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Abstract: Osteoporosis is a common disease of old age. However, in many cases, it can be very
well prevented and counteracted with physical activity, especially high-impact exercises. Wearables
have the potential to provide data that can help with continuous monitoring of patients during
therapy phases or preventive exercise programs in everyday life. This study aimed to determine
the accuracy and reliability of measured acceleration data at different body positions compared to
accelerations at the pelvis during different jumping exercises. Accelerations at the hips have been
investigated in previous studies with regard to osteoporosis prevention. Data were collected using
an IMU-based motion capture system (Xsens) consisting of 17 sensors. Forty-nine subjects were
included in this study. The analysis shows the correlation between impacts and the corresponding
drop height, which are dependent on the respective exercise. Very high correlations (0.83–0.94) were
found between accelerations at the pelvis and the other measured segments at the upper body. The
foot sensors provided very weak correlations (0.20–0.27). Accelerations measured at the pelvis during
jumping exercises can be tracked very well on the upper body and upper extremities, including
locations where smart devices are typically worn, which gives possibilities for remote and continuous
monitoring of programs.

Keywords: osteoporosis; inertial measurement units; wearable motion-tracking sensors; high-impact
exercises; jumping exercises

1. Introduction

The prevalence of osteoporosis has increased significantly in recent years. World-
wide, about 33% of women and 20% of men over age 50 will experience osteoporosis
fractures [1,2]. The first projections for the year 2040 indicate a doubling of acute cases [3,4].
Exercise is a key preventive strategy recommended to reduce the risk of osteoporosis, falls,
and fractures [5]. However, while the preventive necessity of physical activity increases
with age, the actual physical activity decreases [6,7]. Lockdowns and other restrictions,
which could be seen during the Corona pandemic, also promote physical inactivity, even
among younger people [8,9]. Additionally, healthcare services, such as doctor’s appoint-
ments or physical therapy, were not allowed or skipped [10]. To ensure lasting success,
timely and comprehensive follow-up of osteoporosis patients is necessary to monitor treat-
ment success or potential problems and to offer individualized rehabilitation programs to
the patient [11,12]. Pandemic-induced social regulations revealed the need for more inde-
pendent ways of diagnosis and especially disease prevention. However, regular outpatient
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and medical visits are very time-consuming and costly. Smart wearable devices offer a
possible solution by combining more and more features to monitor daily movements and
interactions [13–15], giving patients a chance to follow their progress on demand. Inertial
measurement units (IMUs) are a popular kind of sensor to use in such smart wearable
devices. IMUs enable the recording of body movements and body part accelerations on
which the sensor is worn.

High-impact exercises (e.g., running, jumping, drop jumps) have been shown to affect
bone mineral density (BMD), especially of the femur in premenopausal (age 35–40 years)
women [16,17]. To verify this, all daily accelerations of the body were recorded using
a body monitor (measurement based on IMU) placed at the hip for 12 months. Results
showed a positive correlation between a minimum number of movements with specific
high accelerations and an increased BMD in examined bones which indicates a preventive
effect on osteoporosis [18–20]. Another study shows positive effects of a nine-month
jumping intervention on BMD and content in non-osteogenic sports, such as swimming
and cycling [21].

A positive effect between jumping exercises and osteoporosis has been demonstrated,
with the underlying kinematics and possibilities to track those in a natural setting still being
interesting topics. Thus, our conducted study combines two parts to further investigate
this topic—a rather mechanical/theoretical part to validate the effectiveness of different
body parts to measure and identify those jumping exercises and secondly, a more in-depth
analysis of the kinematic and preventive aspects focusing on osteoporosis. The presented
manuscript focuses only on the first topic.

Single acceleration data or the combination of acceleration data measured at differ-
ent points allow drawing conclusions about certain movements and their effects on the
body. This study aims to evaluate acceleration curves of different body segments during
high-impact exercises (jumps) to understand the kinematics behind the positive effects of
jumping exercises on osteoporosis.

