyqz + qwqx) q2
w − q2

x − q2
y + q2

z


.

2.4. Error State

The error state kinematic equations are considered linear due to small magnitudes of
error dynamics. Error state vector consists of the following vectors:

δx =
[
δp δv δθ

]T ,

where δp =
[
δpx δpy δpz

]
—represents the position error of the platform;

δv =
[
δvx δvy δvz

]
—velocity error of the platform; δθ =

[
δθx δθy δθz

]
—angular

error of the platform. Conversion between quaternion and angular representations is obtained
by the following equations [42]:

q{θ} =




cos(φ/2) · cos(θ/2) · cos(ψ/2) + sin(φ/2) · sin(θ/2) · sin(ψ/2)
sin(φ/2) · cos(θ/2) · cos(ψ/2)− cos(φ/2) · sin(θ/2) · sin(ψ/2)
cos(φ/2) · sin(θ/2) · cos(ψ/2) + sin(φ/2) · cos(θ/2) · sin(ψ/2)
cos(φ/2) · cos(θ/2) · sin(ψ/2)− sin(φ/2) · sin(θ/2) · cos(ψ/2)


,

θ{q} =




arctan( 2·(qw ·qx+qy ·qz)

1−2·(q2
x+q2

y)
)

arcsin(2 · (qw · qy − qz · qx))

arctan( 2·(qw ·qz+qx ·qy)

1−2·(q2
y+q2

z)
)


. (3)
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The simplified version of the IMU error state equations with excluded sensor biases in
the continuous state is represented by

δṗ = δv, δv̇ = −R[a]×δθ, δθ̇ = −[ω]×δθ, (4)

where [a]×—skew symmetric matrix operator, which can be defined by

[a]× =




0 −az ay
az 0 −ax
−ay ax 0


.

Error state kinematics equations in discrete time are as follows

δp = δpk−1 + δvk−1 · ∆t

δv = δvk−1 + (−R{qk−1} · [ak−1]× · δθk−1) · ∆t

δθ̇ = R{ωk−1 · ∆t}T · δθk−1

(5)

The ES EKF, like the classic Kalman filter, includes two recursive steps. The first one
considers the propagation of the state vector and covariance (prediction step), and the
second carries out correction or update. It is important to point out that EKF generates an
output state only after measurement update step [43], while ES EKF output state vector
can be obtained with prediction data. It increases the reliability of the system in case of
additional sensor failure.

2.5. ES EKF Prediction Step

Propagation deals with the state vector implementing mechanization equations men-
tioned above (2) which should be rewritten as follows:

p̂−k = p̂+
k−1 + v̂+

k−1 · ∆t + (R{q̂+
k−1} · ak + g) · ∆t2

2
,

v̂−k = v̂+
k−1 + (R{q̂+

k−1} · ak + g) · ∆t,

q̂−k = q̂+
k−1 ⊗ q(ωk · ∆t),

(6)

where x̂−—a priori and x̂+— posteriori state estimation for each vactor accordingly.
Likewise, the error covariance matrix of the state estimate P− is computed at that stage.

Unlike the standard variations of KF, provided that additional sensor data is available,
the ES EKF algorithm performs a correction step, otherwise—it continues propagation
with time.

The error covariance matrix of the state estimate can be obtained with the following
equations:

P−k = Fx · P+
k−1 · FT

x + Fi ·Qi · FT
i , (7)

where Fx—the transition matrix which can be obtained as Jacobian of error state kinematic
Equation (5); Fi— the perturbation vector Jacobian matrix; Qi—measurement covariance
matrix for the prediction step; P+

k−1—posteriori error covariance matrix of the state estimate
at the previous step.

In the first step matrix P−k is defined as a unit matrix multiplied by the initial covariance
value, for example:

P−k = P0 = I9×9 · 0.01

The corresponding error state transition matrix Fx is derived via the Taylor series
block-wise truncation as follows:

Fx =




I3×3 I3×3 · ∆t −0.5 · R{q̂+
k−1} · [ak]× · ∆t2

0 I3×3 −[R{q̂+
k } · ak−1]× · ∆t

0 0 R{q̂+
k−1} · (ω · ∆t)T


 (8)
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Perturbation Fi matrix is defined by

Fi =




03×3 03×3
I3×3 03×3
03×3 I3×3


 (9)