The intention is further to clarify at which segments or body regions jumping-exercise-
based impacts on the lower extremities can best be recorded compared to findings on hip
worn measurements. Can these loads be tracked at the locations where smart devices are
typically worn, such as the wrist (smartwatch), upper leg (smartphone), or sternum (chest
strap), which are more pleasant and more manageable in everyday life?

2. Materials and Methods
2.1. Participants

Forty-nine participants were recruited for this study. All of them granted informed
consent. BMD peaks at around age 30. Women lose BMD faster than men. After menopause,
the risk of developing osteoporosis increases in women. The age ranges were chosen to
include subjects in whom BMD tends to begin to decline, but women have not yet reached
menopause. The upper age limit was standardized for all genders [22,23]. Therefore,
the criteria for taking part in this study were set to an age of 30 to 45 years, two hours
of physical activity per week, and no musculoskeletal condition, and injury for the last
12 months. The idea was to limit the risk of injuries during different jumping tasks. The
main kind of sports the subjects usually did were running, cycling, and weight training
(multiple answers were possible). Data were collected over two weeks, one week at the
Laboratory for Biomechanics at the OTH Regensburg and one week at the Greifswald
University Medicine. A list of subject characteristics is given in Table 1.

2.2. Experimental Setup

The jumping exercises were recorded at 60 Hz using 17 IMUs (MVN Awinda, Xsens
Technologies B.V., NL) for a full-body setup, comprising a 3-axial accelerometer, gyroscope,
and magnetometer. The sensors were placed on the head, shoulders, upper sternum,
pelvis, upper and lower legs, and feet with Velcro straps. Besides the motion capture data
generated via sensor fusion algorithms, specific parameters, like acceleration or orientation,
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can be analyzed separately to imitate smart devices worn on the body. A 30 cm-high
wooden box served as a raise to perform the drop jumps. The height was chosen to give the
subjects a safe feeling when performing the exercise. Due to the different physical activities
performed in their free time, some subjects were less familiar with jumping exercises. The
aim was to keep the risk of injury low and still maintain a high impact on the bones.
Previous studies suggest not going higher than 30 cm [24,25].

Table 1. Subject demographic and anthropometric characteristics. Most performed sports were
queried (multiple responses were possible).

Variable Value

Sex
Female 22
Male 27

Age (years) 33.7 ± 4.2
Height (cm) 174.0 ± 7.5
Weight (kg) 74.1 ± 13.4
BMI (kg/m2)
Sports

24.3 ± 3.3

Running 25
Cycling 18
Weight training 11

Dominant Leg
Left 3
Right 46

The procedure of the experiment was explained to the participants, and their consent
was obtained before recording. Demographic and anthropometric data of the subjects, such
as age, gender, weight, height, were collected, as well as physically active time and previous
musculoskeletal injuries in the last two years. The subjects performed different jumping
tasks five times each, containing Squad Jumps (SJ), Countermovement Jumps (CMJ), and
Drop Jumps (DJ). The exact execution of the exercises is shown in Figure 1. Attention
should be paid to not cushioning the landing by strong knee flexion for all exercises but to
keep the legs as extended as possible in order to achieve as high as possible the impact on
the bones [26]. The first landing/ground contact when executing the DJ is followed by a
bounce hop. The second landing follows the instruction of the SJ and CMJ. In contrast to
the SJ and CMJ, the jump height for the DJ is mainly achieved by reflex plantar flexion of
the ankle joint with the knee angle as extended as possible.
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Before every exercise, the right execution was demonstrated, and the subjects were
allowed to do a test run first to get used to the task and the system. The subjects had to
keep their hands on their hips during the exercises. If the execution was not done right, the
subjects were asked to repeat the trial.

2.3. Data Processing

Motion capture data from Xsens were reprocessed by MVN Analyze software (version
2021.2; Xsens, Enschede, The Netherlands) (MVNA). Further data processing and analysis
were performed using Python (Python Software Foundation; Python Language Reference;
version 3.8.3) with the packages numpy (v. 1.18.5), pandas (v. 1.0.5), seaborn (v. 0.10.1),
and scipy (v. 1.7.2). Acceleration values in gravitational direction for all 17 IMUs, were
extracted from the MVNA post-processed files for all subjects (49), exercises (3), and trials
(5). Only accelerations in gravitational direction were considered, as the impacts of the
jumping exercises affect the body in the gravitational direction. The execution of the
jumps takes place without significant movements in the transverse plane. In the first step,
the measurement data were cut down to the period of the actual exercise. Subsequently,
trajectories of the acceleration graphs between the different sensors and the three jumping
exercises were compared according to the highest accelerations, as these maxima can be
equated with a high impact on the body or bone. The maximum jump height for each trial
was evaluated using MVNA software.

In the further course, the jumping exercises were considered and evaluated separately.
The Pearson correlation coefficients ρ were calculated for each possible combination of
the time series of the pelvis sensor and the 16 other sensors for each subject and trial.
As correlation coefficients are not unbiased, the average of several correlations will not
converge to the true correlation. Therefore, the correlation coefficients are transformed with
the Fisher z-transformation, then averaged, and finally, calculated back into the Pearson
correlation coefficient. The Pearson correlation coefficients were interpreted according to
Cohen (1988), where ρ ≤ 0.29 should be considered as low correlation, 0.30 ≤ ρ ≤ 0.49 as
moderate correlation, and 0.50 ≤ ρ as strong correlation [27].

3. Results

The graphs of the acceleration in gravitational direction show very similar curves for
all sensors. Positive accelerations in the graphs spatially mean a movement upwards (jump)
or the deceleration of the movement at the landing. Clear outliers can only be observed
for the accelerations of the foot sensors. The peak accelerations here are partly two times
that of the remaining sensors. For the DJ, however, the differences are smaller. In order
to illustrate what has been described, the graphs of the accelerations for one randomly
selected person are shown in Figure 2.

Comparing the maximum accelerations of the sensors for each exercise, the medians
for DJ are higher than for SJ and CMJ. The second-highest accelerations occurred for CMJ.
The comparison of the sensors for the exercises is shown in Figure 3. For the sensor on the
left forearm (imitating a smartwatch), a median of 3.23 for SJ, 3.62 for CMJ, and 4.9 times
the acceleration due to gravity for DJ was obtained.

The evaluation of the drop height shows, on average, 0.37 ± 0.06 m (min: 0.23 m,
max: 0.54 m) for the SJ and 0.41 ± 0.07 m (min: 0.3 m, max: 0.59 m) for the CMJ. For these
two jumps, the maximum jump height is evaluated, which results in the drop height. This
is achieved by the subject’s jumping power. For the DJ the average maximum drop height
of 0.47 ± 0.02 m (min: 0.42 m, max: 0.55 m) corresponds to the height after jumping off the
30 cm high box and not after the bouncing hop.

Pearson’s correlation matrix over the whole time series shows that the measured
accelerations in the direction of gravity correlate very well for all exercises between the
pelvis sensor and sensors at the upper body. Here, all correlation coefficients are above
0.87 (min: 0.87, max: 0.94). For the thighs, the correlation with the pelvis sensor is still
above 0.83 (min: 0.83, max: 0.88). Accelerations in the lower leg correlate less well with
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the pelvis. The coefficients here take values between 0.66 and 0.74. The foot sensors do not
correlate with the upper body with values below 0.27 (min: 0.20, max: 0.27). A heat map
pointing out the correlation strengths is shown in Figure 4.
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4. Discussion