The error covariance matrix can be obtained as a multiplication of the unit matrix
I6×6 multiplied by integrated covariances of linear acceleration σ2

ax , σ2
ay , σ2

az and angular
velocities σ2

ωx , σ2
ωy , σ2

ωz accordingly:

Qi = Diag(σ2
ax · ∆t2, σ2

ay · ∆t2, σ2
az · ∆t2, σ2

ωx · ∆t2, σ2
ωy · ∆t2, σ2

ωz · ∆t2) (10)

2.6. ES EKF Measurement Update Step

Correction implies the calculation of the error state vector via Kalman gain and
innovation computation along with process covariance updating. Instead of using IMU
observations as measurements for innovation calculation, additional sensor data is applied.
Thereby, ES EKF innovation is the discrepancy between the prediction based on IMU
equations and measurements from the additional sensor.

This paper represents a measurement update by fused wheel encoders and magne-
tometer data, described in Section 3.1. Therefore, the measurement output is defined as

yk =
[
0 0 0 vx vy 0 θx θy θz

]T (11)

Depending on the availability of measurements from additional sensors, the algorithm
performs a correction step or continues updating the nominal state vector based only on
the IMU data. If measurements are available, the gain matrix is calculated according to
the equation:

Kk = P−k · HT
k · (Hk · P−k · HT

k + R)−1, (12)

where P−k —state vector covariance matrix, defined by (7); R—measurement noise covari-
ance matrices; H—observation matrix. Measurement noise covariance matrices can be
defined as

R = Diag(σ2
p, σ2

v, σ2
θ), (13)

where σ2
p, σ2

v, σ2
θ —measurement dispersion matrices for the position, velocity, and orienta-

tion in coordinates x, y, z.
The observation matrix demonstrates what types of measurements are taken into

account when calculating innovation. If the state of a system is directly measurable then
the H matrix for the according element is 1. As the measurement matrix (11) consists of
ux, uy, θx, θy, θz elements, H can be defined as follows:

H = Diag(0, 0, 0, 1, 1, 0, 1, 1, 1) (14)

The updated error state vector is a 1× 9 matrix computed using the difference between
additional sensor data and predicted nominal state (that is innovation) and Kalman gain

δx̂+k = Kk(yk − x̂−k ) =
[
δp̂+

k δv̂+
k δθ̂+k

]T (15)

where x̂−k —a priori vector of the estimated state which can be found as

x̂−k =
[
p̂−k v̂−k θ{q̂−

k }
]T
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Then on the grounds of error state vector total state is corrected

p̂+
k = p̂−k + δp̂+

k

v̂+
k = v̂−k + δv̂+

k

q̂+
k = q̂−k ⊗ q{δθ̂+k }

(16)

The Joseph formula is used for the covariance update to provide a symmetric and
positive matrix.

Pk
+ = (I − Kk · Hk) · P−k · (I − Kk · Hk)

T + Kk · R · KT
k (17)

Thus, the ES EKF itself estimates only errors by taking into account supplementary
sensor data, e.g., LiDARs, cameras, or wheel encoders. In this way, by means of an
estimated error state, the total state is improved.

2.7. ES EKF Error Reset

After vector state updating performed by (16) as well as the error covariance matrix of
the state estimation (17), the error should be set to zero:

[
δp̂+

k δv̂+
k δq̂+

k
]
= 0 (18)

Error covariance matrix Pk
+ also should be reset according to the following equation:

Pk
+ = G · Pk

+ ·GT , (19)

where G is the Jacobian matrix which can be found by

G =




I 0 0
0 I 0
0 0 I − [ 1

2 δθ̂+k ]×


, (20)

To structurize the error state extended Kalman filter algorithm, a combined block
diagram is shown in Figure 2.

According to Figure 2, the ES EKF algorithm first got measurements from the ac-
celerometer and magnetometer. Then, if it is a first measurement, the initial values of
P0, p0, v0, and q0 should be set, as well as matrices Fx, Fi, Qi initialized. After parameter
initialization, the prediction step should be performed by computing p̂−k , v̂−k , q̂−k , and P−.
Then, if the measurements of wheel encoders v and magnetometer q are available, the error
calculation block computes δp̂+

k , δv̂+
k , δq̂+

k , and P+
k , G+

k . At the final stage, the error values
of position, velocity, and orientation are injected into the nominal state and go to «Output
block» which provides an error reset for P+

k and sends updated nominal values back to the
prediction block.