In this study, acceleration data from 17 IMUs recorded during three different jumping
exercises were analyzed and evaluated. The results show that the maximum accelerations
experienced by the body or the individual body segments depend on the jumping exercise
performed. The DJ exerts the highest accelerations on the body. The lowest impacts are
achieved by the SJ. This gradation can be attributed to the different drop heights, which are
the highest for the DJ. Another reason for the increased accelerations over the entire body
could be the bounce hop, in which the impact is mainly absorbed by the ankle joint. The
knee does not flex as much here as it does in the other two exercises. The high accelerations
in the foot sensors can be explained by the kinematic chain. The feet are the first segments
of the body to be decelerated when landing. All other segments are cushioned distally via
the intermediate joints (ankle, knee, hip) and the muscles running above them. They are
also very unstable until they finally come to rest flat on the ground. The strong deviations
in the curve to the other sensors can be attributed to this.

These deviations can also be seen in the correlation coefficient matrices shown in
Figure 3. Sensor correlation combinations including a foot sensor have the lowest correla-
tions for all exercises. However, a very good correlation can be read for all combinations
between the pelvis and sternum, shoulders, upper arms, forearms, and hands, starting
at values of 0.87. To reach these correlation coefficients, the hands must remain on the
hips throughout the exercise. None of the previously mentioned segments of the upper
body and their connecting joint angles are actively involved in cushioning the movement.
Therefore, they all experience very similar accelerations on landing. Slight differences can
be explained by the damping effect of the vertebral bodies or compensating movements to
maintain balance.

The maximum accelerations at the different sensor positions indicate that the impact
of the jumping exercises can be measured with an acceptable accuracy on almost all parts of
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the body. When these results are compared with previous studies, the mean values tend to
be lower in the present study. This can be attributed to the lower sampling rate, which has
the disadvantage that very short acceleration peaks may not be detected. Vainionpää et al.
(2006) used an IMU with a sampling rate of 400 Hz [19]. The acceleration data in this study
was acquired at a frequency of 60 Hz. This sampling rate was chosen to compare with
typical values of wearables [28–30]. The maximum accelerations are still in the same areas,
thus, these peaks were sufficiently captured.

This study compares different jumping exercises whose execution is predetermined.
Therefore, the results cannot be generalized. Other movements or movement patterns must
be evaluated separately, as the extremities experience different accelerations during other
movements. In addition, the Xsens sensors cannot be accurately compared to smart devices,
even if the placement can be assumed to be the same. In this study, the sensors were fixed
to the skin with Velcro straps. A consistent position of the sensor is important, as can be
assumed with a smartwatch, for example. Smartphones, on the other hand, are not so well
suited, as they have degrees of freedom in the trouser pocket, which can lead to wrong
results. Specifications of wearables must be observed before use. They must be able to
record the same parameters, and these parameters should also be retrievable to evaluate
the performed exercises.

The characteristics of the test persons were very different in this study. Especially
the different physical conditions and training levels should be emphasized, which made a
controlled execution of the exercises difficult due to a lack of coordination and jumping
power. Having this wide range of subjects reinforces the high correlations. Nevertheless, it
leaves room to examine the results in detail under the aspects of age, gender, and weight in
order to be able to make even more specific statements.

5. Conclusions

The study shows that the accelerations measured at the pelvis during jumping exer-
cises can be tracked very well on the upper body and upper extremities. It sets a basis
regarding the kinematic relationships of different body segments during these jumping
exercises. This includes the locations where smart wearable devices are typically worn,
such as the wrist (smartwatch) or sternum (chest strap). Sensors positioned at the thighs
do not offer as good correlations as the upper body and extremities but are still strong. If
attention is paid to the correct execution of the exercise, the sensor placement is almost arbi-
trarily variable. These results suggest that these jumping exercises can be used in possible
wearable app combinations to assist with the execution and provide important information
regarding impact. As shown in past studies, these jumping exercises are sufficient to have
a positive effect on BMD. The impact forces and the exact preventive kinetic mechanisms
regarding osteoporosis are difficult to deduce from the accelerations measured at the upper
body. Therefore, possible further kinematic and kinetic correlations are to be clarified in
future investigations.
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