The main advantage of that approach is the robustness as the filter’s malfunction does
not influence the system algorithm. In the case of filter failure, position and orientation
estimation will be obtained by motion model propagation.
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3. Simulation Results

All simulations are performed by a Robot operating system (ROS) package [44], with
Gazebo simulation software [45]. A four-wheeled differential drive robot «Jackal» was
chosen as the main platform with an onboard mounted IMU sensor and wheel encoders.
The simulated robotic platform has the following specifications, presented in Table 1.

Table 1. «Jackal» robot platform specifications

Context Item Value Unit

Platform wheelbase L 0.262 m
Robot speed limit vmax 0.62 m/s

Linear acceleration RMSE σa =
[
σax σay σaz

] [
0.005 0.005 0.005

]
m/s2

Angular velocity RMSE σω =
[
σωx σωy σωz

] [
0.005 0.005 0.005

]
rad/s

Magnetometer RMSE σω =
[
σωx σωy σωz

] [
0.005 0.005 0.005

]
µT2

Platform speed RMSE σv =
[
σvx σvy σvz

] [
0.001 0.001 10000

]
m/s
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The platform speed RMSE in z reference frame was set high because of a lack of mea-
surements.

3.1. Magnetometer and Odometer Sensor Fusion

Vector yk from Equation (11) is composed of the wheel encoders and magnetometer
measurements. Since the ROS framework has a specific sensor data transmission format,
odometry data from the wheel encoders are sent as linear v and angular ω speed. Therefore,
the vx, vy values can be obtained by the following equations:

vx =
vL + vR

2 · cos(θm)
, vy =

vL + vR
2 · sin(θm)

, (21)

where vL, vR—left and right wheel speed which can be calculated in accordance with the
formulas (22); θm—orientation angle on z reference frame provided from magnetometer
data after conversion source orientation vector from quaternion to Euler’s angle according
to (3).

vL = v− ω · L
2

, vR = v +
ω · L

2
(22)

where L—the distance between the left and right wheels.
Therefore, the measurement vector state (11) consists of the velocities vx and vy ob-

tained by encoder and magnetometer data fusion (21) as well as magnetometer orientation
data θx, θy, θz.

4. Discussion

The algorithm test is performed in a simulated underground mine environment. On
the account of the simulation, two trajectories are derived: a reference trajectory and a
trajectory based on sensor fusion data (Figure 3). Using the evo package [46], differences
between corresponding points of trajectories are calculated. Achieved results were compared
with EKF and UKF by using a “robot localization” ROS package [47]. The simulation results
are presented in Table 2. According to Table 2, the mean error values for the ES EKF and
UKF are almost the same (0.517 cm and 0.516 cm, accordingly), while the EKF is 0.13 cm
worse. The maximum values are also close to each other with values 0.752, 0.929, and 0.827
for the ES EKF, EKF and UKF accordingly. The trajectory built using the proposed algorithm
has similar accuracy to the trajectories obtained by the Extended Kalman Filter and the
Unscented Kalman Filter. However, all three algorithms need to increase the accuracy
of localization.

Table 2. Statistics of calculated differences.

Error ES EKF EKF UKF

RMSE 0.517 0.620 0.516
Mean 0.469 0.543 0.475

Median 0.570 0.679 0.512
Min 0.104 0.095 0.163
Max 0.752 0.929 0.827



Symmetry 2023, 15, 344 10 of 13

(a) (b)

(c)

Figure 3. ES EKF, EKF, and UKF trajectories comparison. (a) UKF reference trajectory; (b) EKF
reference trajectory; (c) ES EKF reference trajectory.

5. Conclusions

In this paper, the ES EKF algorithm is proposed for real-time localization in GNSS-
denied environments. To correct the vector state calculated through motion model equa-
tions based on the IMU observations, the heading angle measured by magnetometer and
the speed determined by means of encoder data were added. The proposed system is
validated through a Gazebo simulation. The algorithm minimizes IMU drift by means of
additional sensor data and increases the accuracy of positioning.

The algorithm achieves accuracy comparable to the results of the classic Extended
Kalman Filter and Unscented Kalman Filter. At the same time, the proposed system is
more resistant to failures of the auxiliary sensors. In the future, 3D LiDAR data will be
integrated into the system to increase localization accuracy.
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